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The validity of a resonance approximation for the reacti-
on emplitudes is discussed. A method of determination of the
dominant mechanism of a reaction (/ V¥ - classification of
amplitudes, N is the number of component in the wave function
of a compound state) is suggested.



Ilow the bulk of information about parity violation in
neutron reactions has been stored. Parity wviolation in the re-
action (n, ¥ ) was discovered in work /1/. One can find the
references to the works performed prior to 1976 in the review
/2/ (see also the more recent.works /3-5/). Parity violation
in nuclear fission in the reaction (n,f) was discovered in the
work /6/. The theory of this phenomenon and the references to
the following experimentel works are presented in the review
/7/ (see alsc Refs. /8-11/).

In the recent years the parity violation effects which
arise when the neutrons propagate through the matter, are
Extensiveiy studied. The spin rotation of cold neutrons around
the direction of motion in '17Sn (Ref. /12/) and the differen-
ce in the capture cross sections of the right- and left-pola-
rized neutrons in 1175n, 1391:&, B1Br (Refsa. /12-14/) have
been found. Finally, the difference in the neutron capture
croes sections near the p-wave compound resonances where the
relative magnitude of the effect constitutes 10~1-10"2 has
been measured /15=-17/. In all the cases listed above, the pa=-
rity violation effects are enhanced gubstantially because of
the complexity of compound states (dynamical enhancement) and
the closeness of a p-wave compound resonance /18/ (see also
Refs. /19,7,20,21/). It is clear that a consliderable enhance-
ment of the P-odd effects near the p-wave compound resonances
occurs in the (n, ¥ ) reaction as well /18,7/. It should be
noted that long before publication of these papers, the for-
mula hag been presented in the Ref. /22/, which contains the
enhancement of the circular polerization of & =guanta near
a p-wave compound resonance. Nevertheless, the existence of a
resonance enhancement was not emphasized in Ref., /22/ and the
standard estimate Pg ~‘10"4 (which colincides with the well-
kniown wvalue at the thermal point) for the magnitude of the
circular polarization in the resonance was given.

In connection with the study of the parity nonconserving
effects in nuclei, the problems arise which are slso impor-
tant, in our opinion, for & study of the other phenomena in
nuclear reactions:

1. What is the range of wvalidity of the resonance appro-
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ximation in the (n,n), (n,% ) and (n,f) reactions?
2, How can the dominant mechanism leading to the appea-

rance of the effect. be found?

The present paper is devoted to the discussion of the
above problems.

1. Resonance approximation in heavy nuclei

The observed variation of the parity violating effects
from a p-wave resonance to the thermal point constitutes 3-4
orders of magnitude. The natural question arises: are the
simple resonance formulae vallid in such situation? The prob-
lem of a resonance approximation in nuclear reactions has long
history. It is enough to recall the R-matrix Wigner=Eisenbud
theory /23/ or the Kapur and Peierls theory /24/ (see also
the book by Lane and Thomasg /25/). However, the tecknique de-
veloped. in these works is cumbersome and is not convenient,
in our opinion, for congideration of the angular and polariza-
tion correlations due to a large number of channels connected
with the reaction (n, ¥ ). We prefer to use the method based
on the summation of the smeries of perturbation theory. In es-
psence, - this method has a great deal in common with the appro-
ach suggested by Peshbach /26/.

1#t usg first congider the elaatic neutron ecattering in.
the vicinity of an isolated compound resonance. The wave fun=-
ction of a compound state may be represented as a sum of the
products of single-quagiparticle wave functions. Let us ex-
clude the gingle-particle component from this function (i.e.
the states with neutron above the non-excited initial nucle-
us). A compound state J¢€) defined by such a way ig the le-
vel of discrete spectrum because in the vieinity of the neu=-
tron threshold the remaining components have no output to
the continuous spectrum (the other decay channels are not
yet. taken into consideration). The emittance and capture of
a neutron (i.e. the coupling with a single-particle compo-
nent) will be taken into account using the perturbation the-
ory in the residual interaction h& « The scatt emplitu-
de Ennqiata of the potential and resonance parts: =y{+wf; .
An expression for the resonance part is of the form
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Here [ny, M’) are the single-perticle wave functions, E is
the neutron ensergy, Ec. ie the energy of the compound state,

?va ls the density of single-particle statees (phase volume).
Of course, not only the integral over aﬂ?' but also the summa-
tion over single-particle levels of the discrete spectrum are
carried out in formula (1). The graphs corresponding to formu-
la (1) mre shown in Fig. 1. Emphasize that we sum all the or-
ders of perturbation theory, i.e. we do not assume the small-
ness of operator H_. As known, the series (1) 1s a simple geo-
metric progression. If one introduces the Green's function of

a compound nucleus g(E) and mass operator 2 (E) then /-2 is
written as follows: '

Jo(8) = <nikle) G(E) ety in)

(2)

R 0¥ 2 -1
G(E)_E-Efﬂ‘a Tt s +(;iﬁ)+ﬂ]=@-5‘-szy (3)

Z(E) = <£'ﬁ‘ifr“>0f?-“fr£}
; E-E'+i0

Ple)olE'= AE (E)- r_lf?_(ﬁi (4)

In the cage of an arbitrary number of resonances the Green's

function and the mass operator become the matrices in mpace
of the compound states:

A R
¢=(4"-2) g:?:, S (5)
£ = 2 <nltle) ¢ (E)<epiny (6)

ce!
The other decay chamnels (for example, the )}~ -channel)
give the additional terms in the mass nperatnr:j =£"‘+Z ".;.

n _ (<elHInd<niH,le) , '
th; T E-E. ,.“p. ﬁl‘. {E)/E (7)
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Here Hgy ?a the operator of electromagnetic interaction, in- fﬂ, 2 o)
dex q enumerates the nuclear atatea_to which the § ~transi- Eﬁre f ig the principal value of integral, /" is the neutron
tion takes place. Using the Green's function of a.compound nu- | _ ﬁid‘bh at E = 1 eV, Em is the characteristic emergy at which
cleus, one can write the amplitude of any process, for example, the integral converges. The convergence of an integral is de-
of the remction (n, ¥ ): termined by an energy dependence of the matrix elements. Hen-
fo = Z NI <cHonl 19 w: it i e B Rt TS e
] e J
iz strength function for s-levels from Ref. KEBIIF"_;‘T/,Z] < 1074,
In order to write f,, as a simple sum of resonance terms, For the derivative of -REZ , we obtain (at ) ~ 1=100 eV):
it is necessary to diagonalize the Green's function ; (8) . .
According to formulae {6}. thig i3 equivalent to the diagona- b ReZ R 2 Z J0 1#? -& (13)
lization of the matrix A, = E,J;Erf-z () (cf. formulae ! E“
(3.17) end (3.18) from Ref. /26/): Thuﬂ. at the variation of energy J.E ~J , the relative shift
A = “'!A U ; Aﬂr = g(g) J"H, , of the resonance poai:iun.d.uaa not exceed 10-4. As far the
e (10) imaginary part, [mJ * cen be neglected near the neutron thresh-
(;: H"’ga 5 gcc’ e E-(EJ J':c, . old. The origin othZris the same as that of the Lamb ghift

in atama. There ie no difficulty to verify that Rle
~ImZ ¥~ £ D . The chavacteristic frequencies of the
emitted Y -quanta and the scale at which matri: elements of

Hom va.ry constitu‘l:ﬂ 1-10 MeV. Hence, §Re> /,9 ~0 1/ Mey < ;o

It is known that in general .case the matrix Z{' is a nonunita-
ry. As a result of diagonaligzation, we obtain, therefore, the
right- and left-hand sets of the states (see, e.g., Ref. /27/):

fE} = ZH;'E }'f"} md SIMZ //" < 10 - Similar estimates can be presented
. (11) for fission as well.
<CI = Z_ U ¢:<f/ As we have mentioned above, the matrix /{ 1s not, gene-'

rally speaking, an unitary one. This circumstance leads to
the appearance of additional phases in the matrix elements
and to the distotrion of the energy dependence of the total
cross section and interference effects (including P-odd ones).
Such a situation can occur if the fission channel i1s open.
However, this is not to be so if only the neutron and Y-
-ahannela are open and we analyse the reactions near the neu-
tron threshold. In this case, /A proves to be an unitary re-
al matrix. In order to verify this, it is appropriate to take
the intermediate states in formulae for mass operator (7) and
{(8) in the form of standing waves. Then, the matrix elements

Generally apea]:ing, the eigenvalues E =Re E, 'HIM Ee s the
matrix {{ , and the sets of states ;;}, (:! can depend on ener-
gy E, that substantially complicates the behaviour of amplitu-
de A . But it turne out that.practically there is no this de-
pendence in complex nuclei. The reason is that all typlcal va-
rietion scales for the matrix elements are of the order of
geveral MeV and ere large compared to the average distance
between the compound resonances G A Conegider, for example,

the neutron contribution to > 3

&
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in thése formulae &re real. and one cen immediately see that
.Rezw ig a symmetric matrix. The imaginary part, in this

: |
case, turng out to be proporiional to.the unij; matrix: |

Imzm; =?§ ee! o The meutron contribution to. ImZ can b:}a

neglected, since ImZ"«-/; £L /;.- near the threshold. Aahmﬁn,

the fluctuations of the & ~widths are small, § /}44/}., he’-i

cause of a large number of Y-ﬂhannels. In addition, the non-

~diagonal part. IMZ;; ig smell since the statistical rela-
tion (see Appendix A) holds:

(In2) =36

Thus, in order to diagonalize the Green's function, it ise
sufficient to make a dlagonalization of the real symmeiric
matrix A:cf =£, J;‘-_.,-A’ezuf, which is performed by a simple
rotation in space J¢)

Ag & result, the resonance part of the neutron scatie-
ring amplitude neer neutron threshold (/, <</,) is found to
be a simple sum of resonance terms having no additional pha-
seg. Their imerg dependence is due o the resonance energy
denominators and the kinematic dependence of amplitudes

(Ke s K is the neutron moment). The same asseriions are also- -

valid for the reaction {n; ¥ ). If the fission channel is
open, additional phases, fﬁ&f’/j} , can arise. :

In caleculating the parity violating effects one needs
to take into esccount a weak interaction, basing on perturba-
tion theory. From the conclusion drawn above, it is clea.::.'
that the matrix element of weak interaction in the admixture
amplitudes should be celculated using the compound states
;E} , and the diagonalized Green's function of a compound
nucleus should be used. Since inm the calculations the para-
meters of the compound states are extracted from the experi-
ment, the use of the states IE}, instead of /¢?, does mnot
cnmpliciata the problem.

In conclusion of thie section, we would like %to make
one gimple note. As inown, in the one-channel problem the
description of an amplitude as & sum of Brelt-Wigner reso-
nence terms contradicts to the unitarity condition. This ie

B

eagy to see from the optical theorem:

= % Im /f&)
When squaring the amplltude, the interference terms appear in
the left-hand side of the equalliy whereas the right-hand
part contains only the sum of the resonance contributions. In
the case of the reactions (n, &) and (n,n) near the neutron
threshold, which has been discussed above, the applicability
of simple resonance formulae is due to the fact that the in-
terference terms have no definite sign and are averaged in
aummation over 2 veriety of final states connected with the
reaction (n, ') (due to a random sign of the interference
terms, their relative contribution to the total cross section
is MJVW" ; // is an effective number of final states giving
the main contribution to the cross section {n,f}l). These ar-
guments fail far from the neuiron threshold (at f: ;‘;‘.‘.—f;} be-
cauge there is sn interference hetween the resonancesin the
neutron part of the e¢ross section.

Il. Matrix elements of one-particle operators between
the compound states

Let ues represent the wave function o'f a compound state
a8g an expansion in products of single-quasiparticle wave
functions

>V=Z'_Qﬁ{ i 415

#=af.... 4 ... [0) are the states which contain s
definite number of particles and holes. (a',b* - creation
operators for particles and holes. We are not concermed with
the collective degrees of freedom gince their inclusion does
not change the situation qualitatively).

The characteristioc number of the "principal™ components
in y/ (i.e. the components which give the main contribution
to normalization) ig equal to (see Refs. /28-30,T/)

A/'V%: @C’E* s> 7 (16)



Here J) 1s the average dlstance between the compound levels
with the same momentum end parity, /;ﬁu MeV is the fragmenta-
tion width of the state §4 to the levels of the compound nucle-
us. By virtue of the normalization condition for the princi-
pal components [C,[ ~ %3y’ + The components ﬁ{ , whose unper-
turbed energy (i.e. the energy without teking into account

the residual interaction H, leading to fragmentation) congide-
rably differs from that of the compound state (fEf’—E'f’/}’,’:’*/z )
appear in l’V with a smaller weight. The corresponding coeffi-
cients are easy to estimate ueing the perturbation theory in
residusl interaction H_: :

s <‘£{!’H£/V/w) _C‘LE-—-— A (17)
C, = e
3 Ey - Ey 2(Ey-Ep) W

Here V/M. is the wave function of the compound state with the
small components not taken into account. We have uged the for-
mula from Ref. /28/:

= 27 T _ 4 peamly Dt (18)
=G CGIMIYD" = 72 VA Ul

In this book the formule is presented which describes the co-
efficients for both the principal and small components:

f;u/.z ' wa (19)
EpEf ity VW
Pormulae (18) and (19) have been derived in Ref. /18/ for
the model where the density of the states is constant. In
the nucleus, the density of the states incremses exponenti-
ally with emergy because of increasing the number of quasi-
particles in the state ﬂt « But HE is & two=body operator,
and hence, according to Eq. (17), only states ﬁ , Which
differ from the principal components not more than by the
state of two nucleons, admix to y/f”. The density of such
states weakly varies with energy. In view of this, if the
total density of the states varies not strongly at
SE -v/;_.:ﬂ /2 , the estimates (17),(18) and (19) are also
applicable to a real nucleus. The difference consisets only
in the fact that not all the remote components admix to }V :

o =

10

'ila.nd N = H{E?u} in the formulae.

Tn the nuclei (Sn, Cd, La, Br, U, Pu) where the parity
*v':i,'lala'ting effects in neutron resctions have been obeerved,
HI'N 1U4¢106. The large value of the parameter N which charac-
ferizes the complexity of the system, enables one. to readily
astimate the relative contributions of various mechanisms %o
the reaction esmplitude. As will be shown below, these contribu-
tioneg are proportional to different powers of \/N.

: Let us first estimate the matrix element of a one-body
‘operator M between the compound states (Refs. /31,29,30,7/).
As ﬁ, one can take the operator of electromagnetic, weak, or
Coriolie interaction. '

Mif = <A1 =< T il MIZ 4 1)
R ECTACT Y

For the seke of definiteness, /p)/(g M is apsumed. With e
fixed & , the matrix element {ﬁ}ﬁ”ﬁg) is not equal to ze=-
ro at several ’5 (their number is denoted by ﬁ ) when f;ﬁ dif-
fers from ﬁ,‘ by the state of one particle only. It is natural-
1y -to think that the signs of partiocular terms in the sum (20)
are random in such & complex system as the compound nucleus.
Thus we have, in eq. (20), the incoherent sum of ~ gN terms,
each of the order uf/‘f/m;)"f is typical single-particle mate

rix element. As a result of the summation of incoherent contri-
butions,

(20)

et i, <
g~ iM (&= 7F=-M)

i AN v, 7

”:‘;( - \'?-'M/W"’:
In the_l estimation performed, the metrix element between the
principal components of. the states /), ;y) has been assumed
to be different frun.‘: zero. But, by virtue of the selection
rules for operator M , the matrix elements between the prin-

cipal components can prove to be zero. In this case, the mat-
rix element is distinct from zero due to the small components

¢21)

in % s OF 5!’ . For example, such & situation occurs if we

analyse the matrix element of weak interaction between the
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close compound states (Ref. /32/). The operator of weaek mter--

action H,,, trensfers the particle from one shell to.the other,
Acting on the principal component of the state 1{) Hy tran-
gfers it to the component lying in the another shall. Accar-’_
ding to formula (17), or (19), the coefficient {; for such |
a component in the state /i) is suppressed by a factor f
I},, /{!M,) ()~ 8 MeV) is the distance between the ahalla'.ii,_
Ag a result, \

(H )f Z[a*(;mg%) fddwaf) +4, ffSHd{}<ifHJfZ]

(22)
~ & Ho Wv\f;”_‘e&w

Since f;:pg depends, generally speasking, on the number n of
quagiparticles in the state ﬁ'{ , formula (22) includes the
effective width corresponding to the states with the most
probable n. Ae a result eq. (22) conteins in comparison with
the estimate (21) the factor of suppression f;”/%u.‘-é -.f-ig- .
Uging Eq. (22), it is easy to estimate the mixing coeffi=-
cient of the nearest compound states with different parity:

M(Hur)" Hw ..
& _9)__/.\, f@ (23)

The ratio M|, /&), is & typical magnitude of mixing between
gingle-particle levels. The mixing of compound levels is
enhanced byﬁ?timaa. Thie corresponds to the known "dyna-
mical enhancement™ of a weak interaction in the nucleus (see
Refs. /31,33,34,30,7/)s It is clear that any small interac-
tion in the nucleus is enhanced in a similar way (Ref. /30/).
For example, the dynamical enhancement of the Coriolis in-
teraction is considered in the Ref. /35/.

Just as in the case of the weak interaction, the ampli-
tude of the El=transition between the close compound states
turns out to be suppressed /29/. Similarly to /22/, we ob=-
tain

apti il St ENZ (24)
(Eﬂ‘/ @-%)‘H;,f/; A
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Here & is the frequency of the ¥ -quantum, E1 is a typleal
eingle-particle matrix element.

The estimations we have made above assume a complete in-
coherence of the contributions: of the various. terms. This as=-
sumption ie not always valid. Let us consider, for example, .
the E1-transition from the ground state of the even-even nu-
cleus to the compound state lying near a giant resonance., In
the wave function of this state there are ~ AE”B particle=~

~hole components from which the E1-transition to the ground
state is possible (i.e. ;-'-'-/4:'3}.

In heavy nuclei, the frequency of giant El-resonance is
t) =24}, Hence, the estimate (24) could gives

Y%
- [san
(Ef #tu % Ef _‘1'}.‘. (25)
Ne b
However, due to the existence of a giant resonance which
plays a role of one of the states ﬁ in the wave function

(15), there is the coherent contribution of the particle=-ho=-
le pairs (which "constitute" ﬁg ) and correct estimate is

%
(Efjﬂ M% El (26)

If we coneslder now the Y -transition from the ground sta-
te to the compound resonance /¢)>, which is distant, in
energy, from the giant resonance, then one can see that the
resonance contribution decreases

/ o '!P':?
(E), ~A”ET holhle> W A'gs Lot

E =Gy, VvV E,~Ezes

The hypothesis by Axel and Brink /36/ (see also Ref. /37/)

extends, as a8 matter of fact, the eatimate (27) to the tran-

sitions between any compound states. This hypothesis is ba=-
ged on the idea that a giant dipole resonance can be exci-
ted above any compound state. Indeed, at a frequency of Y -
-quenta, which i1s close to the frequency of giant resonance,
the incoherent contribution (25) to the El-amplitude is
suppressed and, hence, the hypothesis seems to be gquite na-
tural. But the frequencies of transitions in the (n, §) re-
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action do not exceed 8-9 MeV X&; , that is much less than the
frequency of the Ei-resonance. In this.case, the factor
f;‘,,q./[E;_. -E“_fj suppresses the resonance .contribution and,
therefore, the resonance contribution (27) is not larger than
the incoherent (24). Moreover, it is not evident that the
deseripticn with the help of a giant resonance is correct at
the frequencies of gflquanta, which are typical for the sin-
gle-particle transitions (W= &4b).

TIn Ref. /32/ the idea of the mixing via a giant 0 -reso=
nance wag used for estimation of the matrix element of weak
interaction between two close compound states. But we have
geen that for El-matrix elementa, the resonance mechanism is
dominant at the frequency of the giant resonance only due to
the. fact that the collective frequency, a)m= 24}, is atrong-
ly separated from the single-particle frequencies, w=ap .
Ag for the 0 -pesonance, if the latter exists, ifts frequency
is 111::.‘,-'.‘;3' to be close to the single~particle one: %g}-"-ﬁﬁ% .
In view of this, the estimations of the matrix element of
weak interaction between the compound states which unsed the
"incoherent" (22) and "resonance" /32/ mechenisms coincide
with each other. In this statement the words "resonance" and
"incoherent® are in inverted commas. The point is that since
the resonance frequency is not separated from the singlé-
-particle frequencies, the concept of & resonance practical-
ly loses sense. The energies of the majority of particle-ho-
le states which belong to the same shell coincide with each
other with an accuracy [ £~ f}ﬂ? » Due to the degeneration
we can take any combinations of these states as a basic set.
Ag a congequence of this, the assertion that the "resonance"
and "incoherent" estimates are the seme, becomes entirely
clear: the matrix ‘element between physical states is inde-
pendent of the basis in which we calculate it (i.e. it is
not important whether we use particle-hole excitations or
their lineer combinations, among which there is the 0 -reso-
nange).

il The summery of this section consists in that the mat-
- rix elements of a one-body operator between two compound
atates or between the compound and a few-particle states

'a#e suppressed as ﬁﬁfﬂﬁmty* compared to the single-particle

14

\matrix element. With the fixed average parameters, the values
of these matrix elements are, apparently, distributed accor-
ding to the Gauss law.

IIT. Claggification of amplitudes in powers of fthe
parameter /Y7 is & method of determination of the
dominant mechenism of a reaction

In the preceding section the estimates have been obtai-
ned for the wave functions of a discrete spectrum. For their
applicability to the traneitions to e continuous spectrum,
let us normalize the neutron wave function at E.> O by the
following way

(g e dv=1 (2
2 <R

R is the size of the nucleus. Besides the metrix elements,

the expressions for the emplitudes of reaction include also
the energy denominators (E—E‘.ﬂ'/:fz ), where E, , f: are
the energy and width of the compound state. These denominea-
tors are less by a factor of N than the typical single-partic-

le energy scale & &~ _Vg-'*{(é '*'f"fel/./

! __._._.':’j _Gﬁ.i / ___Q)___ L (29)

e = ‘va F =
E _Etf-:‘fg/z E"'Ec""gé D f:PQ EE“*":é };’Q

Sincé we want to keep trace of a very large parameter ¢ﬁ: we
are not concerned now with the other parameters (for example,
Ght/?b% ). Based upon the above considerations, there is no
difficulty to formulate the general rules for classification
of amplitudes in powers of small parameter 77 ~ 10"2-1073,
Thege rules allow to separate the dominant mechanism of a
reaction.

1. Each vertex of an interaction (neutron capture, elec-
tromagnetic, weak, Coriolis one, etc.) contains the factor
'f/m , where }I/M =max(M, ﬁ;:); /V;; M,; are the
numbers of the principal components of the nuclear wave fun-
ctions which enter into the vertex. In the ground state
N = 1 and in the excited one N ~ MeV/D.
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2. Every Green's function of a compound state /€) (at )
[E -E, H'G,i, £ D ) gives the factor N, and the resonance |
energy dependence @/{ E L +_.;‘i";4 Je

It is worth to emphasize that the rules 1) and 2) yield
e mean-square estimate of the amplitude. In prineciple, the
fluctuations can oceur, which are capable to change the ampli-
tude relation in eﬁch particular case. But because of the lar-
ge value of parameter \}E: the probability of the fluctuations
which violates the ﬁ'-hierarchy of amplitudes is very small.

Let us congider, for example, an elastic scattering of a
slow neutron (KR <47 ) on a nucleus in the case when only
the channels (n,n) and (n, ¥') are open. The amplitude of a-
-wave gcattering looks B’?.— fnllmm:

)
f(E)=-/4- E%Z 24 (;;- (30)
¢ E-E iy

Here A =-4,41s the scattering :ngth,xﬂzm,,f) is the
factor which appears after averaging over the erpin projecti-
ong of the initial nucleus. Note that the separation of the.
potential term from the resonance one in formula (30) is am-
biguous because at a given energy the contribution of far re-
gonances is not distinguishable from the potentlal amplitude.
Therefore, it is worth-while to take into account in formula
(30) only several nearest resonances.

If one is interested only in the powere of parameter VT,
it ia_gimply to write an estimate of the resonance part ?
plotted in Fig. 2. The diagram contains the vertex of neutron
capture (1/ ), the vertex of neutron emission ('/\T), and
the Green's function of the compound state {M@A’E-E(h‘%}),
i.e.

f A "D - (31)
4 E-E;_. *¢ -";é

Thus, in elastic scattering (without parity violation) the
regonance contribution, has, Just as a potentlial one, the
zero order 1in powers of ﬁ: It follows from the experimen-
tal data on the neutron strength function (see, e.g.,

Ref. /28/). that far from the compound fesunances, i.e. at

EE -~
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?}gﬁuéafikqgfﬁ:qf (32)
&

This ratio 1s determined by the other parameters (besides J—H}
involved in the coneideration of elastic scattering. For exam-
Ple, according to the model considered in the book /28/.

_ZE i i/:ﬁ’i 3
7

= : 2 (33)
ffﬂfnﬁﬂ[(f-&)zf ":‘pt/g’

Here R is the nucleus radius, Ez is & position of the nea-

rest single-particle g-level. It ie seen that the other dimen-

sionless parameters are not so large as | N.

The diagrams where the virtual capture and neutron emisgi-
on are repeated (see Pig., 1) have the same powers of J_I?_aa
the main diagram. As has been shown in the first section, ta-
king them into account leads, however, only to a some variati-
on of the parameters of compound resonances.

The 1;’ ff'uclaaaiﬂcatiun in the case of the reaction
(nf)loocks not so trivial. The amplitude is determined by the
diagrame given in Fig. 3. The non-resonance part (Fig. 3a) £,
corresponds to a direct radiative capture of a neutron into
the final compound state /£). Since one vertex of the operator
of electromagnetic interaction entere into 1t, this diagram
is proportional to 1}" m. The resonence amplitude f. (Fig. 3b)
describes the same process proceeding through the intermediate
compound state ff)? This diagram contains the vertex of neut-
ron capture {1/ J-_DT:}. the Green's function of the compound

state (A, D/(E-E.+ ¢/e/3)), and the vertex of photon emission
(v m}. As a result

/q 2D i (34)
L= M E-E rilo4

f} Hote that diesgram 3¢ (which containe the factor

D E-E, +£fl'-4.) 5 1’,{(‘7") is, in practice, the part of dia-
gram 3b. It corresponds to the separation from (¢ fy“f/}
of the contribution of the single-particle components.

17



3 |

Thus, we can gee that even at E-E, ~ 2D in the reaction (n,d" )
the remonence mechanism dominates in the transitions to the
complex final states ( 'N)/(b}’f ), and only for transitions to

the ground state and those close to it U.ﬁfvf] the direct and |

resonance mechanisms give a comparable contribution. Since the
trangitions to the complex states dominate in the total eross

section, the known agsertion follows that the total cross sec-
tion of the resction (n, ) ) is determined by the resonance

mechaniem (see, e.g., Ref. /38/).

Let us now discuss the parity violating effects in neutron
reactiong. The effects in neutron optics are the simplest ones.
The angle of neutron spin rotation around the direction of its
motion in the matier and the difference in the total cross
gsections for the right-hand and left-hand polarized neutrons
can'ba expressed through the parity violating part of the for-
ward elastic Eaattering amplitude (f )

A 2??
’f’ ”’E’/N (35)

A =G-0n = 9z 2 I fpv (36)

Here A/ is the density of the target atoms, / is the path
length of the neutron in the sample. The dominant contribution
to f comes from the diagrams connected with the mixing by a
weak ;nteraction of the levels of the comnound nucleus with
oppogite parity (Fig. 4). The:,r contain th jee vertices (1! vr—'}
and two Green's functions (H Vs S \

(4) \
}E’ AN D D \ (37)
PV SESE il EsEilin \

We have teken into account that the s and p ‘re close compound
states and, therefore, Ms«-A{, =A/ « The neu k.-on scattering on
the P-odd potential of the nucleus (Fig. 5) :hd the neutron
scattering on the P-odd potential ancampanie by a virtual
capture into the resonance (Fig$:. 6 and 7)’ lalso gives the
contribution to AV « The diagram in Fig. 5 /has no \/_', becau-

*)

Diagram 7 is, in practice, the part of/diagram 4. It cor-
responds to the separation, from <S/Hw//> in Eq. (41), of the
contribution of the single-particle cor jonents.

18 7

ge 1t 1ls not connected with the compound states. The diagrams
in Figs. 6 and T has the zero order in\W, as well:

A RMET S i Tl R

ov 18l Y 73 i (38)
N E-Erily Wy E"'@i-f‘g{z

f(m ,_f'-ﬂ/ 2 . 2 (39)
W’ —E v f?{! VW' E-Etdl3y,

() aniy D 1 7 D (40)
anE M : ‘f' '.IV. f 9 '2)
o W EE G W N EGH Y el i

Thus, the contribution of diagram 4 is enhanced by a factor of
ﬁ‘.f—' compared to that of diagrams 5,6 and 7. It is the dynami-
cal enhancement of weak interaciion in heavy nuclei that hag
been mentioned in the second section. The contribution of the
diagrams presented in Fig. 5 has been analysed, for example,
in Refs. /39-42/. As to the diagrams in Fig. 4, their contri-
bution has been considered in Ref. /18/ (see also Refs. /19-21,
7/), Pig. 6a and 7 - in /[43/.

Note that a eimple relation follows from the fact that
Parity violation is associated with the compound resonances
which decay mainly through the X -channel: Ay, = A0y

(A0 =0, ~0.) . The experimental testing of this relatmn
was made in Refs. /13/ and /14/. If the fission channel is
open, then Adaf:dé;fﬁ'-’/z The amplitudes considered above can
be eapily expressed through the parameters of compound reso-
nan-:;fa. For example, the calculation of the dominant amplitude

gives (see Appendix B)

PV
/m 15 29V E) <SIH IS ¢ Vipy €5
PV 2K (E E t :;)(E T "}é)

5P

(41)

n)
Here f'r ig the partial width of decay of the p-wave reso-
nance :L/,h:- the state of a neutron with momentum J*" T

<slH,,/p) 1is the matrix element of weak interaction between
the compound states.

Let us now consider the amplitudee giving rise the pari-
ty violating effects in the (n, 8"} reaction. Dominant here is
the eamplitude connected with a weak mixing of the c'nmpnund
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states formed after the neutron capture (Fig. 8). It contains
the vertex of neutron capture {1}' \{?i), the vertex of weak
interaction (/ \/ﬁ;). the electromegnetic vertex (ly \/-H_i') and
two Green's functions of compound states {sz_}. As a result,
this amplitude is enhenced by a factor of W :

& —
AU" o N:' 2 Y ’D . (42)
B i s E "EF“;‘;./Z
The smaller contribution comes from the amplitude connected
with 8 weak mixing in the final state (Fig. 9):

(0) b

o DIE=E)  DI(EZEL (43)
nJ

A’*’ M E - +iliy Ew*gﬂw‘% |

Since ) is exponentislly energy-dependent, we indicate

the energy at which ) is taken.
8) (9)
Begldes o -and by there are a number of disgrams

not enhanced (e.g., Fig. 10) and even suppressed as 1{&?
(e«g+s the contribution of the diagram in Fig. 11 is proporti-
onal to 1{ m).

The total number of anguler and polarization correlations
asgociated with the interference of various amplitudes 1s qui-
te large and only a small part of them has been measured. PFor
example, 17 correlationg (8 P-even and 9 P-odd) occur in the
(n,§") reaction near the threshold if we take into account the
g- and p-wave neutron capiure and the dominant ET and MI 3/-
~transitions /ref. 44/:

(Fuly) , FRT] , (RANSRAA]) (R %),
MER) ) A GR) MR, 7)-§35] AR N3P, ]
(44)

@A) G, [FRNT, ) - $5T,] [ER YRR )-§37,]
A, AR, M), A[RR ) ], ARG IR 7))

Y .
;t’ﬂ v 13 _’are.the directions of the momentum and spin of the

neutron; M, , A are the direction of the momentum and the

helicity of the Y'-quantum. These correlations have been

20
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calculated in Ref. /44/ with the dominant diagramg taken into
account. .

The 1/ /¥ -clasaification of the amplitudes of the (n,?)
rea.ctiqn proves 1o be approximately the same as that of the
(n, ¥) reaction. The main amplitude (Fig. 12) also has the zero.
order in \.E: It containe the neutron capture amplitude (13‘ JF’_},

the Green's function of a compound nucleus (Ny) end the figsi-
on amplitude (V/ JE;_J*:

/ ﬁi) D
Y E “E,i-:'ﬂ.ré

(45)

The domlnant admixture amplitude with parity violation (Pig.13)
is enhanced by & factor of VN (see Refs. /30,T/):

£ Sk VTl 2 (46)

E-Erily E £, "*"5"4
There are also non-enhanced amplitudes (Pigs. 14 and 15). The

diagram in Pig. 15 corresponds to taking into account the weak
interaction at the cold stage of fission (Ref. /54/).

We are thankful to S.G.Kadmensky for helpful discussions.

f] The factor 1! E in the fission amplitude reflects the
magnitude of admixture of the wave function of a cold defor-
med nucleus in the wave function of a compound state

(Refs. /30,7/). This factor leads to a reasonable estimation
of the width of the resonance for the above~-barrier fission:
j;('“j;! -,j,-f ~ Qe.1¢1 oV, -%“-g ~ 100 keV, v/ is the velocity
of motion of the fragments at the fission barrier, R the bar-
rier size, 7 the lifetime of a cold state.

21



Appendix A

Non-diagonal mass operator and fluctuations of
¥ —widths

TLet us firat recall the way in which the mean square
Pluctuation §/7 of a/-widthﬂ igs estimated. The electromagne-
tic width of the compound state /i) can be written down as
follows: : :

["i.=§?-;_//ﬁ// a)‘/:. M/Q’f (A1)
 Here &) fend M;/ere the frequency and amplitude of the tran-
eition fo the final state /), Wi/ = £/M, /% For simplici-
ty, one asgsumes that angular momentum 3 d the parity # of
the final gtates J; dare fixed (if several J end y &ve the
contribution to /) , one needs to sum over them in the follo~-
wing formulae (A2) and (A4)). Let us represent 'w‘: in the
form W, :E‘/{f- -/, where the line denotes averaging over
the states ;> with’the given parity and angular momentum. In
the statistical model the quantity wi/ is digtributed accor-
ding to the PﬂﬂerThOmaa law (see, for example, Ref. /28/),
a0 f;; = ,E(D{K) . Then

L 2
Fz?‘:h{xqu e E e TNG (&2)
(sr)3=T%- (F) =2 Cf Wit = Zz_(\*{x) 4

The imaginary p A nf;r the non-diagonal mass operator (8)
ig of the form (ef. IMZ“':'I}/Z. ):

's 9
7. == 25, - (42
vaf- : 3 ;- t; MA (E E/)
Since ]Zh-}.{’l‘l , only the mixing between close compound
states is significant, i.e. one can put E £ =L After
averagingrovar the g'tgtea ..5 ¢ (x,z‘:') we ga-li H;/ M /x:' 4,
Im Zx.-,‘ =0 &

2?2 4 2 (A4)

CHAREIIL L e i
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Since the number of states ;';Z} is large, the width fluctu-
ation can be written down as follows:

E; :

(sr) : f_; a({(sff)zﬂ'f *(Sug) f;g £ bl
5 - z
i [; 5[551* ?:E'F Su1 g’a’ff + } Mgc/g;] |

Here § = S(w, E.,]) is the rediation strength function,

©= P(E-w) is the corresponding density of the final sta-.
tes, F =—-# . For numerical estimation, one can restrict one~
gelf by the dominant multipole (E1,M1) and use the standard
parametrization of ?(E) (see Ref. /28/) with the paremeters
fitted to the spectrum of a particulsr nucleus. The frequency
dependence of the strength function is weak as compared to_ }:ha.
dependence of P(E;—w)[fur example, SEJ,M[(M—Q%)‘I+ I;o:fg] ’
according to Eg. (24)) and the former may be neglected. In
particular, for ''/Sn, we obtain §//s ~ 0.05.

(A5)
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Appendix B

Calculation of reaction amplitudes

There is no difficulty to write down the calculation ru—
les for reaction amplitudes near the neutron threshold. Let ""x
be the motion direction of the neutron, -f the momentum of the
initial nucleus, 3— T-l-} the mnmentmn of_the compound resonan-
ce, o polarization of the nautron,;a Z+5 the momentum of
the p-wave neutron at which the capture occurs. Then,

I. The capture amplitude of the neutron into s-resonance
is equal to

3%5 [ |
C ?‘@ (B1)

2. The capture amplitude of the neutron into the p-reso-

nance is Hlual to
/ 2 = -
.'.r;,..m Iz//e Cmi« ):. x“?}\/!" B2

o)
Here C o« 18 the Clebech~Gordan coefficient; /; 1s the
neutron wi'dth cn‘i}-anpnnding to the emlttance of a rfaut:r:m with
mnmantumJ ( r' f'“jf'm) ? = £1 is the slgn of the ampli-
tude. g

3. The matrix element of weak interaction between two
compound states is <{S/H|,/p) =(W , where W is real (we
uge the standard definition of }Em -functions in accordance
with Ref. /46/).

4. The Green's function of a compound nucleus is

1 (B3)
E -Ec"'l' sz
5« The common factor for the scattering amplitudes is
equal to =1/2K (K is the neutron moment).

The factor "i"™ for the p-wave capture is comnnected with
8 phags of free motion of the p-wave. We consider the ascatte=-
ring at kR << 7 and, therefore, the potential scattering
phase is zero. As shown in section 1 additional phase factors

24

oY (¢~ 8/, §I'1s the fluctuation of the total width) con-
nected with the dlagonalization of the Green's function appear

in the rules 1-3. But this factor may be esgential only when

the width fluctuation is large, for example, if the fission
channel is open.

The rules for the fission amplitudes are formulated in
Refs. /30, 47,7/. It is also easy to write the amplitudes for
radiation (or absorption) of the § —quantum from the compo-
und state (see, e.g., Refs./48, 44/).

The rules 1-5 were used in Refs. /18, 30,47,7/. Let us
test them in the simplest cases. For example, the forward elas-
tic scattering amplituda near the s-resonance is equal to

iE vy, . == Iz T
j(ﬂ) ¥7% I.Tzfaé F T:? Cn zﬂ[ﬁrﬁ) (B4)

After summation over J ‘and averaging over [ 3 2 one obtains
imsdiataly the standard.Breit-Wigner formula (30) with g =

29+7 Similarly, for the
= S » 81 . pP-resonance
2(21*!‘)

73,
= - 1 s 'F}; ”J (n)
/it ”J%m CU’?//i' )/r.»:,{) &FrE) s
T};ﬁ:’

illesnn il miplia wnre
Y E-E il YILT T “imsd W):ﬁ . {'}1(5)

After summation over j;_:_ and averaging over it # one obtains

again the known formula
(x)

___1'_ g/—'{e) :
f(ﬂ) 2K E -E,te Y. - 2

(n)
Sote anasilianil

P Py Py
Finally, the forward elastic scattering amplitude with

parity violation ia equal to

245 77 Nk 1
/);’f() 21’({1'12{&“{ ?I E_j e ‘}:’2 (’;IHWLP)X

xh)zcud}z m‘fn{{r)/( )z'\, m 1

i:m E-E+iloly

(BT)
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After summation over Ji and everaging over I 2 » one obtains

f 4 e s 1 2V (E<SIM POV 1 s
44 K (E-E+il3p)(E-Ey+ihyh)

(B8)

The sign (+) corresponds to the pogitive-helicity neutron, the
sign (=) corresponds to the negative-helicity one. After sum-
metion the term with j= % disappesrs. The sign factor %Py
can be excluded by means of the redifinition of the states 8
and p (1.e. if we introduce it into the matrix element
<s}H.,!ﬂ> ). Thus we arrive at formula (41).
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—Y g = —AM— + — MWW |,

Pig. 1.

AR =~ gingle=particle neutron state

WAWWWY . (E~E. +(0 )~1 - Green's function of compo-
und state

——— - (E-E.~ Z(E})-1 - "exact" Green's function

Figo Ei
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Fig. 4.

X - matrix element of weak interaction

-
p oo

Fig. 5.

Fig. 6.
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Fig. 12 ;
O - cold stage of fission
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