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Abstract

Corrections to the g-factors of the Cs, Fr, Au and Hg+
atoms as well as the amplitude of the 65 = 75 strongly forbid-
den M1 transition in Cs have been calculated. For this purpo-
ge, the relativistic Hartree-Fock equations involving the in-
teraction between electrons and an extermal magnetic field are
used. With such a method, the effect of polarization of the
closed shells is taken into account exactly. The following va-
lues of the correction to the g-factor for Cs, Fr and Au have
been obtained: 8g, =2.54-10"% §g. =33.3.107% ana §¢,, =
= 11.9:10" © (the experiment gives, correspondingly: 2.23(1) Krﬁ
26.5(8) 107%; 9.87(2)+107%), ana Jgyt = 10.2:107* for the
Hg+ (refined value 8.5-10_4].The amplitude of the 65 - 7S tran-
gition of Cs is equal to -0.56 -10™4 Uu‘l (and —0.413(18)*10'4
in the experiment).



¢ Intrnﬂuction

The question on the difference of the g-factor of a atom
with one external electron from that of a free electron was
extengively discussed already in the course of the firast mea~
surements of the magnetic moment of the electiron e Strong-
ly forbidden M1 -transitions in heavy atoms have attracted
attention in connection with the search for the parity vicla-
ting effects in them.

-The mechanism of appearing the correction to the g-factor
is different for light and heavy atoms. For light atoms, only
the relativistic effects should be taken into account 47710
For heavy atoma, the many-body effects mainly contribute to
the g-factor e » In Ref,. T the matter was concerned with
the corrections appeared in the second order in the Coulomb
intersction and in the second order tn a gpin-orbit one,
However, in Ref. 8 the main contribution to the correction to
the g-factor is shown to be appeared already in the first or-
der (n the residual Coulomb interaction (the second order

th the gpin-orbit interaction is, nevertheless, necessary).
The amplitude of strongly forbidden M1-transitions in heavy
atoms is due to the same effecta. The reference 8 also pre-
gents the calculations of the correction to the g-factor and
of the amplitude of the 65 - 75 transition in Cs, using the
electron wave functionsg computed in the effective potential.
The numerical values obtained are about 1.5 times larger as
compared with the experimental ones. In Ref. 6 calculations
were gimilarly made for the cnfrectinna to the g-factor in ILi,
Na, K and Rb.

The present paper deals with the calculation of the cor-
rections to the g-factor of the heavy atoms of Cs, Fr, Au and
Hg+ as well as of the amplitude of the strongly forbidden Mi-
trensition 65~7S in Ca. For these quantities to be calculated,
the relativistic Hartree-Fock equations including the interac-
tion of electrons with an external magnetic field have been
used. Such a method allows one to take into account correctly
the effect of polarization of the closed sghells of an atom and
gimplifies further application of a many-body perturbation the-



ory ‘it the residual Coulomb interaction between the elect-
rons. A similar method has previously been employed for calcu=-
lation of the hyperfine structure (see, e.g., Refe 9 ). The
calculation of the corrections to the g-factors by the relati-
vistic Hartree-Fock method proves to be mere precise than the

calculation in the effective potential 8 .

IT. Calculation of the correction to the g-factor

WL{-H
For en atom ,one external s-electron, the correction to

the g-factor, which is due to the mixing of configurations, is
convenient to represent as follows:

199 =( 0 %= 4[La+285:-2%1 0, D=t >=
=_<z’g’-=%ll'z,j; 7:-."%:)

It is clear that in order to find mg » it is necessary to ta-

ke into consideration & spin-orbit interaction mixing the

state with L = 1 to the state with L = 0, both in the #ra
{.T,Tgtil and the Ket |17 ‘-‘i)veztors.

(1)

All the calculations become considerably simpler if the
spin-orbital interaction is taken into account by an exact so-
lution of the Dirac equation rather than with respect to a
perturbation theory. True, here the correction to the g-factor
will arise as & result of the cancellation of the terms up to
the magnitudes of the order of ( Zw )? (we remind that the
spin~-orbital interaction is proportional to (X4 ¥2 ok,
the charge of the nucleus, and £ = 1/137).

For the Dirac equation, it is easy to write the exact ope-
rator of magnetic moment, but it is more proper to divide it
into two parts: nonrelativistic magnetic moment. Mz =
=~ IMy|(Ls+ 1S2) and proportional to #* relativistic correc-
tions to it, for the convenience in control of the accuracy of
calculations.

We have made use of the Hartree-=Fock method in the froasen-
-core approximation (in other words, in the V'~ ' approximati-

n 10"12}, The sense of this approximation consgists in that on-
ly the electrons from the closed shells are involved in the
gelf-consistency procedure. The states of the external elect-
ron are calculated in the 'frozen' field of the internal elec-~
trong. This method allow one to construct a complete set of
orthonormalized atomic orbitala which includes both the closed
and excitated states.

In this case the Hartree-Fock emations are of the form

Hﬂ' :P= E 'f’
Hf=¢-I'F+(}-1)mc."—ZE‘ QYA (2)
Here .;Z and } are Dirac matrices, N is the number of elect-

rons in an atom, and V'“l= V,{—Vmgis the sum of the direct and
exchange potentials.

(Vo= Ve = EZSY’(”M”JT f,({')_

(=4

sk o w
e | ﬁft)}l’(t_) A7 . (F) 3)

The sum is only taken over the electrons from the closed
shells. Equation (2) is of the same form in cases when the
function belongs to one of the 'core' electrons, or to the ex-
ternal electron. When calculating the wave function of the
electron from the closed shell, we takes into account formally
its interaction with itself. However, the Hartree-Fock equati-
ona are such that, for internal electrons, the direct and ex-
change self-interactions cancel each other.

With the complete set of eigenfunctions of the Hamiltonian
(2), the correction to the g-factor could be calculated, using
many-bedy perturbation theory ' (n the residual Coulomb inter-
ection. However, it is more convenient to find it, including
the magnetic-interaction operator K, M, in the self-conasis-
tent equationza for single-particle orbitals:



(HMe+H ) (p+8y) = (E+TE)(¢+4y) (4)

Here E and ¢ are the energy and wave function satisfying

equation (2), and dE and J‘F/ are the corrections to them

which are proportional to the magnetic field. We have written
”n' instead of K, in order to indicate that lf' ghould

be replaced by ?’ + J‘W in the potential (3). In equa-
tion (4), only the terms linear in SE SPand H Hz
should be retained. If the factor —|mg|HNx/2 is discarded

in the operator NyMy , the energy correction J'E will be
equal to the g-factor. Taking into account equation (1) as
well, we obtain

(E-H)dp=-16y i {J’sr(ujff“%"fﬂozw

iwd 1'-,

| ©- 2]

ou(0) | 2D ] - Sy (5)

Here
= _.Ei.) o
éa = (i+‘?m”£t be
0 O (6)

It is easy to see that in going from the Dirac equation to a
Schredinger one the operator 2; transforms into a usual €,
within en accuracy up to the terms (9/c)¥ (cf. Ref. 13 ). In
equation (5), f’,E JI&P and J'g can also belong either to
one of the internal electrons or to the external electron. The
second term in the right-hand side part of equation (5) is a
correction to the exchange potential Veyxck (see equation (3)).
A similar correction to the direct potential does not arige
because the pseudovector £; is not capable of changing, in the

first order of magnitude, the Coulomb field of the closed
shells. The point is that in the linear approximation a state
with the unperturbed value of the total momentum, J = 0, cen
has only the dipcle moment under the action of an external vec-
tor field, but the dipole moment is a true vector. In order
that the atomic orbitals remain orthonormalized while inclu-
ding the external field, the corrections J‘ff should be or-
thogonal to the functions -}0 themselves.

From equation (5), it is easy to derive

Jg=-1 er @) (D)l - ZEZ ,U PENE Y EHCE 15 4

=4 !E”EI

(7)

Equations (5) and (7) are solved by iterations. The results
obtained is possible to explain in the following way. Taking
into ac-,cﬁlmt the correction to Vexch in the r.h.s. part of
equations (5) and (7) is equivalent to the substitution ui'féb;.r
the renormalized operator w for which these equations take
the form

(H-E;)dy=-wli)

(8)

and
§9: = il wli> .
Here <klwliy= YeEIW.(F)el X . Substituting equation

(8) into the right-hand side part of equation (5), we have the
following relation for the matrix elements of the operator wW :

Cklwlip=-2<kle|i)-

..E_; {<H"wtﬂ><kj“l—;_“ 3 I“i>+{knfﬁbﬂf><ﬁfwlu> (10)

Amy pen Ei-En EH_EJ“



where

Chkn|=2

= | pi> = jw..w.. CE) YD (7

|x-% -7 ,

Thus, the self-consistency of Hartree-Fock equations in
an external field is equivalent to the solution of a graphic
equation (Figure 1) for the vertex operator W (corresponding
to the spproach of the RPA to an exact equetion for the vertex
operator 14’15’16)

When solving the system of equations for the quantities
{kiwlc ) (see equation (10)) by iterations, it is easy
to show what diagrams of many-body perturbation theory are in-
cluded in equation (7) (see Figure 1). These diagrams take in-
to account an interaction between the valent electron and the
core polarized by an external field.

The Hemiltonian H, corregponds to a centrally-symmet-
ric field. In view of this, it is convenient to expand J‘lf«'
in the states with definite orbital and total electron moments

£ and Jf .
"Pﬁhé It (11)

where a:=(ﬂ-i)c+‘”%{'_j‘+i'} » The pseudovector operator can
have the non-zero matrix elements for the transitions with

AJ' = 0,1 and 4 Z = 0,2+ The corrections to the functions with
4€ = 2 are omitted. One can show that for an atom with the ex-
ternal g-electron these corrections contribute to the g-factor
in the third order in the Coulomb residual interaction and in
the fourth (H(Z.t)'ﬁ) in a spin-orbital one. Indeed, the spin-or-
bit interaction operator is the only operator, which can give
rise to the mixing of the states with different values of the
total atomic orbital moment L . However, taking into account
the admixture of the function with the angular momentum £ + 2
to the wave function of one electron with the angular momentum
£ s we thereby take into account the admixture of the atate
with L = 2 to the full wave function of an astom with L = O.
The firsi-order spin-orbit interaction can change L only by

unity. For this reason, the admixture itself of the state with
L. = 2 to the state with L =0 appears only in the second
order in the spin-orbit interaction, whereas the presence of
this admixture has influence on the energy (since ﬂrg ig, as
a maiter of fact, the atomic energy in a magnetic field) in

the fourth order only.

For the wave functions of electrons with /Z #£ 0, we thus
have two corrections for each: diagonal over J' and non-dia-
gonal over j (with j'=2€-;j ). For s electrons, there is only
one j=diagonal correction. The corrections to the wave functi-
on and to the g-factor as a funciion of the projection of the
tctal electronic ungular momentum M are given by formulae

L TRV Y ;
S}bnx- (1) (—mﬂ‘ ““) T Eé’?(’:}_ﬁf}'im (1)

Sgum ey (L51) %

(12)

g —
Here ..ﬂ-="(€*ﬁ)u'2 and J is a spherical spinor, ;Er-t/'!.

Reference /9/ where the hyperfine structure (HFS) of the
levels in Cs and Fr is calculated presents a more complete
description of the solution of type-(5) equations. To find both
the HPFS constants and corrections to the g-factor, one needs
to congider an interaction between the electrons and a magne-
tic field. In the first case, this will be an inhomogeneous
magnetic field of the atomic nucleus, while in the gecond case
this is a homogeneous external field. Therefore the angular
dependence of appropriate corrections to the wave functions
and the form of an equation which is satisfied by their radial
components practically coineide in both casges.

As hag already been mentioned, the correction to the g-
-factor, calculated according to formula (7), also includes, in
addition to the zero order (-2§y*& yd®r ), the chain of
many-body perturbation theory diagrams. When calculating the



HFS constant, making allowance for a similar chain of diasgrams
leads to an insignificant refinement of the value of the HFS
appeared already in the zero order. Unlike the HFS, there is
no contribution to the anomaly of the g-factor in the zerc or-
der (i.e. without the residual Coulomb interaction being taken
account). In our case of the atom with one external s electron,

yté ydie =0 , and, hence, the effect under dis-
cuggion occurs while taking into account the second term in
the r.h.s. of equations (7) and (5).

The first-order correction to the g=factor in the Coulomb
interaction (which have been calculated in Ref. /8/) is possib-
le to find according to formula (7) if when calculating the
corrections to the wave functions of elecirons from the closed
ghells we do not perform the gelf-congistency procedure (i.e.
take into account only the first term in egquation (5)). The ma-
trix elements of the operator 2; between the wave functions
of the states with equal Z and j , and with different
principal quentum numbers # and ' are equal to zero beca-
use of the orthogonality of the radisl wave functions. In view
of this without the gelf-consistency being taken into account,
only the j-nondiagonel correction to the wave functions arises.
The first-order correction to the g-factor in the Coulomb in-
teraction is as follows (Ref. /8/):

N-{ o= -~ : ot ¢
J’fuﬂfzz Chl e | po<ip |z kid

k=1 Jl»l'ﬂ’ Ek_Eﬂ (13}

where K correspond to the sets of quantum numbers nj £ m
and fuun‘j‘im , respectively, and j'=2£—j . In the first or-
der in the spin-orbit interaction (ujlwm| &|u'j'&m) 4
=—Cnj'tm| | n'y&m)  (Ref. /8/). Making use of this, it
ig easy to ghow that 31 in equation (13) is, indeed, the
quantity of the second order in the spin-orbit interaction.

Table 1 lists the walueg of J‘gi and cpgnp s the correc-
tions to the g-factor in the first order  in Coulomb interac-
tion and after the consistency procedure for Cs, Fr, Au, and
for the Hg+ ion. It is seen that the contribution from the dia-
gramg of the second and higher orders of many-body perturbati-

10

J

on theory (taken into account in equation (7)) is not small
as well.

Let us consider the other mechanisms contributing to the
correction to the g-factor.

FPirst, this is the above mentioned relativistic correcti-
ons to the operator —|pg|( €y+2s,) « The relativistic wave
function is of the form

l{/ - _!__. ﬁ{'t) -E-j.tm
> {'9 ["Ij _Ef‘tﬂ‘ (14)

The. electron magnetic moment is then equal, with an accu-
racy up to (vfc)¥, to ( A=c=4 , see Ref. /8/)

e - br.v. . E-Vx)
H“g=—lﬂ;l(£*25){i—J[3(t)+ v t.f('t)g(t,ﬂdt} =%

Here V(TJ= —'-%Ef-rvaf(’tj

We have evaluated alsoc how the correlation effects influ-
ence the magnitude of the relativistic correction to the magne-
tic moment. In Cs, the contribution to the correction to the
g=-factor, which occurs when taking into account the relativis-
tic corrections to the magnetic moment operator and the first-
-order corrections in the residual Coulomb interaction, consti=-
tutes about 1% of the experimental value of 0‘1 c? .

The correction to the g~factor, which is due to the magne=-
tiec interaction between the external electron % 1 the internsl
electrons, ar{gea*froE the dismagnetic term Fmece in the
Hamiltonian. A= Ae +Ay , where EH and A, are the vec—
tor-potentiale of the external field and external electron,
respectively. The corresponding correction vo the magnetic mo=-

ment of the external eleciron with #Z = O reduces to the

/8/

form
Hotia =_3i_ Lpg o< 25 [a, J‘ "'g‘,'J garntoln | > (16)
2

11



where /¢(?‘) is the density of internal electrons and q, is
the Bohr radius. The matrix element in equation (16) is taken
over the wave function of the externsl electron.

The correction to the g-factor, which is dﬁe to the ex-~
change magnetic interaction, hes been calculated in Ref. /2/
and has proven to be negligibly small.

The values of the relativistic corrections Smf Md’fﬁ;‘-uta
the g-factor are given in Table 1.

Table 2 presents the sums of these three contributions
taken into account, J‘g;,;-r J’gu£+d’?.{.“ y and the experimental
values of the correction to the g-factor for Cs, Fr, Au, and
Hg' It is seen that the computational results are 15-20% lar-
ger in comparison with the experimental values.

As has already been noted above, the correction to the g-
-factor arises as a result of the cancellation of the terms
which could be a possible reason for the increase of the errors.
In the corrections d§wl and d9uia , caused by the relativis-
tic effects, the small factor «* 1is separated explicitly.
Substential cancellation occurs only when calculating the cor-
rections J‘S’; and J.?HF caused by the many-body effects. If
this cancellation is made sufficiently exactly, the result
should depend, in a definite manner, on the fine structure con-
stant: é\g“ J'gﬂpvfz.f)"’ . Changing the magnitude of the
parameter o , we have the possibility of checking the accura-
¢y of the calculations being made. This check has been made
anqmgne can affirm that the difference between the calculatio-
nal,experimental results (Table 2) is determined not by the er-
rors in calculations but by the not-being-taken into-account
contributions to J? in the gecond and higher orders in the
regidual Coulomb interaction (see, e.g., Figure 2). It is seen
from Table 1 that the corrections to the g=factor, which are
due to the correlation effects, are rather close, for Aun and
Hg+. The contributions, which are not being taken into account,
may be expected to be also close, for these two cases. With
this argument taken into consideration, we obtain the refined
value for the Hg' ions

12

3 =8.65-107
g”ﬁf (17)

ITI. Amplitude of the 6s-7g transition in
caegium

To calculate the amplitude of the M1-transition, let us
analyse the interaction of an atom with an external periodic
field:

N (eu%f-t- e L.i“‘:“)
3 (18)

The influence of this field gives rise, in particular, te the
polarization of the closed shells. In the K*1 approximation,
the electrons from the closed shells are unaware of the exisg-
tence of the externaui electron at all. For this reason one can
assume that the 6s-T7s transition proceeds in a purely single-
-particle way, and the influence of the internal shells redu-
ces to the fact that the field (18) is complemented by the in-
duced field of the core.

To determine the closed-shell polarization effect, we will
use the 'time-dependent Hartree-Fock equation' method f14’15’16{

The wave functions of electrons will bhe gearched for as
followa:

i o
E a b

f-l- TY(x)e

(19)

5{/'&): ¢(r)+X(x)e

where /‘K(‘t) and Y(’T-) are the corrections to the unperturbed
wave function, which are proportional to the weak external
field. The Hartree-Fock equations then take form

13




[Hzﬁi(e’%’ﬂ e }+H ](mee‘i""’ Ye %f)z-
=E¢+ (F_+MJ);C€. 3 -i-(E w,]']’eTh! (20)

Here H‘: is obtained from the Hamiltonian Ha with the
substitution of tf?’: for ¢; in the potential (3). From
equation (20), remaining only the first-order terms in the ex-
ternal field, we obtain _ j

(Evw-H)E=-bep-F e {Z: () M;H

(a1 2]

wmjﬂﬂi’#m}

F e
(E—w-H.)Y=—E;f'~+2: {Y(UJ.MJ-:% (21)

-4
+ §
(%) ].Z:f”’f L4z o] :
j -]
When deriving vhe ebove equation, we have discarded the com-

mon factor —JJH;[HI
that the total angular momentum operator 3& cannot have the

and have taken into account the fact

nondiagonal matrix elements.

This procedure is eguivalent te the use of a new field,
instead of {18), which takes account of the closed-shell pola-

rization:

o 3

¢ Sy
+w'e n ) (22)

"U”ll Hz (We‘

The matrix elements of the operator w  satisfy the following

relation:
Ckiwli>=-<k|&li>-
(23)

i i {<knt*g—;—aﬂ,w<ﬂwln> (nlwlp> (el
W= 1_;"'?"'{ wt EJM E e L EJM
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]

- The amplitude of the 6s-Te transition in the field (22)
is equal to

=~ [ el Fs|wl6s)= "f“'lf_ {”?ﬁmmuz @ er(F) o

¢=i ~y!

+ = T, = g =~
._E1
The frequency in equation (21) must be taken equal to the
difference in the Hartree-Fock values of the energy: v =
= Eqc—Egs « Just as when calculating the correction to the
g-factor, equation (24) make allowance for the series of diag-

rams of many-body perturbation theory and among them there are
all the first-order diagrams in the Coulomb interaction.

The transition amplitude in the first order in the Coulomb
interaction equals M, = -0.432*10’4‘ Uﬁ;] , and Myr =
= -0.641-107% | Ms] after the consistency procedure.

The Mi-amplitude (24) is very weakly dependent on the fre-
quency at what equations (21) have been solved. This occurs
becauge the transition frequency w is much less than the
energy of internmal electrons E , entering into equation (21).
In additicn, for the 6s~Ts transition in Ce, the linear term
in the expansion (24) in powers w/E 1is strongly suppressed
because of the cancellation of the corresponding linear terms
in the expansion of the first and second terms.

The relativistic correction to the Mi-transgition amplitu-
de is of the form /8/ ( fi=c =41 )

Mree = ff‘;{(f’ *251){_‘&?:. ((E V(’t)) 2 o+

+ (E.~V(2) yltﬂdz-t- )j(f?; fi)witsqft} (25)

Por the ftransition under consideration, M 1et = D.DGEWD’%&[
The contribution from the diamagnetic corrections is calcula-
ted according to formula (16): Muia = 0.019-10'4}_}'15[_

15



The total amplitude equals

M‘-*-Hupi-Huf+Ho{.‘u=“‘}*$£a'iﬂﬁéfﬂd (26)

The experimental value is the following:
M=-(0.41214 +0.034)-j07% IJH;I 55
M=-(0.369%0.024)-107%| My | **

=~ (0.41320.018)-/07% ) py| 22

IV. Conclugion

Following from all the calculations presented in the pa-
per, we can say that the value of the correction to the g-fac-
tor in heavy atoms and the amplitude of strongly forbidden
M1-trangitions are both determined by the effeect of closed-
-ghell polarization in an external field. The largest contri-
hutinnim'ﬂgand M1 comes from the diagrams appearing in the
first order in the residual Coulomb inter:ztion and in the se-
cond order in the spin-orbital interaction (comsidered in Ref.
/%/)+ However, taking into account the second- and higher-or-
der diagrams in the Coulomb interaction, which enter 'core'
polarization, proves to be significant, too. Unlike the light
atoms, purely relativistic corrections have little influence
on the d¢ and M1 _amplitudes. The comtribution of the
not-taken-into-account higher-order correlation effects to

J’? s Which explain, in our opinion, the discrepancy between
calculation and experiment, should be at a level of 15-25%.

Thus, the relativistic Hartree-Fock equation method in an
external field allows one to obtain relatively easily the valu-

es of J?’ and M{ , which are in rather good agreement with
the experiment.
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‘Fig. 1. The cross denotes the matrix element of the opera-

tor - 2£€;  and the black point denotes W . The
index n numerates the states from the cloged ghells
andpﬂtands for the virtual excited states.
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Fig. 2. Some of the diagrams we do not taken into account
when calculating the correction to the g-factor,
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