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The main ideas,methods and resulis in the investigatiorn of
the exclusive processes asymptotic behaviour are reviewed, Ve
igcuuss the power behaviour and 1ts dependence on hadron quan-
tum numbers,logarithmic corrections,properties of nonperturba-
tive hadronic wave functions. Applications to the meson and ba-
ryon form factors,strong,eiectromagnetic and weak decays of

heavy mesons,elastic scattering, threshold behaviour of inclu~

sive structure functions,etc.,are described. Comparison of the-
oretical predictions with experimental date is made whanever
possible.

The review can be of interest to theoreticians,experimen-

talists and studants specializing in elementary particle phy-
sics., The experts in this field can also find new resulis
( nonlesding logarithms,higher twist processes,novel applica=

tions,etc. ).
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1. INTRODUCTION
APPERDIX C. Wave functions of the heavy quarkonium

APPENDIX D, Quark condensates {ﬁ\;ﬁﬁu\ﬁ\) and chiral 1.1 Preface

symmetry breaking It seems that there are no doubtiat present that the
quentum chromodynsmics (QCD) [1.1] is the right fundamentel
theory of the strong interactions. Becsuse in GCD (umlike QED)
the charge "antiscreening” takes place ,1.2/ s the effective
charge decreases st small distances (the "asymptotic freedom").
This gives the possibility to calculate the interactions reli-
ably at small distances with the aid of perturbation theory.In

REFERENCES

particular, there is s considerable progress in nu.r. understan-
. ding ef tnclusive process properties (see, for instance, the
reviews [1.3/ ).

At the same time, there are strong nonperturbative effects
in QCP, for instance, the famous instanton fields [1.4| . Beca~
use the nonperturbative fields and interactions are nonsinguler
at smsll distences, their role at the large momentum transfers
is very small. At the large (~ 1 fm) distances, however, the
nonperturbative effects are dominant and responsible, in perti-

| cular, for the confinement of coloured states and o formatienm
of hadrens. '
I ' Becsuse the observed hadrons are always on the mass-shell,

even in the hard processes with the large momentum irmi'm.
the properties of the hadronic amplitudes depend anhantinllr
both om the small and large distance interactions. In other
words, they depend both on the perturbative interactions,which
ensure the large momentum transfers and on the nonperturbative
ones which are responsible for the hadron formation out of
quarks. Therefore, in order to calculate not only the energy

l dependence, but also the absolute values of the amplitudes,one
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should be able to camlculate both the hard perturbative part of
the amplitude and the nonperturbative hadronic wave functionms,
Ag it will be shown in detail below, the properties of the ex-
clusive pfuceaaes are tightly connected with the properties of
hadronic wave functions.

The investigation of the asymptotic behaviour of the ex-
clusive processes includes: the meson and baryon form factors,
the large angle scattering, the exclusive electroproduction,
the strong and electromagnetic decays of the heavy quarkonia,
the weak decays of the heavy mesons with an “"open flavour"

( D(1865), FP(2015), B(5020) ...),etc. And there was a great
progress in the last years im our understanding of the exclusi-
ve process properties.

Investigation of the exclusive asymptotic amplitude beha-
viour, in particular, the form facters, has o%@ourae, a long
higtory. Various simple models have been considered, and the
main conclusion which was drawn about the asymptotic behaviour
of the composite state form factor was the following. The asym-
ptotic beheviour depends essentially on many factors: the num-
ber of constituents, the values of their Bpiﬁﬂ and their anguJ“
lar moments, the used interaction Lagrangian, etc. (see, for
instance, |1.5 - 1.5,).

Using the simple dimensional comsiderations in 1973 in the
papers ]1.9, 1.10] were proposed the famous "dimensional count-
ing rules", which connect the asymptotic behaviour with the
minimal number of cometituents. The predictions for the "di-
mensional counting rules™ egree well, on the whole, with the
experimental data on the pion and nucleon form factors and

various large angle elastic scattering cross-sections. Thies ag-
reement served as a stimulus for further theoretical investi-
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gations [1.11 - 1,17, "The summary of the theoretical and ex-
perimental investigations in this region up to 1975 has been
given in the reviews f1.1ﬂ, 1.19/ ( the later papers are
[1.20 = 1.23] ).

The modern approach to investigation of the asymptotic
behaviour of the exclusive amplitudes starts from 1977 [1.24-
1.25f « From 1977 until now there has been seen a rebelling
activity in this region (see f1.27 - 1.30| , for other refe-
rences see below in the text), and a large number of theoreti-
cal and experimental results has been accumulated here at pre-
sent. It is the purpose of this paper to review these results.

The detailed description of the methods developed for o
calculation of the loop logarithmic corrections to the Borm's
exclusive amplitudes can be found, for instance, in the reviews
{1.31, 1.32/ which may be recommended to those readers who
are interested in these problems in the first place. These
problems are studied well at present, and in ch.3 we present a
short description of the main methods and results obtained in
this region. '

It 1s a conviction of the authors of this paper based on
the experience in concrete calculations that the higher order
perturbation theory logarithmic corrections play a very modest
role in a description of the exclusive processes at present
energies ( Q2~(1D - 100) Ge?z).

The situation here is similaer with that of the deep inela-
stic scattering. The logarithmic corrections become really ime-
portant at very large QE alone. For instance, the asymptotic
form of the mucleon structure function F:-. &Lﬁlﬁ is
Fﬂ‘irﬁ?'\’“%(ﬂ at Q% > oo . However, Y, kl,{il)

Q%‘” 1 Gﬂ?z differs strongly from B ) » the logarithmiec

for
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svolution with increasing QE is very slow and therefore,even
at Q° 10° GeV° the structure function [‘:g_ U.Ql) still dif-
fers greatly from © (%)

Moreover, ike the inclusive structure ctio the

exclusive amplitudes decrease like the power{o t large

2, Therefore, it will be ogsible to measure erimental-
ly the exclusive procedses at_very large QE because the cor-
regpo. obabilitie be extreme small. a result,
the role of the logarithmic ections in the t
accessible T of - is ve d.

Therefore, we put the main attention to investigation of
the power behaviour of the exclusive amplitudes (chs.2, 5, ¥
10), to the properties of the hadronic wave functions (chs. 4,
6, T-10) and to the concrete calculation of various exclusive
processes (chs. 5, 7-10). It is worth noting that the knowled-
ge of the hadronic wave functions allows us to calculate the
gsbsolute values of the exclusive amplitudes not only their
energy dependence.

Below in sects. 1,3 and 1.4 the main ideas and methods
are presented on which the modern description of the exclusive

processes is based.

Let us begin our consideration with the simplest exclusive
process - the elastic electron-hadron scattering, Fig. 1.1.The
hadronic part of the total smplitude is given by the form fac-
tor, i.e. by the matrix element

£ ?1\ "jr (0)| P> . We will be interested in the form factor
asymptotic behaviocur at the large mcmentum transfer,

— 2 —

\Qi‘a‘\:\wi_?!jl\ -;.‘;1 1 Gﬂi. Ii:l. t:m cen'lf:r of th=+?lun
system (c.m.s.): ?L+.§1=0 . Gfr- Py=%y = -2% : fﬁ: e
end the process looks as at Pig. 1.2. The initial hadron
which moves with the large momentum .Ei. along the Z -axis,
abaorbs the photon with the momentum -a(=*2$¢ and moves af-
terwerds in the opposite direction with the momentum 3,;— Y
If we wish to describe this process in the QCD framework,
we should use the description in terms of quarks and gluons.
Hence, let us imagine the hadron (the meson for gimplicity) es
being composed of the two quarks. In the meson rest frame each
quark has its momentum \_‘E.\N j‘\n , the energy | = }{n and
the virtuality B~ ]"li' s where E'\u is the characteristic
scale, Mo ~ (300-400) MeV. In the c.m.c. each of these two
quarks has the transverse momentum ¥, ~ Mo , the virtuality
%«-5‘\3 and the longitudinal momentum iﬁi , hpetva=4.
One of the initial quarks absorbs the photon and moves then
with the momentum Kh%ﬁﬁ,\*‘@"ﬂﬁﬁ in the opposite directi-
on, sc that just after this the system looks like that shown
in Fg. 1.3. It is clear that such & state is very unlike the
final meson state, for which two quarks move with large and
nesrly parallel momenta directed opposite to the Z - axis.
Indeed, the two quark system shown in Fig.1.3 will transform
certainly into the two opposite side jets. We are interested,
however, in the rare process when there are only one meson in
the final stete. For this, the quarks have to interact hardly
with each other in order to turn over the spectator. The amp-
litude of this hard interaction, Mg. 1.4 is ﬂ:mnlL.2 because

the exchange of the gluon wiik the virtuality ~¢ is nee~-

ded (the amplitude for the %lu.un exchange is ~ A’/ ﬂ:,""} and, besi-
des, the intermediate quark with the momentum - (1"11\1?1

13




dhould also have the virtuslity ~ q (the amplitude for the
guark exchange is if\ﬂ,'{ ). Hence, the price for the spec-
tator turn over is ~ I\gv\?' . How can we find the behaviour
of the meson form factor? The simplest recipe is that of the
"dimensional counting rules". One should count for the dimen-
sionalities of the extermal quark lines in Fig. 1.4. Substi-
tuting the free spinor umm '“W \\;, Uyl for each axtur-—
nal quark line, one has the additional factor NQQ— \ 01,

On the whole, the final result looks like

\<Ez\ \ b\ mw&.’; e \(ﬁw?a . E%E‘\ (1.1)
The asymptotic behaviour of the baryoen form fastor can be
found in similar way. BEach quark which turns over its momentum
gives in sddition: the spimor ( ~ L/|§| ) and the gluom

g ‘L/¢2 ) propagetors and the pair of extermal spinors
g \ﬁ;\ Ll >4 'L/EV ) on the whole. There-

\<%L?ﬁ\3 \W»\ LM& \%%'t‘ m&\, (1.2)

where E’JL ‘is the baryon spinor.
The behaviour

congl

F“ (a'?-\ A Iq‘?_}n—i (1.3)

is predicted in this way for any hadronic ferm factor ,1.9 ’

1.10 I_. where Y\ is the minimel number of the constitu-

ents ( W=2Z for mesons, W=3 for m). In analogy,ome
can obtain for the large angle scattering: -

e ee

.

N2
L o L 16 o R T

¢t (1.4)
where E;VW ig the minimal total number of comstituentas.
For :Lnatmca. @5 &ﬂ 3 i/';m (\ﬁgf‘ C“C\ “?N i/'i?’
k&ﬁxdgwﬂ?_“? ~ i/g* . ,etc. These results are well kmown

(see the review f1.19[ ) and we den't dwell upon these que-
stions any more. Let us note only that the experimental data
on the pien f1.33j and the nucleon f1.34f form factors
and on the large angle scattering cross sections /1.34—1.36,
1.19} agree well with the predicticns of the "dimensional co-
unting rules", It is important also that the sgreement begins
with th%énnantum transfers “J&EN (GeV)Z.

The predictions of the "Dimenfional counting rules” are
based finally on the absence of any dimensional scale except
for the momentum transfers themselves. Therefore, they will be
true (neglecting the loop logarithmic corrections) for any
Lagrangien with the dimensionless coupling constants ( in four
dimensions), and there is nothing specific for the QCD.

_ Moreover, at more serious level of investigation, ome
dhould be able te anSer the following questions:

1., What is the dependence of the asymptotic behaviour on the
hadronic quantum numbers? Would the asymptotic behaviour chan-
ge when the pion is replaced by the sealar vector or tensor
mesons? Or would the asymptetic behaviour chenge when the hade-
ron spin, helicity, 0,C -parity,etc. is changed?

2, What is the absolute normalization of each given hadronic
exclusive smplitude? (i.e., what are the values of the "const."
in (1.1) = (1.3)2)

s TR e




doe
3. How tia aaymptotic behaviour change when the higher loop

sorrections are taken into sccount? Is this change power-like
or logerithmic only? If it is logarithmic, to what function
would these logarithms sum?
4. How can one calculate the power corrections to the leading
behaviour? And so on. o _

The "dimensional counting rules” give no answer to any of
these questions.

The whole further content of this paper are the answers to
the above questions and the applications of the develeped me-

thods to the concrete calculations of exclusive processes.

1.3 Operator expansions and hadronic wave functions

The method used in this paper to investigate the exclusi-

ve process asymptotic behaviour is based on obtaining the cor- |

responding operator expansions. The main idea and the scheme
for obtaining and using such operator expansions in the QCD
have been proposed in /1.24/ .

The operator expension method has been introduced into
the particle physics by K. Wilsen /1-3Ff , and later was wide-
ly used for:the deep-inelastic scattering f1.33f s, the procea-
seg with heavy quarks [1.3?; T-be y the calculation of the
"strong corrections to the weak interaction" f 1.4{/ s, the
calculation of the light resonance parameters /1.421 , ete,

In most cases the operntur.axpanaiuna are used in s small
distance region, _i:‘-’-i in"'ﬂ , and thls smallness is ensured
by the "internal reasons" - by the W -boson mass, the heavy

£ sig b querk masses,etc. All the components of the
external hadronic momente are small at the same time: ?L”‘ﬂ”;
ixﬁhéﬁ-i . In this case the main contribution to the opera-

16

tor expansion give the operators withuhinimal dimensionality.

When considering the asymptotic behaviour of exclusive
processes, we deal with the situation where the smallness of
relative distances iz ensured by the "external reasons”, say,
the large momentum transfers between the hadrons. In this case:

:it§3 ~4 , and the parameter which determines the role of
each given operator is the twist (i.e. the dimensicnality mi-
nus the spin), not the dimensionality.

The method for obtaining the operator expansions for ex-
clusive processes doesn't follow directly from the Wilson's
expansion of local operator products. Below in this section we
describe the main idea and the simplified scheme for obtaining
corresponding cperator expansions in the QCD (see the next
Chepters for details).

Small and large distance interactions are defermined in
the QCD by the essentially different physics. It is natural,
therefore, to separate out the contribvutions into the amplitu-
de, which are due to small and large distance interactions.

Let us turn to the meson form factor, Fig. 1.6, and consi-
der more closely the properties uf each line in this diagram.
As for the quark and gluon propegators (’U\QKEQ‘HG\} |o%
and {O\BZ)BNEINOD | thetr virtuality 18: AN~ 9P
1.0, (2-0Y~ (Ez-&\1~(?z-11\1~47/%z, so that 1t is justified to
use for them the lowest order perturbation theory expressiens
(remind about the laymptat%F freedom in the QCD):

. L 3\ 5
(u\w @HY @)e> =8, 3-0)~ 2—: |<ﬂ\%a\1h%h\31b"hu P h :

At the same time, the use of the free spinors for the external

quark lines is evidently wrong. Two final quarks which were
it

produced nearly at the same poiat, (21"21\” “ﬁ y mave then

17
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for a long time at the relative distance ~ QL/KJ ~ i/,
With nearly parallel momenta. It is evident that these two
quarks will interact strongly with each other, and this strong
interaction can't be neglected.

It 18 clear now at what points we would improve the previ-
ous calculations (Sect. 1.2) 1im order to obtain the right re-
sults.

1. Those lines in the diagram, Pig. 1.6 , which describe the
particle prepagation at small distances (i.e. the lines with
the large virtuality) can be replaced, in the first approxima-
tion, by the free propagators. In other words, only large (ﬂfﬂﬂ
Fourier-components of the operators Y(2) and ?}rkﬂ are es-
sential here, and these parts of the field operators can Be
substituted by the free operators. (On account for the nonper-
turhl.tiva aﬂncta, there will eppear the power correctionas like

N‘@ H “>/ % s atc., The logarithmic loop corrections
will be accounted for in the ch.3).

2, At the same time, jJust the aseft Fourier-components of the
field operators are essentisl for those limes, which -hl"l'& small
virtuality and enter the matrix elements with amall mementum
transfers. The intersction in this momentum region is :uuhrud
strong and mostly nomperturbative and, since we don't calculate
it explcidly, such lines should remain the Heisenberg operators
mcting in the small virtuality and small momentum transfer

(~ Mo ) subspace.

Let us write, therefore, the meson form factor in the form;

<Q1\jt\\?i\) > E a&uli,_ { ?1\ &;a. &) eny l‘% S:"&gr %Kﬂ)"ﬂ,uﬂ‘] i \qﬁ\ 3
:Ki'% <B S\*IKE\E*E "'%S &gi%ﬂlb‘ﬂ w‘i 0\]] ?‘l> (1.5)

. T:g “\[\s u%kz,_ {}N}LE[ Lnﬂkirlil \m‘ﬂib }3» h?.(}\m\m L\*“?erm

In (1.5): d,‘i’r‘ﬁ,% are the spinor indices, L,B,K,%
and & are the color indices, <q ia the electric
charge of the quark (@u=%/3 , €4=-2/3), ¥ ena B, are
the Heisenberg fieldéoperators, ‘5\2\] and Dyn\Z) are the
free quark and gluon+ propagators, "permut" denotes the contri-
butions of three analogous diagrams and the factor (=1) in
(1.5) 12 due to the snticommutativity of the quark field ope-
rators. .

The expression (1.5) has been obtained as follows.
1. As it wes explained above, the propagators with large vir-
tuslitiea are taken as free ones. ?
2. If one replaces in (1.5) exp [\\ by unity and con-
siders \k’-,_ as the free quark cperators, them (1.5) coin-
cides with the usual Born diagrem, Fig. 1.6.
3, On accounting the contributions like those shown in Fig.17,
the free quark field operators are replaced by the Heisenberg
ones.
4. On accounting the gluonic radiation into the initial state
during the quark motion along the path ("0") - ("Z,")=(" 0@ ")-

.("z "), there appears (in the A‘balian case, for the sake of

aimplicity) the factor ezp%_ %5 &G.;?:glu‘llj /i. Ll%/
5. In snalogy, due to radiation inte the final state along
the path ("Z,") - ("0") - (" - = ") = ("Z,") there appears the
factor upf”%ﬂ &E.’ ' kﬁ‘}l]

The matrix elmant of the bilocal operator in (1.5) can
be interpreted as the amplitude for the meson break-up inic a

pair of the "soft" quaerks, i.e. as the two-quark component of
the total meson wave function (which has, naturally, many-par-
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ticle components as well), The index "fv\"' denotes that the in-
tegration over internal momenta in this matrix element is
truncated from above by "M " (i.e. the virtuslities or trans-
verse momenta don't exceed " r'l“ ). If the inverse confinement
radius is Q:u >  (200) MeV and the correspomding intnrmtion
Talls off rapidly at smaller distances, then the cut-off at

W 1 GeV doesn't affect really the value of the matrix
element which is determined mainly by the interaction at larger
distances.

Let us consider now for definiteness the V' -meson and

write: *

(1.6)
%240 -Wal2,0)

(a\&b\e ARTALOSHATTRIRERAT LITA

@
(and analogously for the final pion). We have put in (1.7)
(11-3;_)1 equal to zero, because (El-g!)l«u i/oyi , and we'll
neglect here the logarithmic corrections. Substituting (1.6),
(1.7) inte (1.5), we have for the leasding contributiom:

<H+(?1\\'3‘,ka\\mm§ =\%‘+?brﬂhﬁ? F () 321;&.; 11

.
L] N ;
I,‘:gaﬂ 3\1\5 \q'[ Q‘ﬁ{ E ¥

Ca_ M (1.8)
Y, '\}!:\\Q'“ [\i} 7 &*ﬂ'\ =~ &*1 &xi%ﬁi-ii_*;} ;

As a result, the form of the small distance ( ~ iqu ) in-
teraction, i.e. the functiom (  4in (1.5) has determined
completely all the dependence oa the asymptotic variable Qiz .
All the information about the strong nonperturbdative interacti-
ons at large ( ~ i/}'{ﬂ ) distances is separated out and comn-

centrated into the pion wave fumction \?v(xlﬂ) - .The form of

20

<0\H b_ge tug\mh& ‘E‘\g‘b & —QM\ &l de %ﬂﬁi U+ ...

the wave function determines the absolute normalization of the
whole amplitude,

The physical meaning of the variables %i; and X7 in
(1.7) can be easily clarified. Let us compare for this purpose
the expression (1.7) with the corresponding model expression,
where the pion is replaced with the quark and antiquark with
the momenta: fiziiﬁ : K1=11P s AM*Va=4 Uéilllﬁi,

?1"" e . In this case the matrix element of the bilocal
operator in (1.7) i1is proportional to:

exp %-1“111*1"‘11113 = exp [Lul.h(hﬂ-lh(iip\lj.
Therefore, *i and X2  have the meaning of the longitudinal
momentum fractions carried by quark and antiquark, and the wa-
ve function \Qg U‘L* \-{1) deascribea their distribution in the
longitudinal momenta inside the pion (at P> @ ),

It may seem surprising that at \Q*l,\-&m the form factor
includes not the wave' function at the origin (i.e. the guanti-
ty <ol A s WITIOD = LR Tdwy d, B (L vuova) By (X, %a)
but the nontrivial integral over ‘i!..l:l_ « The reason is as
follows, In the c.m.s. the photon wavelength is: A~ ii\%‘l s
and hence it "feels" indeed only the distances ~ U‘/ h
However, the hadron longlitudinal size is also ~ [\P’*/K} ~ i/ Q{l
due to thu lorentz contraction ( ‘g - 18 the Lorentz factor,

% QV\/J“'F ). Therefore, the photon "feels" the distributi-
on of quarks in longitudinal momenta inside the hadron. ﬂnl the
other hand, the transverse size of the hadron remains ~ ijj“u
and therefore the distribution of quarks over transverse momen-
ta is not resolved.

One of the essential difficulties in early inveetigations
of the composite atate form factor was the following. Ome has

21




tried, on the first stage, to simulate in some way
the hadron state of the constituents and, at the szecond stage,
to find the behaviour of the form factor of this model state.
There arise then the questions: a) what are the interpqln-
tion operators for each given hadron?, b) in what way the an-
swer for the form factor depends on the chosen interpolation
operator?

We approach the problem from the opposite side, i.e. from
the small distance region, The expression (1.5), as becomes
clear from its derivation is the mesonic matrix element of the

second term in the operator expansion:

Yoy — Y_@ Ka‘}“r”\aﬂ} + Hh&h [Wﬂr\a} (‘_f(a\IQﬂp &
@ §dadndnlTvel (o Gl [T, i

o B b e, (T3] 10 eyl wiv], v

( G is the field strenght tensor). Each term in the expres-
siem (1.9) has the following meaning (after taking the matrix
element between the initial and the final hadron states).Some
quantum fluctuation takes place in the small vicinity of the
point "O" with the result that photon transforms into two
independent systems of "soft" quarks (and gluons) with virtua-
lities up to " ﬁi ", The amplitudes for the photon tramnsition
into esch given state are given in (1.9) by the functiuns(:;
which are determined by the small distance interactions (tha%
notation mesans that the integration is performed over the

small ( ﬁ'i/qf ) space-time volume around the point "O").

each:-of these two clusters transform them into the initial and
final hadron states. The "softness" means that the partons
within the cluster move with large and nearly parallel momenta,
the transverse momenta and virtualities are small and the to-
tal invariant mass of ﬂm cluster is small ( Mf« \Qﬂ J.1t is
clear from the dimensiomal considerations that the larger is
the number of valence comstituemts, the more suppressed (by
additional powers of i/ 9 ) 18 the contribution into the asymp-
totic behaviour. _

It should be pointed that we have described just the
scheme for obtaining the correspending operater expansions.
Below the concretes calculations for various exclusive proces-

g5 mre presented which show this scheme at work.

.1+4 The QCD sum rules

To be able to calculate the absolute valueas of the ex-
clusive amplitudes, one needs to kmow the hadrenic wave func-
ttoms \Qii;lpb « These wave functions are the fundamental ob-
Jects of the theory and at M~ i GeV are determined mainly by
the large distance memperturbative interactions. At W% 1 Gev
the slow evolution of "PUL,]‘:’ with increasing of M is cau-
ged mainly by the l-uglritl-iu perturbation theory leop correc-
tioms and is described by the renormalization group (or by the
evelution equations a la Lipatov-Altarelli-Parisi), see ch.3.

The wave functions “?(il,rh tend to their asymptotic
form: \-?UL,}\-‘*'N)# Qe (¥0) in the formal limit M>® ,
The form of i};;hu asymptotic wave function \Qm;ﬁ;‘ is pure per-
turbative in nature and can easily be found (see the appendix

Both produced clusters of soft partons move then in the oppo- ®). Moreover, this asymptotic form of the wave funntion.kﬂ“QMJ'

site directions of the Z -axis, and the interaction within is the universal one and doesn't depend on the form of ‘?(‘i;mgigg

22 s




because at }&-—»m \QU{;,J\!\ "forgets" ite original form *
and its "parent hadron". The wave function \DU%,]“\E 5-6'3”)
can differ greatly in its form from \Qu.;. U-L\] and therefore,
because the evolution with M  1s extremely slow at large M,
the true wave function \?klh, Tﬂ will become much alike

Vae W) only at a:tfamaly large M . Because in the exc-

lusive processes the characteristic normalization point of the
wave function, Fi y 18 determined by the charscteristic in-
ternal momentum transfers (very roughly, [T‘I'“O( ), in the range
of experimentally accessible values of q.?' (10 Gu?z,‘&'\q{l\ﬁ-mﬂ
GeVZ) the effects of logarithmic evolution are very mild, and
the form of the wave function \?u:., F\\ 8till remains much
unlike its asymptotic form, “Qﬂc,ul‘ﬁ (anslogously to the deep-
inelastic structure function Y, U,Gﬂ . Thersfore, we put main
ettention to the investigation of the properties of the wave
functions X k\il, W iGE\’),usiug the nonperturbative methods
available at present.

It was proposed in l1.¢¢l to investigate the properti-
es of the wave functions \? HL,}’(E iﬁt“l) using the method of
the QCD sum rules, developed by A.I. Vainshtein, V.I. Zakha-
rov and M.A. Shifman f1‘.4£ [ » Below we describe in short the
essence of this approach. The detailed deacription is presen-
ted in chs. i 8 and for various meson wave functi-

ons, and in the ch. for the nucleon wave function.

*) The deep-inelastic structure function F ({ Q) has an mlu-
gous property: 1U~ Q\"—} const. %(ﬂ at Q*> o0 , independen-
tly of the target properties ( only the value of the "const."
depends on the target, but the form N%(ﬂ is universal).
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The leading twist [ -meson wave function has been de-
termined sbove in (1. 'i'J. We rewrite now it in the form:

<u\ 3@)2\s exgl iyl Mt ula)| N

Zin \dzgsmm u.m ORN 3&3 )
D=3- ‘%B”‘
In (1.10): s-ur‘h\ is the relative longitudinal mo-

mentum fractioen, % = 4 L% MeV is the pion weak decay con-
stant, which is kmown experimentally from the \~* I‘W] decay:

<u\ {i.ko\\sr 5\1[\?-*\1 T[\TT} ! fn%ﬂ Therefore, the dimensionless wa-
ve functien \Qﬁ (ﬁ\ in (1.10) is normalized as follows:

i
0 o A
{3 \;Eg_it}\“\ \kﬂkﬂ:i.
The matrix elements at 1l.h.s. of (1.10) have thefnm:

ol 33y (D) u\ww> =
iz \H > i - ( ] J
ZoZy,... 2, 0L AV D W o) s S0,

il
whers (-h ere some constants. Decomposing the r.h.s. of

h (1.10)

£t 11)

(1.10) into the 7 -series and comparing with (1.12), one

e (o A2y (023 ) u T =@y s
A
<3“>=§_i%~3;“\ﬂgkﬂ:th? 21:0. (1.13)
Therefore, the evaluation of the constants (. w in (1.12) 1is,
at the same time, the evaluation of the wave function moments,
<‘Hh> + Having the information about the wave function mo-
ments,ome cam recomstruct the wave function itself.
The method of the QCD sum rules just allows one to calcu-
late the values of the matrix elements like those in (1.12),
i.e. the values of the constants Ch + We now show how the
sum rule method works, using the wave functien \P‘: ('ﬂ a8 an
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example. s
Let us consider the uorril-t-r(]) ]} D 3‘1"‘35 %-'

hu\?- “{\ = "S dy Qw“(b 1O 0 We> =\3q\ Imbﬁ

0 )= T 273 ) ), SO-TRAE), 220, neoffs®
and calculate its asymptotic behaviour at ql-)- @, The main
contribution gives the interaction at small distances, X~ i{“r
The quarks (gluens) prepagate, of ceurse, not in an empty spa-
ce, but through the physical vacuum, filled with the nonpertur-
bative quark and gluon fields. However, because the nempertur-
bative interactions  have a characteristic scale X~ &/ Mo and
fall off rapidly at small distances, the leading cemtributien
into the asymptotic behaviour ef ?Lhn(cf‘ give the usual pertur
bation theory, for instance, the diagram at Mg. 1.9 (plus
higher order correctiems ~ &éw)/ T ). The contributien of

this diegrem i.ntn Im(“‘\ hu the form: L},iﬂ

'"w' Yolent) 3 =
(%\ S L )“ i -:E* (mi)(nﬁj“r'

The interaction ef qnu-.‘:l (gluons) with the nenperturbdative

vacuum fluctuations can be acceunted for by means of the suita-
ble multipole expansion in small parameter (:I/lo) ~ (P‘ “/ Q{)

At present the convenient method of operater expansion in the
external field is developed ,1.46/ » which allews te calcu-
late the nonperturbative cerreciions te the correlater. These
correctiona are expreased threugh the vacuum expectation valu-
o8 of various local eperators: <D\ G:;,, \fa> j<0\¢\\’\a‘>' ate :'r
Pigs. 1.10 and 1.11. As a result, one has the asymptetic

expangsion ¢f the form: 1‘:1::(‘}1 = i?'ﬁ\m‘imki &g /@_u‘l) e

*) The ugual perturbation theory contributions are, by defini-
. tion, subtracted out of these matrix elements.,

B

T +*’:’E\E§\‘""’ s 4,1\\@\"&“\&5 0c>
T TR Y TR
(4.16)

It is convenient to do the special integral transform("bo-
relezation") [1.4%’ : %e&q(—atl/pﬂ&wl/gﬁf , after which one
el

obtains: i ~¢/w ey s <ﬂ\é§_r‘1\-¢,\)
eilte Wbty T ooy @)
%

' IPAVAVRT
M’—Ek&hm AN A e SANRCIANN
¥ Mb et TN
Therefore, the "borelezation" suppreasgthe contributions of

the high dimension operators into the r.h.s. of (1.17) and
o 154’ iutemuliate siaton With S I fals e 1 5.e. Bis
parameter Ml in (1.17) replaces th in (1.16) and
gerves as the scale parameter. The operstor ':ch with the
dimension (mass)®® hnas the vacuum matrix element <G\le\ﬁ\)mq\1ﬁr
and therefore, the expression (1.17) is the multipole expan-
sjion in the small parameter (F“’/M} » The absolute values of
the nonperturbative corrections in (1.17) show at what sca-
le the behaviour ef the true correlator (and the true spectral
density “‘mtha@n begins te deviate not@&bly from the per-
turbation theory behaviour.

The sum rulea like (1.17) are used as follows. The asymp-
totic behavieur of the spectral density ‘Mﬁtwkﬁ at large
$3> T‘\; is known and coincides with the spectral density for
the free quarks: *jm Lmké\—‘? . "Smm‘_tf A L‘ﬂ i 3/1{1{1(\'\» ﬂ("m})_
Therefore, such a parameter Sa  (the duality interval) is
introduced that ﬂm‘im(i\l’ jm:,‘f;ﬂ"ﬁ\\ at $>5n . The low
energy behaviour of ﬂmzmkﬂ is approximated by the contribu-

tiens of ome or two lowest lying resonances. Hence, the model
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spectral density has the form (see (1.13), (1.14) ):

L ‘i\mL“k“»\ %— {1} } % (g \ +%k‘$ ‘:”\ N 3\]1“'18]

where the pion and the kih -meson contributions are shown ex-
plicitly.

The values of the vacuum averages at the r.h.s. of {1.17)
can't be calculated theoretically at present. Their values ha-
ve been found phenomenologically frem the correspending sum
rules for the charmenium ]1 43f ond PCAC+SU(e)/2Ll5/:

-
OG0 =1240 G, oW Tulo>=has doceyy )

Confining ourselves by these terms and neglecting the
contributions of higher dimension operators *, we can consider
the r.h.s. of (1.17) as known.

After this, the scale parameter M2 (1. 17758 Vabsed
in such a 1imit that the nonperturbative power cerrections gi-
ve sizeable (but net very large) contribution, say, from 5% up
to 38%, Then the free parameters entering the l.h.s. of (1.17)
( %:{1,“>“ ,$n, -~ ) should be chosen so that to obtain the
best fit in this interval of the M'l -~||ro.11.uns@|.“le As & Tesult,
one can determine approximately the values of the wave function
moments <1‘h> and the constanta &"ﬁ yeese

*) The "current"” quark masses are very
small [1.45, 1.43 [ : Wi = 4 NeV, Yij ~ 7 MeV, and can be
neglected therefore.

*2) As & rule, we don't determine the values of the resonance
masses from the sum rules, but consider them as imown.

Besides, it is seen frem (1.17) that at >4 the real
expansien parsmeter is {Mt("n ). At large N\ and fixed M*
the relativs values of the nenperturbstien corrections (with
respect te the perturbatien theory comtribution) increase.
Therefore, the %otal duality interval gn increases also and

a‘,hz V\- {1 Ge¥2) at WA , and the real spectral density
ceincides with the asymptotic one at % > N (Gt"le only, and
deviate censiderably from it at '5‘-( N {Ga‘TE). It is evident
from the physical considerstions that such an enormous duality
interval ~ N Gavz, n»i can not be filled with a few resonan-
ces. Roughly speaking, there will be ~Y\ bread resonance-li-
ke structures sach of which fills its own finite duality inter-

(x) )
at N\ i . C,;h l %QTW « Therefore, the duality rela-

tion for tha pien contribution lnaku at large W»1 as fellows:

LS t\ﬂmtnn\?‘\ - "—S e i
ﬁﬂ : 3 éL:: (1.20)
% S ‘ﬁ m»mw RTS ‘ﬂ"'
This shmrs that {3 g &37’ Q. Lv.'\m at W1
and thus \Q b{\ UL- 2) ot \s\ >4 + Therefore, the wave

function by (‘ﬁ hes at \'?.\"" the same behaviour as "‘?&EE}] :

I+ 18 clear that the above cemsiderations are general ones and

the same conclusion can be made for other wave functions as

well.
On the whole, we know about the p:l.nn wave function \’? (‘Q 3
a) the overall nermalization: 3%’ )= S &3 \Q,i d)=14,
) the behaviour at the boundaries: \Q &’7\ U__ ‘13 u.'lf. \";\
c) the values of faw first moments: ,(?}1'} g &\; \?‘E h\)
(‘Q‘):S_i&l,'ﬂ \_h h\ s s+ Obtained from thn sum rules.
Excluding the pathological cases, it is sufficient really
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to have such an information for the reconstruction of all
characteristic features of the wave function itmelf (see ch.4
for more details).

There is, at present, a large number of papers, in which
the QCD sum rules are used for the calculation of: the light

meson masses and the constants %T %? mu‘%#; po o [1.42,
1.47 I ; the baryon masses /1.#5. 1.¢9[ ; the spectroscopy
of the charmonium and the bottoenium states {1.#2, 1.50, 1.51};
the properties of the "open heavy flavour" mesons B (5200),
D(1870) 11.52} ; the three particle vertices I?.Si!;tha baryon
megnetic moments l 1.54’ y etc,

The gain experience with the QCD sum rules shews unambi-
guously that (when properly used) they always give the right
results with the accuracy no worse than sbout (20-30)%. It
seems that there are no at present other nonperturbative me-
thod which can compete with the QCD sum rules in this respect.

Below the method of the QCD the sum rules is widely used

for the investigation of the hadronic wave functions.
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2. POWEE BEHAVIOUR

2.1 The Dependence of the Asymptotic Behaviour on Hadronie
Quantum Nuabers 1,281 .

The basic idea and the scheme for obtaining the operator
expansions have been described above in sect. 1.2. let us

consider now in detail the properties of some form factors.

2.1.1 General Results

It is convenient to decompose the bilocal operators in

(1.5) over the operators with the definite quantum numbers :

3= ) ) ) B B, €9

The bilocal operator (ixfxill (twist 2) gives the lea-
ding contribution into the %% -meson form factor. For the
scalar meson the leading contribution will give the operator
_d\\giu (twist 2). Let us define the wave function \?Ekﬂ of

the scelar mesond

s . -L(‘Ei"?ﬂ?ji_ i TG p 2
slluRE = SIEEREET,

]
e

ol ARNUED|ETH= &g 3_33 Rl 9503). (2.2)

KQﬁk}\ determines the distribution of the quarks in the
longitudinal momentum fractions iu,wﬁ& at ?i*Cﬂ ,%=¥q—i¢,
1u43$&::i . Using (2.2) we have from (1.5):

*) Here and further the gluonic exponents are not shown ex-

plicitly to simplify the notation.
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¢2.3)

L5 S‘h*‘ké"?”- e \\1 ai\(i-& w&mg\w

Comparing (2.3) with {1.8), (1.10) we see that the
agymptotic expressions for both form factors colncide, only
the wave functions differ. (In the isotopic symmetry limit :
\quﬂ\:\qm&t}\1 \Q'ﬁk‘ﬁ\t 5 \er-llf"ﬁ\} « It will be shown below
that this coincidence is not accidental, though it may seem
surprising at the first glance, because the scalar meson is
the E -wave atate of the two quarks and one can expect that
the form factor asymptotic behaviour will be suppressed ’1.9’.

It is not difficult to see that the result analogous to
(2.3) will be true for the form factor of any meson with the
helicity k==0 and any other quantum numbers - spin,parity,
..2tc. Indeed, let us write the general form of the matrix

element:

* ¥ e 1~
GIRNUEARN =2 e i 200 . 030) ot

M )
where: % is the meson mass, Y is its spin and € is

h=0
the polarization tensor. Because &t ?1-’*"0 £ v o ?F/!‘M&
hhl i
while ki) , we have for the case %=0

<G\K&a\xguk-a\m= = 2 (2e) 00+

The behaviour of the wave function (2.5) is analogous

(2.5)

to (2.2) and gives the asymptotic behaviour of the form (2.3)
(the wave function ‘QEK%?) is dimensionless).

o
The most simple reciepe for calculation of the \i=\1=E}
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form factor is the following:

a) replace the initial meson by two free quarks with the momen-
ta Ki=ii?? Klzil?T *L+$1=i_ (for the final
I I
meson: K}:Qi? Rl e %1*31=£y

b) write the expression for the Born diagram, fig, 1.6

§ ?\g\,;\;ﬂﬂ iyl [ 1y ()T e v peemit
K=%1?n'*1i’? K:*lgie\* \ &:?'—‘{\1?1 A =i1u\_:1

where \k and d, are the quark field operators;

L "
¢) aimplify by using the equations of motion:

A i oy
&X?Q\&lkﬁﬂ - 2%, \_U\ z.%»&'\ﬂ\_& \&Hﬂ

d) 1ntroduce the wave functions:

<\ d\\?ji‘hiﬁS-‘-‘-r—(ﬂ\dU\?ji\ig>:&?
%\-}.k\gg\ o H< &Kg \? 3\ U>%" ?\&%L& \QMLQ

(and analogously for the final meson, for axial particles
di{ﬁ 4 (iiwtﬁkl )3
é} calculate the traces over the spinor and color indices,sum
the contributiana of four Born diagrams and integrate:
g \
S—i lh!i.g tk‘)! Ny= U*“H\/Z 1 11=U~"fﬂ/11 34z ki*'ﬁ)/zr \:".1:(1- %,

The result is the expression (2,3) with the replacement:

et = £, 0.6 5 heR)> 5,8 6.

This scheme is applicable to the calculation of any exclu=-
give amplitude which is determined by the leading twist opera-

tors (wave functions). Por the higher twist operators the re-




cipe is more complicated, see ch.9.

Increasing the helicity \kl in (2.4) by one unit we
obtain the suppression in the asymptotic behaviour ﬂ‘(Mﬂ/%j.
Proceeding in similar way, one can obtain a general expression

for the asymptotlc behavlour of the meson form factor {in the

\1 Mol #2003

A T T

where WN=2 for mescn( Y\ is the m,knlmal number of consti-

reference frame ?14& T =0 bE

tuents}, the current helicity )N and the meson helicities

\1‘ \1\1 are related: \h:'- "h_‘;_“-' \1\1 » 3imilar result
will hold if one replaces the electromagnetic current by the
vector or axial-vector onea.

Because the asymptotic behaviour becomes more and more
suppressed with increasing of \\Lﬁz\ , i..2. we are conside-
ring now the nonleading contributions, we should take into ac-
count in the decomposition (1.9) not only the two-particle
operators :-VP‘\‘ , but the three-particle ?Y“FG and other
higher twist operators es wall*. It is evident, however, that
the behaviour (2.6) remains true. Indeed, consider, for ins-
tance, the térm in (1.9) with two guark and one transverse
(i.e. \\\h-t\=i ) gluon for the initial meson. The gluon may un-

dertake the unit of the angular momentum projection Li due
to 1ts helicity |Ny\=1 and this gives the prize ~§ , but the
twist af@‘*’@' is one unit larger than that of Q\P and this
gives the penalty ~ 1/CV + Therefore, the final result is the

same as (2.6).
Really, the validity of the asymptotic behaviour of (2.6)

implies some requirements on the behaviour of the hedronic

*) Thie is evident also from the gauge invariance,

wave functions. The integrals (as in (1.8), (2,3) ) have
the denmominators 'DUH,\ such that 'Dl\‘l.q-‘r 6  at Y201,
The asymptotic behaviour (2.6) dimplies that the hadronic
wave functione \?(11,\—30 at ‘J‘.'._-‘r G,L sufficiently fast,
go that the infegrala over AL are convergent end this re-
gion doeen't influence the asymptotic behaviour. These ques-

tione are discussed in some details below in sect. 3.5 .

2.1.2. The Simple Model
In order to clarify the meaning of the result (2.6),1et

us congider the simple model. The meson ( in the rest system)
is replaced with two free quarks with the momanta "Fg"ﬁ;-vj'ﬂa,
Cya Ky =0 . The state with the meson quantum numbers is

constructed in the usual way, following M. Jacob and G.Wick:

% L % N 5 :
\IMhd> = b0 deas® D, (0,9) ) K, M >
where is the meson E;in , and M is the spin projec-
tion onto the 7  =-axis. Choosing the definite linear com-
binatione in \M., \M. , one can construct the state with defi-
dite E -parity, G -parity,etc.. As a result, we have a
mpegson state" in the rest freme. Let us perform now the boost
into the center of the mass system (c.m. 8.) of two mesons.The
méann form factor is equal in this model to the usual Feynman
diagrem, fig. 2.1, multiplied by two D-functions and integra-
ted ovar the angles @4.,1 and \QL.:L . Therefore, th: meson
wave function in this model is proportional to the B -func-
tion multiplied by two free quark spinors. _

The kinautinn is the following. Im t}lha rest frame of
2. M
the meson: "K,_*:-'--\Ci 'f \K‘—"!""RH,, k'ﬂ'ﬁl\ G (?'1)

e Cd: _M
K1=E£"\Ttu$ga t‘l_-_--a-‘—-\fi»,ng.ﬁ,_, < A:
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where M, is the meson mass, V .ia the velocity, W is

iy,
the quark mass, Y\, is the UTlf- in the transverse Y.,"ﬁ -pla-

I:,-E' In thf Satial,. | ia the lorentz factcr,ﬁ)&woffﬂu-‘*“ :
P=fMo, K2oy(mend)oy Brlivvecto)=np,, % =¥

k*=%t§h-—ﬁ'tn§@*§?ﬁ1’§1 L Rrla=d, h‘E::KE*’\EE\:?'M,ﬁ*n

iy o 2 1
N i . B X +m ~_{2.8)
K]_: k:.*\ﬁf)i?vl'j_?; ) kf‘_ ';RE_YE = ;;1 ,.?; o }ln: b k}_ :

i3

(Por the final meson:

ST SR F R s AR e 1
X =-*\6 %k&-\l’tnégg'ﬁ"‘lﬁa, Werd,=d,

~ i e ~ mE P -~ 2

o S T LT S ot RO AR

It may be seen from (2.8) that the longitudinal momentum frac-
tion carried by the first quark is
i‘%‘i—' < ‘}(i-‘-%(iﬂrﬁ tﬂﬁgi\f—. }‘%\E : (2.9)
For the case of nonrelativistic (in the meson rest frame)quarks:
V<4 gand the support of 11,1 ias localized at 11,1: % .
For the case of ultrarelativistic quarks: V=1
above variable R‘i\ii'- Ty = kir 11}= cod B¢ 4,
prepagator in fig., 2.1 has the form:
e .} |
ey e, <00, &) ‘

2.
%= v b cos(,-y), T |

and the used

The gluon

=Y Ya=0e0d0y ) 324,42 Teod g,
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It may be seen from (2,10) that the diagram of fig. 2.1 de=
pends nontrivially on both Cof 8, and Cto3 ©7 . Therefore,
the integration over Co$ ©1 and co$ B2 with Dﬁ -functi-
one doesn't influence the asymptotic behaviour. In other words,
the asymptotic behaviour doesn't depend on meson spins. At the
game time, the diagram of fig. 2.1 depends on the angles
\QLJ only through the ff:'l:nrs 'E.i?[]_’—'-‘th“hg/’?-g in the quark
gpinors and the term @121 in the gluon propagator (2.10).
Let us take for simplicity ‘7\1‘15\ and \1= =N , then integra-
tion over \Qi;}. tekea the form:

\L‘h“h T -‘*-“h‘iiz
| 89 \ e, e

and thie separstes from the diasgram of fig. 2.1 the term with
the behaviour =~ Ei?[]_“wj\&ql‘\%ﬁ]} . To obtain suchw:. _E’erm,ox:\e
needs to decompose the propagator (2_;.1_91 inﬁﬁ the &KLQL /q'?-)
gseries and to separate the term ~ (‘RLQ-L/Q‘?'\ . As & result,
each unit L; 3 ths.qunrk angular momentum projection, leads
to the suppression N(EL/W of the form factor l.aTmp'l:opin?,,bu-
cause L;‘f‘o (k"'/qr bal »

gider as an exaumple the form factor (\g} 2\ j}ei ‘M_=‘i> :
because thie example contsins all the main characteristic fea-

is ensured by the term . Con-

tures. Ite ssymptotic behaviour is determined by the diagrams
of the type shown in fig. 2.2 (the arrows show the projections
of the quark spins onto the Z -axis). As compered with the
"normal dimensional behaviour" 2'*-' (i/ ﬁ',)
additional suppression ”(klfﬂ,\ due to L;f‘i : \-11*"***{- .

, there is the:

*) All these properties follow in fact, from the Lorentz cova-
risnce and will be true, therefore, when the higher orders of &
perturbation theory are teken inio sccount,
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Moreover, there is additional suppression m(m/a]) due to the
quark helicity flip or o (n'/ﬁﬂ because the quark has the
emall transverse momentum k;_’“j"la and its he'licit}' doesn't co=
incide with ite spin prpjection onto the Z2 =axis (for the
light | - end d -quarks just this contwibution will be
the most importent, because E_L“b mu,\“ﬁ& ). As a result,
<}~1‘={l\3}¢i\\;‘4‘-i> ot ki‘/q}q? and that agrees with (2.6).
It is not difficult to see that the asymptotic behaviour (2.6
will be true for the baryon form factors as well (in this ca~-
ge W=3 in (E.G.ﬂ.

Invegration o2 (2,10) over COSOLL with the ¥
functions separates the term:

4
BESRRGR (T (reatod”
A3)(4%)  (L-Teos ) a-Teotes) @.44)
where E is the qua.?:'k angular momentum in the meson rest

{v.r-no.. If the quarke are light, then \_T“-‘i (see (2,7) ): and
there is no significant numerical suppression, Por the heavy
nonrelativistic (in the meson rest frame)quarks V<l ana
(2.11) show that the asymptotic form of the form factor con-
tains the numerical smallness ~ (‘G‘\h*h

on ‘3{ is unchanged.
It may seem purprising at the first sight that there is

> :
no spuppression of the asymptopia ~ Qpn\/ uhiﬂh ~(H'\r/ar§h*h
for the heavy nonrelativistic quarks ( F, is the relative

, but the dependence

quark momentum in the meson rest frame). The reason is that
l ; F
the suppression ~ (M‘W/ GA s+la is present at the true non-
relativistic 1imit only, i.e. at Mo¥<< W |<Mo | Reanty,
-
in our case we are outside this region, because \%\-’P“ and
\'(:{\)) Mo . Hence, the relative quark momentum in the c.m. 8.

is: ?n 4%1-*5?}_ =2.i?‘-k = G L{){ gi.' Ell}:}.ﬂuﬁ?
B9 ) = - Teot 8, Bl

and the suppression factors look like (compare with (2.11) ):
~ !’ re | 2 Q’L &
?n = o ?9 - : g 2
e k /\W\\ ( /\q‘\\ ~ (ﬁ't,né %1) (\Ttag 1) ,

It is worth noting that, as it is clear from previous con-

giderations, all the sbove obtained results for the asymptotic
behaviour are applicable also to the processes of the type:

VeI IS LMD,

l
where, for instance, the state <?1:§; ?:. \ ' is the hadronic

‘jet with the invariant mass M1=(E. R Y& \Oﬁ and all momentum

transferas inside the jet (?:-?L )l 4 \C&l\ . The mass M
may be large, M A GeV , vut fixed, and \a‘i\avn, (Wnen the
internal momentum transfers are large, Mlmk?;-?::?‘«‘b1 Ga?z,tha
quarks can be considered as free). It is clear from fig. 2.1
that the physics is that the colourless two-quark system is
produced at small distnces ~i/'1\, , end it doesn't matter to
what hadrons it later tramsforms.

2.2 The Selection Rules

2.2.1 General Selection Rules

The following most characteristic features have been poin-
ted above ll;‘ll‘\, 2.1 ] :
a) Because the quark transverse momentum inside the hadron' is
ot large, K1~ Mo, the directions of the quark and hadron mo-
lmenta nearly coincide at \Pi\”qﬂ"" I‘" » Hence (up to correc-
tions ~ “J-—qu ), the quark .Ihol:l.cit;r- coincides with the projece
tion of its spin onto the direction of fhe hadron momentum.



b) For the hadronic states (wave functions) with |,#0 (L, ie
the projection of the qﬁar}c angular momentum onto the directi-
on of the momentum of its hadron) the asymptotic behaviour of
the excluasive amplitudes is power suppressed.
¢) The QCD interaction is of the vector nature and at the
quark-gluon vertex the quark helicity is conserved (up to cor-
rections ™ m/“., )e

The following general selection rule follows evidently

from the prcperties-"a" end "b": the leading asymptotic con-
tributions give the hadronic states (wave functions) in which

the hadron helicity is equal to the sum of its constituent he-
licities (quarks or gluons). With account of "c" one has evi-
dently: the sum of hadronic helicities is conserved in hard
exclusive processes, K‘E.\J initinl:kz }‘inna,‘l . (The conse-
quences of the baryon helieity conservation in the baryon form
factors are considered in detail in ’1.23{ ).

Let us give few simple consequences of general selection
rules.

The herd exclusive amplitudes in which the mesons with
h‘\\:' -‘-l- or the baryons lli'l:]_.t- \‘h\) 3/(2 participa.te‘ are
suppressed (for the mesons composed of gluons - at \\\\"1] .

The final states with \\l\: i/?- dominate in the electro-
production {ZN’-‘:-N' at large \Cﬁ\ , and their transition
form factors have the same asymptotic behaviour as the elastic
nucleon form factor, while the transition form factors for the
final states with h\\___}h have additional Eﬂppl‘&ﬂﬂim;”%-
Therefore, for the polasrized deep-inelastic electron scaitering:
[EROV/E 0 ]~ (40 e xat .

The simple snd useful consequences of the general formula

(2.6) were pointed out in _IE,EJ . Congider the two hadrop
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production in E+ e~ collisions, i.e. the electromagnetic
hadron form factors at positive and large Okh . Because the
photon in e*@.*—‘r‘ﬂ*- Nife  has %1?31 ( 2 1is the e'e”
collision axis) end the léading mesonic form factors are tho-
ge with \i=\1=g and baryonic ones are with -\1\1‘\2\}1% i.fi
(see, 2.6), then the angular distribution of mesons is "Binz'@ "
and that of baryons is "(1 + CG'."sz" ). This selection rule
is egpecially useful, because it's much eas'y'tﬁ megsure the

angular distribution than the hadron polarizstions.
2.2.2 The Simple Interpretation

There exist the simple and visible intarpratﬁfian of the
above described selection rules. Let us consider the quark -
quark - photon (gluon) vertex. The querks are on or near to
the mass shell. In the two-quark c¢.m.s8. the process of the
phntan1{glunn) absorption looks ass in fig. 2.3, where the ar-
rows indicate the directions of momenta and spins. Because the
quark helicity is conserved in the interaction with the vector
particle, the photon (gluon) has the helicity \\\Zli o Ll %%
is transvergely polarized. This iaywell known property of the
vertex, which leads, for instance, to the dominance of the
trensverse cross-gection E;'r and the emallness of the lon-
gitudinal cross-section O, for the deep-inelastic °p -
acattering.

This property is generalized strightforwardly to the col=
linear processes with the larger number of photons or gluons.
For instance, it is seen from fig. 2.4 that the total angular
momentum projection of the two-gluon system is equal to unity.
For the collinear process this means that one gluon has '5*::1_
and the second one $E=G .
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Analogously, replacing the quark with a transversely po-
narized gluon on or near to the mass shell, we have from the
three-gluon vertex, fig. 2.5,that the virtual gluon has $;=0 ,
i.e. the helicity of the real gluon turns over.

Using these properties it's not difficult to obtain the
gelection rules. For instance, for the meson form factor, fig.
2.6, the gluon has \é}\'—'i " and so the photon helicity is

=0 , i.e.. the longitudinal form factor dominates. For
the baryon, fig. 2.7, the transverse form factor is the leading
one, It is clear that the systiems with an even number of quarkse
have the leading longitudinal form factor and those with an

odd number of quarks have the transverse one {1.27[ .

2.2.3 The Selection Rules for the Heavy Quarkonium Decays

It has been pointed in IE.1. E.jf that the above des-
cribed method for the calculation of hadronic form factors may
be applied to the degcription of heavy quarkonium exclusive
decqya as well, We describe here the selection rules for the
quarkonium decays into two light hadrons [1.44. 2.1Elf .

The decay of the C -even quarkonium into iwo mesonsa is
described by the disgrams like those shown in fig. 2.8, ,and for
the C -o0dd one shown in fig. 2.9. It ies clear from figs.
2.8 and 2.9 that the nonsuppressed decays are of two t;rpuﬁ on-
ly: a) from the initial state with $1=0 (in the quarkonium
rest frame, the 2 =-axis is the direction of the meson moti-
on):;: b) from the initial state with \31\=2- . For the case
"a" two produced mesons have the heiicitiea Xi_:\h'l-‘*o s Tor
the case "b" ')\L='“\M'. =t4

The baryon pair is produced as shown in fige. 2.10, 2.11.
Por the C -even quarkonium, fig. 2.10, the initial |$21=4

and the baryon helicities are |\i=-\i|=%/2. Por the C -odd
shb e, AL, Sata i 3 and \M:-‘M\:i/’l and Uf—‘hg\f
3/2 , reapecﬁively-

There exist the useful selection rule for the two meson
decays from the initial state with 'j{Z » connected to the
case "a" abcve: Let us introduce the quantum number "natural-
ness": 51&‘1\:.9 , where P is the parity, and S is
the spin. If . Swikise 7 (SLS2)gnt - then the smplitude’ con-
tains the unit antisymmetric tensor Q;.w A . Besides, be-
cause the produced mesons have }xi=\r‘\;=0 , their polariza-
tion tensorsg reduce {ﬂ khEiT momenta ., Therefore, the amplitu-
de is zero, because there are no quantities with which the in-
dices of Eyul 191 can be contracted. As a result, we have
the selection rule . the naturality is conserved for two-me-
son decays of the quarkonium with j‘:- 2 . Some examples of the

suppresged and allowed decay are presented below.

e Aoe Ak BB, T390 BT, A
4, > 9T, Ay, 5B, 2 WS, B T

-

B?Q#EP‘\L?%TRJKM "> T, 09, WAL,
1?5171" R TR MAL a?i—-‘a-_ 0, TA2, BAL,
5..?17[; %0, A2, Add, P o TP, bhAs, DAL,
30, e The, SAs oy R —> T, 09, TAL 9B,

For the decays into two gluonium states, one can see from
figs. 2.12 and 2,13 that the initial state can 01113 ha.velﬁi\:{},?,,
and the meson helicities are: a) %1=:G‘—b(hL:\1:0)1RBi=11=iij}
b)\é‘i\‘:z—” N=0, \\1\:'?— . 1 is seen that because the

gluon helicity turns over at the three-gluon vertex, fig. 2.5,
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(unlike the quark helicity, fig. 2.3), the sum of the hadron
helicities ie not comngerved, for the processes with the gluo-
nis, fig. 2.13, [2.4, 2.18].

It is worth noting that all the above described selection
rulesg are obtained in the formal limit \(\‘l\l-"* 2 (or Mq"’ i
where Mq is the hesvy guark mass), when one can safely
neglect the power corrections. This ie evidently the case in
the FY -region ME 5 GeV , QE‘ ~ 100 GeVZ. However,
in the charmonium region M'e 1.9 0T Ql ~ 10 GeVZ the
situation is not so evident. It is discussed below in che. 8,9

in detail.

2.3 Ei}ma Qualitative Applicatipna

2e3s] The difficulties with quantitetive calculations

1. Let us try to estimate the value of the pion electromagne-
tic form factor. Because in the isotopic symmetry limit the

: K‘l\ = \Q‘? k'ﬂ \

see (1.10), we can rewrite (1.8) in the form:

T -meson wave function is symmetric:

% enisn L SAa Mg i 0 2
Fm*mt\_;}a"ﬁgli \%n\ g;f'?:\quﬁ : Siénl\%(?}\=&., (25745

R

where the constant SH = 133 MeV is known from the'ﬁ*]‘\"] decay.

Let us note first of all, that (2.12) predicts the definite

eign of F‘! , which coincides with the predicticn of the vec-

2 2
tor dominance model (VDM) : 'F\!DMN X ~ e (2.43)
T 9 m‘l_h L N [ i
¢~ Y

*) If the vector gluon is replaced by the (pseudo)scalar one,

the sign is opposite.
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, it ie seen from (2.12) that

Because E‘n‘t U}EH-Q} = 4
E LO.( ) can have no zeroes in the euclidean region q, £ 1 .
The experimental data show I 33! that T KQ( \ is indeed
positive, in the region 0 < k ‘3'2\4 L0 GeV™

Let us try now to use two characte:-mtif; wave functions:
\?mnm?.. b!\ = %Uﬂ ond '\Q’l‘ih\:% ki-vji)
First of them imitates the nonrelativistic wave function for
which 11:-*.‘1\1:1212 A -k‘ﬁi Y2\ O (gee (2.9) ), i.e.
) each quark carries one half of the pion momentum. Substituting

that into (2.12), we have at dg ~ 0.3

= (. 0.06Gev?
t‘k \ S q 2 _
The wa,ve function \QMGB is the asymptotic form of \Q b ]*1)

at ]q“""‘“ (see, ch.3). For this wave function

E-ﬁkc’(l\ o W45 GEE_

;3
The experimental data ! 133 | in the interval \flrz‘ﬁ ﬂ_O GQV?'

are described sufficiently well by the § -meson contribution

(2.13). It is seen that both wave functions 'wnmmt(}() and
\Pu.t‘.kﬂ give too small valueas for _ L%t)

2. The branching ratio for the decay Y L'Eh\i’_;\—\"\i 13 is
IE (S, ¥ 44] ( see ch. ¥V for detaila)

b (bo17)< |77, B2 s I\ (2.18)
1 3 L ¢ T 3 i' L™\t
Iﬁ&&h“qﬁ [\”'!_\_Saﬂuq Lﬂ - w-‘& gt v

v_l.-'i: L"H;}_‘ -3, i L-343

el el
Using the wave functions wmﬂ“t(‘ﬁ and \en.é R‘ﬂ and I =4, 3)

Mezd, ‘5@*1\’3 in (2.14), (2.15), onme obtains for the . LLQ
numbers = 4,10 7 and = 3.10 }'respectively, which are too
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amall as compared with the experimental value EE.S, &.6] s
Q¢ (Yo TtT) = (0.920.2)%.

3, The properties of the nucleon electromagnetic form factors

are described in detail in ch. 10. The experimental behaviour

‘1.34 of the prutcm magnetic form factor G? \q j at
VES K*—H( \lé- '[:::F'jﬂr and the neutron one CH KQ‘ \) at Uék%)

1L
<40 GeN is described approximately by the famous dipole

fnmula.E'_L.(; K‘{‘\_ i C, Kﬁ'\ Kﬂ_ L\/Iq\ TA U“-HQ,Q‘*-J
G Kffrﬁ\ﬂ“‘ﬁi.?%? GMHW: w2 =L, (2.16)

where S‘{F[\?"\ is the prnt-:::n (neutron) magnetic moment, The re-
al calculation of G ( ) in terms of the nucleon wave fun-

ction Q U\L Yq *LQ Z\i e i

in ch. 10, As it was first noted in '2 T!, en attempt to use
the nonrelativistic form \?hoﬂ'(atkiv\, -'rl'nr EHL'LJFB}EUFL./S)
for the nucleon wave function \?n{kih\ gives the qualiteti-
vely wrong results: LGL(%l\égj %;G: lknql\'iﬁa that cont-

radicts the experiment (2,16). An attempt to use the asymp-

fig. 2.7, is presented

totic form of the nucleon wave function: U’?mu\ lﬁq 120X X2 s
also gives the wrong results ‘ 2.8, 2.9 I : G (‘\\ 0

_L'; Cxi r@,}\‘ia . Moreover, the dlmenamnal constant \*N
whicﬁ determines the velue of the nucleon wave function at the
origin (and is analogous to 1]:1[’ } can be found by using the
QCD sum rules lﬁ \ > 0.5-40° et \'I‘- .Using this value- of ‘S’H
and the wave function l*u.-; L\\'{\ one obtains for the""@ E‘)
the result which is two orders uf&hagn1tude smaller than
(2.16) { 1.49 l

We gee, therefore, that all things are very bad. There

may bte two reasons far ‘this. a) The region ‘lck\ &UGE\ffnr F'&“]
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and Yo\ T and IIL'C\,!*\: (1‘-:!"'3(}3GE\' for (:E.:“(qﬁ\ is not the
asymptotic region and the power corrections are very large.or

even daminatef b) The leading terms are the leading ones alre-
ady, the power corrections are reasonably small, but the true

pion and nucleon wave functions are very unlike both the wave

functions 1‘?““&@ 'Lﬂ and \QH b‘-) .

It is argued below im ch, 4-10 thet the case "b" is
realized. The pion and the nucleon wave functions obtained with
the help of the QCD sum rules differ greatly in their proper-
ties from both “‘fu.matﬂ and \?Mm « It will be shown in chs.
5,619,10 that using the realistic models (obtained with the
help of the QCD sum rules) for the hadronic wave functions, it
is possible to obtain the quantitative deacription of Q lar-
ge number of various exclusive processes in agreement with the
sxperiment, Hence, below in this section, we don't try to ob-
tain the quantitative results and describe some applications

on the qualitative level only.
a2 The ? megon Form Pactors

~ As it was pointed earlier, for sny meson ‘NLH’\ A=0
the leading twiet wave functions are detemﬁined by the bilocal
operators \'bf’ K?LQ{L for the natural particles ?1%1 ﬁa-lJ Ko
and "'\’1%?\“ ql’i for the unna.tural ones ~ W, Ay ©... For the

?»,_ = ?‘.\*a meson, M? E \?\ P?‘ + O\\H?/P>
\ é\\.’i\ Wﬂ\n U\ 1\\?1@% Pr&g\q 1\2?\) S
N \m \\x exoh iy \?gm E Wm L

The conata.nt ‘S? in (E 1?} Hhich determinea ‘I;he value of

TR i

the . ?L : -meaon wave fu.nction at the origi,n is kncwn expprlmen—

taﬁy ‘from the denay ? seQ - Pl‘( "'?.'u{} HEV . Tr tHe

*Por this viewpaint see,for instance, /1 5/,

a7




.

i y s ]
jgotopic symmetry limit: \QT U?\ - \Q? K_ﬂ
For the ?_LE ?ﬁhl -meson the leading twist 2 wave func-

tion has the form: ¢ . e
<u\'&h\fﬂvmk~%\\‘iﬂm -(£p fu-T3 By e o)
i _ (2.18)

| % @) '-‘_E*H exph 3@y % ®),

RRHOES
Q: (‘5\: \’{‘:: k-ﬂ in the SV(2) _1imit.

The following question arises naturally. As the ?L ~me 801

wave function (2.18) has the leading twist 2, it seems that
the form fector of the ?J... -megon will have the same behavi-
our as those of the ?L end |\ -mesons. At the same time,
the general formula (2.6) predicts that the ?L -meson

form fectors are suppressed (see also ’1.27{ )3

<?L\ j\‘nl:i\?ls < i/‘f' : { ?;fﬂ\ﬁa—"a\?mu) = i/;.t?_

The remson for this suppression can eagily be seen from
the diagrems shown in fig. 2.14. The transition ?L'H ?j_requi-
res the change of the quark spin projection é-t {ﬁupprsasinn
= “R.L/G.V ), and the transition Ue"ﬁth «—> L ?,L;; i) requires
that the spin prujfctiana of both quarks should be turned over
(suppression ™ K*/q(l). (The transition L?\‘F!Q*}K?EEIQ
is impossible at all, because in this case \‘,\\:\\“\1\:21 but
the vectof current can have \\\ <4 only. For the extermal
source which can have \\\:2 , the decay into E,.L _.?.L is not

suppressed, for instance, the decay of the tensor charmonium

3:1@5‘553"’-?1_?; , see ch. 5.,

The behaviour of the 4\1=#i\ S‘p.:gh\i:?i> form rlctn_r' :

s e

5

drastically changes when the vector gluon is replaced with
the (pseudo) scalar one in the diagram in fig. 2.14, because
the quark helicity turna over at the {pseudo )ecalar gluon ver-

tex:

| 42 vector gluon
<\1=_ii\§\=u\!\f11>r‘v 4 tor gl

ilg{ scalar gluon

It is emsy to understand that all the above described
properties are not specific for the ? -megon only, but are

true for any meson with the helicity h\\‘-' L%

e T™wo-Current Form Factors

-
Thege form factors can be measured in the reactions: ee-»

& ™ + -
e + (meson) or € E’_—"‘!'\g+ (meson), fig. 2.1b.

Let us cofmider a8 an example the : i -me son /2.15/:
Tre =B I T Tulo) |0 = e 6 Bl 4,

: 1 (2.19)
E\@:kﬁiﬁ\: - “-"—"—“""'1& “ﬁ.z«%‘i

(the value Eﬁ'\ﬂ‘ﬂ ) is determined by the axisl-current
anomaly /2.11 { )e The leading asymptotic behaviour of th
can eagily be found as follows.

Replace the 'ﬁﬂ -meson with the free quark-antiquark
pair with the longitudinal momentum fractions 15}% ) ‘7{12‘&,:1_1’
fig. 2.15 plus the crossing disgram (we use the frame:

_$+-a'1‘-:ﬁ ). Then

‘LTN - 1*&:; (‘i’i\ﬁ \&t‘i%d U+ (U‘ = é,\:
(2.20)

1

2 eu <

N ﬂ"'ﬂ. 2 thwsﬁwu .s\gsu +kum\\1
L*%i Y2 ;

lagma . Smey




where &,=2/3, E.{:_i/g
A = ”11? B o A= (XeQ7s {292 ) and the formula
\&t\&‘ﬁq =-.@ Hmiﬁ%.ﬁxh was used.

Introduce the T =-meson wave function:

Qﬂu@'\ﬁ \&57&5&\‘3'> il Ll{&% Ye \Q-{? kﬁ\-‘p - <Eﬂl\g“£ﬁ\$5dlﬁﬁ>;(z.z1)

are the quark charges,

The final snswer ig:

T f;kc\ & {LE\E ¥ \ \QE m e c\i (2.22)
s \ _“\%*m% gi Lawy , %‘0‘1
Gt W=0. Thgfyel . e e camer 1e

determined by the local limit:

Felg i) F I

0.15 Ge\’
Fﬁb 0 L}_}%_j\:__ml;ﬁ ’{} ) c‘l (2.23)

q"i'..

1-7 ; (2.24)

The form factors of other ( -even neutral mesons h,
\‘L -,%ﬂ can be obtained in the same way.
In this simple case the coperator expansion begins with
the terms "'(“L';\}a (i.e, there is no gluon) and is, in fact,
the usual Wilson expansion Of the product of two local cur-

rents.
2.3.4 The Form Factors \f;“ﬁ? , KWT'UJ .

The matrix element has the form:

(P () 380> = Cpane R RL B (@), o -ff- (2.25)

5C

2,16, at éﬂ\‘ﬁ » |t~

where ?: is the ?_-., -meson polarization vector. The ? -
meson has the h&licity \\\=4 in the meson's c.m.s. and so
the quark spin projection ‘31 turne over, fig. 2.14. There-
fore, the form factor F‘E? is suppressed ( ~ K"[W ) in ac-
cordance with (2.6). (Thie suppression has been pointed out
by many authors {1.1?, 1.27[ ). Ae a result,
S (-é‘- e ‘ﬂu?)/ s (EQ-‘PW)” U“i/ ﬂ'ﬂ at large cf' . The calcu-
lation of the form factor Tyg((’) is described in detail in
ch. 9.

It is not difficult to see that Et?:' -?ﬂré’g?vm.

2.3.5 The Exclusive Electroproduction

An interesting combination of the short and large distan-
ce interactions give us the processes of amall angle exclusive
electroproduction: N > NW(? W \)nr 'TH{-}EE l"{ ,fig.
T

The asymptotic behaviour of these processes can be found
supposing that the usual Regge description is applicable, fig.
2.17. Then the question is reduced to the calculation of the
#Eymptatin behaviour of the vertex current-hadron-reggeon.Con-
gidering th._u reggeon as a particle with the spin d(\'a which
changes with the "mass" '*: , we can obtain the reggeon form
factor as an analytic continuation of the usual form factor.
Let us remind in connection with this (see (2.6) ), that at
fixed helicities the msymptotic behaviour of the form factor
{i.e. the power Q‘/ﬂﬁ\“ ) does not depend both on the hadron
epine and masses, which influence only the value of the coeffi-
cient in (2.6). Therefore, the reggeon form factors have the
same behaviour in i/ﬂ' , and only the coefficient is the func-
tion of +— .
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Let us write the reggeon contribution into the smplitude
{N’ —>1M‘f in the form: '

E\*Tt‘ =g %U’r K\ *\ ‘Hﬂ? Y =(s- u\{

where E‘? is the phﬂtﬂn polarization vector., Then:

) '”L
for the Regge-trajectoties with ©&=-4 (T AyL®..., 5

ig the signature and Y is the parity). Therefore (in the

é ~channel c.m, s.);

Th— K‘?" Qﬂf—\“‘“ o r\‘ \W Jl:} : fﬁ&_ﬂ {\ o
= ny\’mtomjh Jtﬂ'ﬁ,amtﬁ &=-G§‘-—3.a-a :

where #wt denotes the transverse photon pelerization paral-
lel to the reaction plane and ”hi._, orthogonal to the rezsction
plane, Analcgously, the trasjectories with QE:*{ { ?,*ﬁ;f\z )

give:
o)

) o = n o
Th\\=i ~ Q1 Wibﬁ.ﬂ ‘ T}H—_G e G!_l \’J('u\k;l"\i,\ )

Therefore, the production of the pions by the longitudinally
polarized phctans dominates:

L

ﬁfh AR é“@ =P E (), e, e

These formulse describe the production of ?] W me 8ONS
as well, the only difference if that now the trajectories with
?E'ﬁ“rl give the main contribution st large QE- .
The cross-section EgT is the dominant one for the back-

ward production, fig. 2.17:
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It is interesting that the behaviour of the cross-section

changes at high energies, because {or ?l\fé-ﬁ'r!:
T~ (@030 & 0™ 31 puld)
and therefore: Q-i Qu-z “t < QB/PH
ds 9,8 h
d&L W, 0) \}ZH : b i Q-}ﬂ/}{q

oI

>T N

Unfortunately, the available experimental data are too

z
poor and have too low Q~ values,.

2 3:b The Threshold Behaviour of the Inclusive

Structure Functions

Knowing the asymptotic behaviour of exclusive proceases,
we can determine the behaviour of inclusive cross-sections in
the threshold region where the "inclusive mass” My is not
very large., Some examples of inclusive electroproduction are
presented in fig., 2.18 and the corresponding threshold regions
are shown, It is evident that in the threshold region the pro-
cess is "quasi-inclusive" and "quasi-exclusive" simultaneously,
g0 that both descriptions should agree here ( the duality,
the correspondence principle) ( 2.13, 2.14[ .

Let us consider some examples,

a) The deep-inelastic scattering, fig. 2.18a.
The structure function EJ_ X, Qi') obeys the scaling

behaviour when the photon has the transverse polarization:
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{-X - XNy -
E.LL’Lt&Q\"ELKﬂ., = ﬁ.l/?.ﬂ : Hl{ﬁ = Q, 0=-4 >x,

2 < ”
In the threshold region QO » My 2 M
g K [ pal ¥
2
B (0) ~ (1-0)" ~ (W/e)
In order to determine the value of " X " for the nucleon tar=-
get, ccneider the diagrams like that in fig, 2.19 (the arrows
show the quark helicities, _L and L. OYe the photon of glu=-
on polarizations). The pmpl.gntnra_ in Fig. 2.19 have the vir-

tualities ~ (kl- Q/Mt) > ]"‘h at Q?'})Mi , and so the per-

turbation theory is-applicable to them., The nucleon wave func-

tion \QN is introduced in the usual way for the target quarks

in Pig. 2.19. One can introduce the resonance wave function

X5 7or ths qnarhs on tha FIght of fig. 2.19 &t MeolleV

or one can consider these quarks as being free at My > 1GeV.
Therefore, the diagram in fig, 2.19 describes, in fact the
form factor for the L  -photon. This is the leading form
factor which gives the behaviour ~ i/Qa for the amplitude in
fig. 2.19, ('I?liu quark, gluon and photon polarizations shown in
figs. 2.19, 2.21 are in accordance with the ael.ection'rules,
sect. 2.2). The structure function is proportional to the amp-

litude square. Tharafore*= .
N N e S y
b 0~ U".‘Q l”(i/ﬁlﬁ ~ 7o L (2.26)

The _L = form factor (i.e..for the transverse photon polariza-
tion) is suppressed for the case of the pion target (the final

state at fig. 2.20 have ll\\*i, 9.L| \'3‘1. , Bee gect,

2
2.3.5), the amplitude has the behaviour ~ i/ﬁ and as a result

*)Por simplicity we don't distinguish ™My and ,N "
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B )~ - ‘*\ () v T e Kads

[ ~ L
The longitudinal structure function k\i ) , as is well

known, has no scaling behaviour in the leading order in &¢ :

T LYBIRNY | oy tveanond Sehartonr of
'%Lbﬂ' at %>1  is also determined by the diagrams in figs.

2.19, 2.20, but now the nucleon form factor is suppressed,whi-

le the pion one is ncn'r.. Hence,

£ (&)~ Qﬂ; e ~ Glu-«g = /Q\ LY, W

(2.28)

o T *L 3
\zzuﬁal\r«%wfv—\i-q (M) o,

It is known (see, for instance, f2.15 f ) that ELK'LQE)
acquires the sceling behaviour in the next order in utg. due

to the contributions shown in figs. 2.21 and 2.22:
TN < RN i
1 1 .
f—‘iEL Rhﬁ\” ‘L‘%’L W) ~ %U-ﬂ : (2.29)

It is not difficult to see that in the form factor region the

amplitudes corresponding to figs. 2.21 and 2.22 diagrams have

the behaviour ™ L/QE and ~ 1/Gq , respectively.
Tharefore:

@, AR
AL (%)~ dg(AxY AT, (1,0~ ds H\ (2.30)
It is clear from the diagrams shown in figs. 2.21 and
2.22 that the sdditional quérk-sntiquark pair (i.e. "the sea-

pair") can have any flavour, Therefore, the admixture of the

antiquarks, ?. -quarks,etc., in the nucleon also has the be-

)




M . W

havinurwig\i.‘ﬂg for E.__’J U,G‘tlﬁ . Por the case of the structure
function EL\*L,QW the diagrams shown in figs. 2.21 and 2.22
have the behaviour ™ i/ﬁ.h and ™ L/ff for the nucleon and
pion target, respectively. Therefore, the admixture of nonva-
lence quarks in EL k‘i,@.i\ ig ~ de U.—‘:L\B for the nucleon and

~ nia'?ki*‘ﬂg for the pion, Z
b) The process -E+e‘—1- ?i""*'l , fig. 218b is the crossing
one with respect to the deep-inelastic scattering &P e *—}[.
fig. 2.18a. Hence, the threshold behaviour of these inclusive
croge-gections at Mi << Gfl can be found in a complete analogy
with the sbove given discussion (see, for instance, I2.16] ).

The process shown in fig. 2.18c¢ coincides in the region

of not too large M‘L with the exclusive electroproduction.

Hence, the results described im sect. 2.3..3 can be used for
the determination-of the threshold behaviour. For instance, the
eross section of inclusive pion lectrﬂp.roductiun on the nucle-
on ta.rgei has the behaviour in the threshold region:
uhe 7.2 LyK - é 7 '
j\;m JET Y ER D | Etelgaforton
Using the results obtained in sect. 2.3.3, one finds:K=2,
In the parton model language it means that the threshold beha-
viour of the pion - quark fragmentation function F"W’r and of
the quark —» pion one F'ﬂ'g’u’, is the same.(In other cases one al-
80 obtains the same threshold behaviour: F“."ﬂ ~ Fﬁfu.- ).

The above described approach is, evidently, too rough.The
main unanswered question is: what is the absolute normalization
of the inclusive processes in the threshold region, i.e. what
is the value of the constant Co in E Uﬁlﬁ-ﬂu(i-ﬂ“ ? Is 1%

pessible to calculate the value of Co knowing the target wa-
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me function W\ VM.) ? It seems at the first glance that the-
re is every prospect of success as the virtualities of all the
propagators in figs. 2.19 and 2.20 are large (3*}}“1) at X+1 .
Unfortunately, it is impossible at present to calculate e
unambiguously, and this is clear from the dimensional conside-
ration. The structure function 5 U-.&?') and the constant (s
are dimensionless, while the expressions for the diagrams
ghown in figs. 2.19 and 2.20 include in the numerators the di-
mensional target wave function (the leading twist nucleon wave
function \Q,.{ has the dimensionality ]"F , the pion one,

L
\Qm o j'l ). This mean$ that the integration over the phase
gpace of the final free quarks (see figs. 2.19 and 2.20) con-

1 3}
tains at M1 » Mo

infrared divergences ensure the appearance of the infrared cut

the power infrared divergences. These

off I\{q in the denominator in order to make the answer dimen=-
gionless. Therefore, the result is highly sensitive to the in-
frared cut-off, i.e.. to the large distance dynamics. (At the

1 T b 2
same time, if there is no scaling behaviour, say, ELL‘HQ H—}rt%}‘
the constent . ¢y has the dimensionlaity M° and cen be

expresgsed ‘I:h.mhgh the integral of the leading twist pion wave
function %NQ}.

It has been proposed in the papers f2.1'i"’ to use the pro-
cess “ge-—*(tno jeta) + (mesnn)ﬂ to obtain from the experiment
the information about the properties of the meson wave function
\QMK‘Q . The idea is as follows, fig., 2.23. Select only such the
events in which the meson is well separated out of all other
hadrons in the phase space (i,e. the angle @ is not too
emall at high energies). Then the cross section of such process

can be expressed through the integral of the meson wave functi-

on:
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g _%_E\Q“m (Lxz-20)
o oAy A-20)
where: F_= 0.,-./*_;1

megon energy, = = EH/EH ig the energy fraction. Therefo=-

ig the initial energy, Ey. is the

re, by measuring the cross-section as a function of "Z " one
can, in principle, obtain information about the properties of
the meson wave function KQHLJ) « The needed kinematical rest-
rietions, the expressions for the cross sections,etc. are des-

2.18 ] .

cribed in deteils in

2.3.7 The Scattering

The above described approach can be used, of course, for
the claculation of those contributions to the elastic scatte-
ring amplitudes which are caused by the hard interaction at
gmall distances. However, there has been no noticeable progress
in this region up to now., It seems that one of the main reasons
for this is the enormous number of the Born diagrams.

Various disgrams give the different aﬁgular dependence, in
particular, G the region 0% >4 | i.e. $>7'\JQ\ > j"li.
Congider, for instance, the elastic ?? -scattering. The dia-
grams like those shown in fig., 2.24 describing the quark exchan~-
ge between the protons (i.e. the gluon exchanges between the
protons are absent) give the contribution into the scattering
amplitude: Moff g - [1.19 |. The diagreme shown in fig.
2.25 describing the exchanges both the gquarks and gluong bet-
ween the protons and those shown in fig. 2.26, in which only
the gluons are exchanged between the protons, give the coniri-
butions: M% - Mo( 5 ":”t-“ ;

In the scattering (unlike the form factors) there are

e NE Sl

other contributions into the scattering amplitude, in addition
to the usual hard contributions shown in figs. 2.24 = 2.26. It
has been shown in [1.11] that the independent scattering of
quarks on each other, fig. 2.27, give the contribution that
sxceeds the prediction of "dimensional counting rules".Unlike
the hard scattering mechanism, figs. 2.24 - 2.26, where nearly
"regdy-made" hadrons (i.e. the colourless clusiers of quarks
with parallel momenta within each cluster) are formed in the
small vicinity of the point "O", fig. 2.28, for the scattering
mechanism shown in fig. 2.27 the quarks which were produced at
the points " 01 " far away from each other, get together into
the given hadron, fig. 2.29. The calculation shows ]2.19]
that for the ({ -scattering this mechanism gives the contri-

bution:

4 g -
K%‘fg\nm %Wﬁﬂﬁ Q3w eomt ot I,

while the Born contributions like those shown in fig. 2.24
give: Kt\@/clﬂ??é $-2 {—% « Therefors, nﬁe would sxpect
that the contributions shown in fig. 2.27 will be dominant in
the forward region $ > \Jtl » J“i . Indeed, the PP -scatter-
ing data from ISR (V% = 50 GeV) and FNAL (f, = 400 GeV) at
5 cev2< bl £ 14 Gev? | 2.20/ are well described by the formu-

. la (2.31). Unfortunately, the present theory ie not able to

predict the absolute values of the contributions shown in fig.
2.27. (Por more detalls, see {1.29, 2.19 I ). One can expect
[1.29/ that the fige 2.24 end 2.25 contributions dominate

in the region S~ |E|» N (aue to the much 1arger number
of the diagrams), while those shown in fige. 2.27 and 2,26 are




. -
the dominant ones in the region E£$>{{E§¢ ot The existing using the

QCD sum ruleﬂaand uged for calculation of various

experimental data support thie assumption. exclusive processes, It will be shown that it is possible to
Let us not also that the experimental data f1-34, 2.20| obtain the predictions for a large number of exclusive pro-
?L= 20 GeV, 8 =~ 90° show the large spin assymetry. There cegges which are, ¢n the whole, in sgreement with the experi-
is a number of possible explanatiuvne of this assymetry in the ment.

literature [ 2.21/ .
2.4  CONCLUSIONS

The four main questions have been formulated above in sect.
1.2, the anawers on which this review is devoted to. This chep-
ter answers mainly the question number one - the dependence of
the asymptotic beheviour on the hadron quantum numbers. Our un-
dergtending of exclﬁsive procegges properties is much deeper
now as compared with the level of the "dimensional counting
rules”. At present we understand sufficiently completely the
dynamics and main characteristic properties of the exclusive
proceases, the origin and the applicability region of the "di-
mengional counting rules™., Moreover, the above described method
of Gﬁeratc; expansione givea the possibility to calculate also
the absolute values of exclusive amplitudes, if the informationm
about the properties of hadronic wave functions is available.
The absolute values of amplitudes are, as a rule, very sensiti-
ve to the form of hadronic wave functions and, =8 was shown
above, the attempts to use the simplest wave functions don't
meet with the success, More realistic models of hadronic wave

functions will be obtained below in chs. H,ﬁ, 9 and 40 %Lj

*) On account of the loop corrections, %'\Jx E%dingrnma giv&
the contributions into the scattering amplitude N’L$ f
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