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Abstract

The so called normal coordinates where derivatives of the
metric tensgor puy are expregged through the curvature tensor
and ites derivatives, are congtructed along a geodesic. Expli-
cit expressions for the derivatives of ;;d up to the fourth
order are presented and recursive relations permitting a simp-
le calculation of the higher derivatives are found.



As is well known, for a given point fﬁj in a Riemannian
Space one can always find the coordinates where the Christof-
fel symbols vanish at the point considered

me;éjzﬁ (1)

Thig is & mathematical expression of the equivalence principle
in General Relativity. The coordinates satisfying condition
(1) are called geodesic coordinates.

Por a given point there exist infinitely many different
geodesic coordinate systems. Using this freedom one can make a
further specialization of the coordinates. In particular
Riemann normal coordinates at point P cen be congtructed.
First derivatives of the metric tensor at point f/? vanigh in
these coordinates and the higher derivatives are expregeed
through the curveature tensor /ﬁ:;f;é‘ end ite derivatives. The
following expansion of the metric in powers of small deviation
from point 5’7 is known

2 P Mol
P/ Bl A
-%/ﬁaﬁ%rzwfffff+ / 6X ﬂ/rw& (2)

3/“/5/?;y5‘/JI/d’IJ+

wherse 7wy 18 a metric of flat space” , and A, .,f/f;- =
&
=K Nﬁ?ﬁ’@f at & = 0 and so on.

The quadratic in Jﬂaterm in this expression was found by
Eddington (1923) and the cubic and quartic ones were calcula-
ted by Petrov (1961,1969), Here the numerical coefficient at
the nonlinear in the curvature temnsor term differs from that
presented in the book by Petrov (1961, 1969) because in thie
boock the result is given in terms of covariant derivatives and

" The sign canﬁrenticn is the following: 5/3" > (¢ for a timelike
interval and n;g,-;i‘ is defined according to Eq. (10).




in our paper usual derivatives are used.

As it was shown by Fermi (1922) (see also Rashevsky
(1967)), it is possible to introduce such coordinate sysiems
that Christoffel symbols vanish not only at a single point,
but along an arbitrary curve /

/—f«;ﬂ/f‘—*ﬁ (3)

In what follows we congider the case where J° 1is a geo-
degic, and in a number of the coordinate systems which satisfy
conditian'{BL.find g0 called normal coordinates around geodesic

/ . In full analogy with normal coordinates at a point these
coordinates permit to express derivatives of the metric tensor
through the curvature tensor and its derivatives, however, not
only atwggg point, but along the whole curve /7 . Such coordina-
te systemgﬂfirat introduced, as far as we know, by Manasse and
Migner (1963) who call them Fermi normal coordinates. In what
follows we further develope this notion.

Our paper differs from that by Manasse end Miemer (1963)
in the following: &) we have explicitly presented the expressi-
on of Tuv in powers of distance normal to the geodesic up %o
the quartic terms whereas Manasse and Misner (1963) have calcu-
lated only second order terms; moreover, we have caleculated the
arbitrary coefficient of the expansion in the case of a weak
gravitational field (that is teking into account only terms
linear in the curvature tensor); a recursive relation has been
derived which permits one to caloulate the expansion coeffici-
ents order by order in any gravitational field; b) we present
here two different ways of derivation of expansion of type (2)
around any geodesic & ; the first of these waye ie based on
the explicit construction of the corresponding coordinate sys-
tem and the second,more formal one, is analogous to the treating
of gauge fields in the Schwinger gauge (Dubovikov and Smilga
(1981)); ¢) in that paper a world line of a massive
test particle was taken as the basic geodesic / , 1.e. the
latter was described by the equations 2 =y=2z=/0 and L
ig arbitrary; in our paper the type of the geodesic is not spe-
¢cified, in particular it can be a light geodeeic which is con-

venient for the analysies of electromagnetic wave propagation
in a gravitational field; thie is not essential however becau-

ae the relation between the metric and the curvature ten-
gors does not depend on the form of / .

Firat we construct a coordinate system where Christoffel
gymbols vanish on a given geodesic / (see Eq. (3)). The consgi-
deration is essentiglly the same as in book 4 « We however re-

produce it because some of the points can be interaéting for
what follows.

Let geodesic / be defined by the equatinn*}
2f=0 (p=012/ (4)

that ig 4 coincides with the coordinate axis 1*;. In this co-
ordinate system / is a geodesic if

e (5)

Introduce new coordinates according to the relation:
g
= 3‘;2’ + a';/f'y_?’fﬁ-jxdfé; /ij’”bu?'fy (6)

Evidently in terms of these coordinates geodesic / is defi-
ned by the formally same equation =’/ = Q.

It follows from the transformation law
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that / ,; = 0 if Eqe (5) is valid. Moreover all the components

-/t
i ff\;anigh on / in coordinates (6) if functions ::f;/ufj/
and ;?,ﬂ%,) satisfy the equations
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Here and what follows Latin indices denote components normal

to geodesic (p, q, r, etc. = 0,1,2) while Greek indices give
all the four coordinates ( w’,*ﬁf sy oo wl, 1,8 3%
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Congequently the metric on J/ is the metric of flat space-time:
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Note that if / is not a geodesic, one can nevertheless
find coordinates where condition (3) is valid, but in these
coordinates the equatione which determine 4 can not be in
general written as :ﬂa =

In what follows we suppress primes by which new coordina-
tes (6) are denoted, saving primes for the second generation
in which the second derivatives of ﬁuy on / can be expres-
ged through the curvature tensor. This procedure of sghifting
the primes will be repeated ss many times as necessary in int-
roducing newer and newer coordinate systems.

The set cj?'.' 9 j'/gw congists of a hundred of functions
whereas the number of independent components of the curvature
tensgor is equal to 20. So generall:,r speaking 5" %ﬁﬂy
cannot be expressed through .,» /u « The coordinate freedom
however permits to exclude extra components of é’" ﬂ Py
and to get the connectlan we are interested in. Because of the

gymmetry properties of ggﬁw and f?p;/a/ﬁ’y this connection
ghould be of the form

gx%jfﬁﬁjfﬂﬁ;ﬁ’ :A///Fgﬁj—f"/%/)a/fyw) (8)

where /l/ ig a numerical factor which depends upon the wvalues
ﬂf/a and ¥ (see below).

Evidently the following equations hold on /

‘%‘%‘ fald == @%jyv i
So in Bq. (8) we consider only ar;/i " 01,0

One can easily see that in the chosen above coordinate
syetem the relation holds

which followe from the general expression
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To derive Eg.(8) when/u or ¥ (or both) are not equal to 3,
a further modification of the coordinate system is needed. It
can be achieved through the transformation

f/”—-;y./“,,.r__;f_/g/ ?_/_?’/jfﬁ_ffj (11)

Note that the new coordinateg differ from the old ones
only in cubic in 2/ terms and because of this Egs. (3) and
(9) keep to be true after transformation (11).

Up to quadratic in 2z’ terms the metric tensgor transforma
as
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To see what restrictions have to be imposed on Q’ﬁ;’f ’
let us substitute Eq. (10) into (8). It is convenient to dis-

cuss the cases & =3, V ¢35 and & # 3, Y £ 3 separately.
In the first case relation (8) is velid if
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and the latter is satisfied for
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Note that under change of coordinates (11) the equality
holds
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For £ 3 and VY # 3 the derivatives of the metric ten-
sor in the new coordinate system are to satisfy the conditions

j;?;, gr = ;;;/bfv (15a)

j;ﬁ‘ £s -f-/ﬂf;,},; -?;ﬁ;_’,{ff = i (15b)
.which in turn are provided by
.
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Thus substituting Egq. (10) into Eq. (8) and using Eqgs.
(13) and (15), we obtain

(16)

porrg =5 By * Royge) 019
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7
P i e & Kooty + *75")
along the geodesic %

Thege egquations together with Eq. (9) solve the problem
of expressing D through the curvature temsor up to quadra-
tic terms in deviation from the geodesic / . The result obtai-
ned agrees with that of lianasse and Mismer (1963).

Based on this example let us calculate higher derivatives
Of guv . Pirst we introduce the following motation, If 4
indices of a tensor are denoted by stars, then total symmetriza-
tion in these indices is performed, i.e. summation in all per-
mutations of the indices and division by A{’.f’, the symmetrizati-
on being made only for Latin indices, i.e. having values 0,1,2.
For example
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According to such a definition

JrPsefe = Jp i

] Congider a ({—x?/—th darivative of the curvature tensor,
Due to Eq. (10) we have
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Now let us demand for sny 4 > 2 the following conditions
to be fulfilled along /

f.ﬁ wne, =0 i

‘ i & (22)
F j*f-*, ald...*
&2

! The first of them is the generalization of Egs. (13) and

(15b). Note that for = 3 condition (22) is not independenjt,
but can be obtained from Eq. (21) by differentiating it in 2 .

| From these equations snother two can be obtained
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the pecond of which is the generalization of Eg. (15a).

Below we check the gelfconsistency of these conditions,
that is we show that the expressions obtained for )%?Lﬁ“wfﬁ
with the help of relations(21)-(24) in fact satisfy them. We
also explicitly construct the courdinate system where Eqgs.
(21)-(24) take place.

It is evident that Eqs (21)-(24) can be differentiated in
;r“; {but not in -T’P}. Keeping this in mind,we obtain
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and at last
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Expressions (25)-(27) sclve our problem because they deter-

mine 4 -th derivatives of uav through the curvature tfensor
and lower derivatives of v The latter give rise to terms of
the second and higher orders in powers of tﬁ;ﬂrﬁ and are non-
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vanishing only for Aob.

Now the following expamsion of infervel 5% in powers of
emall deviations 2% from the gecdesic ¢4 can be written
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Note that the coefficients of the expansion of ¢ in
powerg of 2" near the geodesic /& must coincide with these of
the expansion of -~ in powers of 2% in Riemann normal coor-
dinates at a given point. Our result for g, 1s indeed the sa-
me ag the one presented in the book by Petrov (1961, 1969).

Now we see that due to the known symmetry properties of
the curvature tensor, expressions (26) and (27) satisfy condi-
tions (21) and (22). The latter to be fulfilled we have to
choose a proper coordinate system. For £ = 3 the trangition
from the coordinates where Egs. (9) and (17) elready take pla-
ce, to coordinates where in addition Egs. (25)-(27) are valid,
cen be done by the transeformation

.2’;’#:‘2’/‘(-#—;}{ /;p e—;‘?ﬂf’?fff‘f (29)
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Analogous expressions can be written for higher values of

Expansion (2) (as well as (28)) can be also obtained in
the pure algebraic way. Let the coordinate system be fixed by
the condition

(Z,w' *“'Z/w/f’#—_- Jd (30)

Note that it resembles the condition which defines the Schwin-
ger gauge in gauge field theory, .:?"‘“/;{,, = 0. Of course expres-
gion (2) satisfies condition (30).

Prom Eq. (30) we find by differentiation and multiplicati-
on by 27 that

f’“"’ i :z’”.:?”“’..,ﬂ”i‘f: 7 (31)

s iR R 2 T ] (32)
in analogy with conditions (21) and (22).

Using these equationsg, it is easy to obtain

J’fjl;?gpvj,?g:.g?@jg ‘—-'/‘,/fg} (33)
.Reaxpresaing ﬁm“/zj through the curvature tensor, we find
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The expansion of both sides of this equation in powers of
Z gives juet recurpive relation (27) which in turn leads to
expression (2).

Equation (34) looks gsomewhat more simple in terms of func-
tions ?/ﬂ, :'"T'ﬂf%f“ Following the procedure of Dubovikov
and Smilga (1981), we make the change of variables R’Jﬁ ax
and find that the l.h.s. of Eq. (34) is equel to

3_%;—[;%{} /.Q’Q’ZZ et & = 1. Thus the integral relation be-

A
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tween 7‘4:/5 and .E;u;/a’y can be obtained
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In contrast to vector gauge fields for which the potential /“gu
if the condition A’,’HI"‘-{: J isg valid, can be expreassed through
the integral from the field strength as

/‘;u/-?’)::ﬂ/aé?affyf% /ﬂ‘fz (35)

34)

the nonlinear term survives in Edq. (34). This equation however
can be used for perturbative calculation of= ‘73 3
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1t is noteworthy that in the coordinate gystem fixed by
condition (30) the metric temsor cen be expressed in terms of

the Christoffel symbols as
i -
f’ﬁiﬂf‘ff = — //;,,.,;; = /;éﬂyf/ (37)
The symmetry of jg/,g ig guaranteed by the condition
e g J
2/ (Vg =1 /'/

Analogous congideration can be used algo for derivation of

expaneion (28) around a geodesic.
The coordinates considered prove to be very convenient for

the analysis of electromegnetic wave propagation in a gravita=-
tional field when the wave length is small as compared with the
characteristic scale of the field. One can see that there are
corrections to the phase and group velocity of the electro-
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magnetic wave packet of the order of A®( J) is the electromag-
netic wave length). To express these corrections through the
curvature tensor one needs to expanim{ypﬁr) in the Maxwell
equations in a gravitational backgroufd up to the terms of the
fourth order in Jf). The Maxwell equations in these coordina-
tea can be disgonalized so that one obteins a single equation
for a single unknown function. In fact the necessity of finding
corrections to the group and phase velocity was the starting
point of this investigation.

After the present work was over, our attention was attrac-
ted to two additional references 5" where normal coordinates
are considered. Paper T ig especially interesting because the
authors use the same conditions as our Eq. (30) as a basic po-
int of their construction. The method of Ref. however essgen-
tially relies on linear approximation in the curvature tensor.
Their result is equivalent to our Bg. (35) with the quadratic
term in ?%g being neglected. Thanks to paper T we found one
more relevant reference where the conditions coinciding
with our Eqs. (15) and (21) were explicitly written down, no
expansion of " being presented however. Then Prof. L.Halpern
kindly informed us that long ago he obtained the expansion of
jb“, up to the third order in.zj, i.e. to the highest order
where nonlinear effects are absent.

We would like to thank I.V.Prolov, L.P.Grishchuk and
A.V.Smilga for useful discusasions.
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