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ABSTRACT

The P- and T-odd nucleon-nucleon potential in the Kobaya-
shi-Maskewa gscheme is found. In the shell model analytical
2xpressions for T-odd nuclear multipoles are derived. The elec-
tric dipole moments (EDM) of nuclei exceed the neutron EDM by
2-3 orders of magnitude. The EDM of a number of atoms and mo-
lecules are calculated. The possible experiments on the search
for the T-invariance violation are discussed,



I. Introduction

Although the T-invariance violation [1) was discovered
many years ago the decays of neutral K-megsons still remain the
only physical phenomena where this effect was observed. This
explaing a great interest to the search for the electric dipo-
le moments (EDM) of elementary particles, one more possible
menifestation of the | -invariance violation [2] + The experi-
ments, being carried out by several groups for a long time
(see, e.g., the review [j]}, have led toc the bounds on the neu-
tron EDM, the mogt stringent of them being [4]:

ldn /‘3‘ < 4'19_2fﬂm (1)

These bounds have reduced drastically the class of poassible
models of the T -violation.

For the proton EDM the bound considered to be the best
one {(we shall return to its relisbility below) was obtained in
the experiments with the T1F molecule [5-?}. If the recent
calculations [8] are used, this bound constitutes

dp/e < {23 13..4?)-10"”cm (2)

The bound, which follows from the experiment with atomic cae-
sium [9,10] looks as follows [11]:

ld./e|< 5.5 10 “em (3)

The bounds (2) and (3) were derived under the essumption that
the EDM of the Tl and Cs nuclei, which have been analysed in
the experiments, are due to the EDM of the external proton.

It is difficult however to imagine the gituation in which
the EDM of the proton and of the neutron, the strongly interac-
ting particles which easily transform inte each other virtual-
1y (e.g., N= ,-‘3.'.!‘5'J P=nI* ), could differ by several orders
of magnitude. For this reason, the impression arises that ato=-
mic and molecular experiments on the measurement of the nucle=-
ar EDM are of no special interest for elementary-particle phy-
sics.



However, from our point of view, it is not true. In the
present work we show that the nuclear dipole moment induced by
T- and P-o0dd nucleon-nucleon interaction, can exceed the nucle-=
on EDMEEan than two orders of megnitude, An additional enhan-
cemeént of the nuclear EDM can arise if the nuclear levels of
opposite parity are anomalougly close. The latter circumstance
has been pointed out for the first time in Ref.[12]and discus-
ged in detail quite recently in Refs.[h,131. However, in our
opinion this additional enhancement factor can hardly exceed
congiderably 10 in stable nuclei. The enhancement of nuclear
EDM indicated above drastically diminighes a gap in the sense
of available information on the nature of CP-violating inter-
actions between the spectroscopic experiments carried out al-
ready and neutron experiments. The possibilities of further
advances in atomic and molecular experiments are also discussged
in this work.

2. P- and T-odd nucleon-nucleon potential in the Kobayashi-
=-Maskaws model

The progress of the renormalizable theory of electromag-
netic and weak interactions provide us with & natural frame to
describe CP violation. Two schemes ¢of the kind are discussed
most intensively (we do not touch here the models based on
grand unification or supersymmetric theories). In one of them
CP-violation arises in the Higgs sector of the model [34, 151
and in another in the fermion ane[}ﬁ]. As regards the most po-
pular version of the model of the first kind suggested by Wein-
berg [15], the neutron EDM following from it [17,18]

d- = =940 g tm (4)
formally contradicts alreaay the bound (1). There are also in-
dications that this model contradicts also the valuesiGP vi-
olation parameters of ."(',_ -+ 27 decays [19, 20]. Therefore, we
congider P- and T-odd nucleon-nucleon potential in the scheme
of CP violation of the second type, the Kobayashi-laskawa (KI)
model [16]. In Refs. [21, 18]it wes shown independently thai the
principal contribution to a neutron EDM is given by the effec=-
tive operator of the quark-quark interaction
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described by the Diagram 1 of the "penguin" type [22] (the da-
shed line refers to the gluon),.Here G=1n'5nfi is the Fermi
weak interaction constant; for the KM m&triéiand its parameters
we follow the convention adopted in Ref. [23], taking

Seh - e 33C, ~ I0-° « For the strong interaction
constant the value o = 0.2 is taken. The correction factor

A which allows for the short-range strong interactions is
equal to 1.3 provided the gluons with virtuality from M2, to
Me are taken into account; if we go down to M ~ 0.2 GeV, A
emounts to 2.5. This operator is gingled out since it contains
right-handed currents, their matrix elements being enhanced
considerably (see Ref, [22]), Moreover, cancellation of ¢~ and

C -quarks contributions in the limit my = Me leads he-
re to the factor &n (ijmf},a» 6 instead of the usual one
(m2-mi)/ m., ~o 4 S

The neutron EDM magnitude in the KM model at A=1.3 1is
equal to Ligj

-32 '
dﬂ 32':!‘0 e .&m, (6a)
while at A = 2.5
_.32
dn =440 e ¢m (6b)

The latter values o, and A are used in the present work. The
greater prediction for the neutron EDM aL-v10‘3D e.cm, obtai-
ned in Ref. [21] is perhaps overestimated [24,25] .

While constructing the P- and T- odd potential with the
help of the operator (5), we retain only pole graphs, avoiding
thus at any rate the geometric suppression factors of the type
1fjr1 arising in loops. The simplest diagrem of the kind is
presented at Fig. 2. The CP-odd vertex denoted with the symbol



® has to be pseudoscalar since just in this case there ari-
ses the enhancement of the matrix elements of the operator (5.
due to right-handed currents.

Then the (P-even vertex O must be scalar, S—-wave one.

By meens of the standard factorization technique the
pseudoscalar part of the matrix element <pK I HIn>
can be reduced to the form

6: 4 P mg zm m’ (1)
= " fg L/ FJ r‘;q K.)
Here f-'ﬂ = 165 MeV is the constant of K= M 4 decay,

g-‘-t = 1.25 is the renormalization constant of axial current,
and for the quark current masses we take the values M=
= 150 MeV, M = 7 uev, My= 4 MeV. With the same technique
the calculetion of the matrix element (,/VK ,{H | AN > ;

JV:: P, N , is reduced to the calculation of

K NIdYsd | N2 . The nucleon matrix element of di-
vergence of the isovector axial current

1]

j;; LAY VU -d Y5 d)

leads to the relation
2
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where ‘;‘:'3 = (;’Oj) is the isotopic spin operator.

Due to isotopic invariance the matrix element

('.JVJ"I?B}H e 3"5-.';{,"11.»”) has no J =-meson pole
and therefore in the chiral limit one obtains
KNMIM (Tx U+ d VANV D>=0 (9)

From the formulme (8) and (9) we get

aa {jﬂ/’_"

4#!5’73}6””3’:”5# + Wiy g2 (10)

o Cihpg M. M o
(A/I{ HH«} TJ- gﬂm s M+ My m::_? ".,T.Z;A/ (11)

The gcalar vertex at Fig. 2 can be expressed through the S-wa-
ve amplitudes of non-leptonic hyperon decays. Using the hypo-
thesis of octet dominance we write the S-wave CP-even amplitu-
de of the barion B and pseudoscalar P octets interaction in a
form (see, e.g., Ref. [23] )

ﬂji(psgﬁ) *fSPEB}Jfﬁ?[(pjgg) -(spBB)]+

(12)

8, [(sB)(8P) - (58)(BP)]

Here the spurion S~ (‘Lg is the sixth component of octet,
parentheges mean the trace of a matrix product. The coeffici-
ents A3,4,'? are expressed through S-wave amplitudes of non-
-leptonic decays of hyperons in the following way

= -Eﬂ(z;): ',?j
Ay

Il

E(Z:) =006 (13)

I

-3 e 1
By =R AAZ) -G A(2] ) =orr
We use the phase convention of Ref. [22].

Finally, the effective Hamiltonian of the CP-even S-wave
interaction of K-mesons and nucleons looks ag follows



o= ~C6m (A, (PP)(K*-R") +

T (As= Ay +Rp)(Fn)(k°-R") +

(14)
+ (A, = Ay )[(AP)K =P )K"

Note that since the momenta squared of the J{ -meson in the
hyperon decay (gz-::fnén) and of the K-meson in the intra-
nuclear exchange are small on the hadronic scale, the coeffi-
cients A3’4'? in the expression (14) are close to those of
(13) derived from the non-leptonic decays.

Using the formulae (7),(11) and their Hermitean conjuga-
ted counterparts as well as (14) we arrive at the following
CP-odd Hemiltonian of the nucleon-nucleon interaction

§ 1. (o[- (P43

~ 034 [ [Py n)(7P) + (7 5 PP M

Here ?p is (15)

1f6 ﬁgm ' it ‘--s'_(*fs}
?a =6 g“ mj m;—md H?’ e

The formula (15) was derived under the assumption that
.the typical momentum transfer in nucleus is much 1ess than
mh , 8o that K-meson propagator is (tj' m#_) =~ — m;.uz

The latter term of the formula (15) arising from the
charged K-meson exchange reduces after Fierz transformation
to the following form in the non-relativistic approximation:

8
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Here 5 and 2; are the proton and neutron spin operators,

p and ﬁi are the initial and final momenta of corregponding
particles. In this and following formulae for the sake of sim-
plicity we have omitted a factor mi-r /(M:I—?'t)
leading to non-locality of the interaction in coordinate gpace.
Neither in the usual nucleus where in the ghell model the an-
gular momenta of all the nucleons but the outer one are compen-
gated, nor, say, in the deuteron where the total spin is fixed
and is not affected by the dipole moment operator, the interac-
tion (17) does not work and, hence below we do not consider it.
Curiously enough, in the case of P-odd, but T-even nucleon-nu-
cleon interaction'the exchange term with the similar TLorentz
gtructure proves to be esgsential.

Among other possible mechanisms leading to P- and T-odd
nuclear forces in the K M model e have not been able to find
anycmetxnpmﬁngsuccesqiglly with the K-meson pole exchange.
Just this interaction, use below rewriting it in the form

,fi‘;,z [(FY5P) (ﬁ s ][(PP)+ 1.34 (AN)]
(18)

omitting in the formula (15) the exchange term.

In the heavy nucleus the P- and T-odd interaction of the
non-relativistic nucleon with the core is described by the
following effective Hamiltonian

A

T e A D
H= 7 2m e¥ £LT) (19)



where & is the nucleon spin and [ is the total density of
the core protons and neutrons. This phenomenological form of
the intermction is not gpecific to any definite scheme of CP=-
-violation at the level of elementary particles andis thus of a
quite general character. In the KM model, of the prime inte-
reat to us,

1= In = 4:(1.39 - 034 Z/A) (20)

where Z is the nuclear charge and A is the atomic number.
Numerically, at Z 2_;4'3

‘?P:F?n = -081-10"°% s

One should, however, have in mind that the KM model pre-
dicts perhaps the smallest values for the constant ? and the
T-odd multipole moments.

9. The electric dipole and maegnetic quadrupole nuclear moments
produced by P- and T-odd nucleon-nucleon interaction

The gimplest P- and T-odd characteristic of a nucleus is
an electric dipole moment (EDM)

=ef€"§_}3("f)d’32=6{§—~ : (21)

where § > is a charge density correction induced by the D-
and T-odd interaction. However, when the neutral atom or mole-
cule is congidered as a system of point-like particles with
Coulomb interaction, its total dipole moment vanishes, despite of
the presence of a nuclear EDM, by virtue of the well-known
Schiff theorem [?6] (the detailed consideration of issues re-
lated gee, e.g., in Ref. [ET]). Nevertheleszs, in the same work
[26] it has been noticed that this theorem is violated by tna-
king, in particular, finite size of the nucleus into account.
Then it was shown [28], that just this effect mainly causen
the violation of the Schiff theorem in heavy atoms and moleccu-

10

leg. The Schiff ‘suppression leads to the following form for
the P- and T-odd nuclear potential

SP(R)= ef’f[""_{"”% f(ﬁ)je%fw’f (22)

where P, (%) is a spherical part of the nuclear charge
density normalized by the condition fa"i"ﬁpfﬂ =

The second term in (22) secures vanishing of a dipole term of
potential expansion outside the nucleus in ﬁgraement with the
Schiff theorem. The total atomic or molecular EDM in this ca-
se is merely that of electron shells, induced by the potential
(22). When celculating the nuclear EDM or the potential (22),
in addition to the motion of the extermal nucleon one has to
take into account the nuclear core motion. It is well-known
that even in a heavy nucleus its large mass is compensated by
the large charge. Let Sfb be the T- and P-odd correction to
probability density connected with an external nucleon. Then
the whole correction to the charge density §f  of formulae
(21)and (22) is written as

Sp(E) =93P, " 7 VA(ICED (23)

where ?= 0,1 for a neutron and proton respectively, (?} is
the contribution to the dipole moment of a nucleus owing to an
unpaired nucleon

Ty =[sp, @) 7Y | (26)

The second term in (23) takes it into account that when
the external nucleon moves, the core is shifted also relative=-

ly to the centre of mass ('%: - Eﬂﬂq) which leads to the
change of the charge density '

Po (B-Tp) =5, (F) = £ 27 p01)

11



#ith the recoil effect (23) taken into account, the nuclear
EDM takes, as it should be expected, the form

c?:e(?'- f—)(%’;, _(253'

With the aid of the formula (23) one easily checksthe mu-
tual cancellation of recoil effects in the expression (22) for

I
g)= SR Loeva [Bo) (26)
$¥(R) E?UJE‘-E‘I d*r+2.<z>;g-Lz_ﬂmj

Thus §4 has a simple: form as if the recoil effect were ab-
gent. The potential (26) can be expanded in powers of '/

s9(X)=eq -;jéfr(f)'z,, t, 2,d’T +

(27)

i ¥

- %<?m>]~%?ﬂyﬂdiz} i e

Take into acquunt the relation

Bm 3,, ){ 'Ril':fbm L ‘Bd_ ?(smn 3'{ t8me );{"'Snf bmJBZJ %"L

(28)

The term in the square bracketsisan irreducible tensor of
the third rank (octupole). We do not consider it since the
corresponding interaction brings about the mixing of atomic
states only with high engular momenta so that its contribution
to an atomic or molecular EDM is suppressed congiderably. The

12

dipole remainder in 53’ looks as follows

oy = -~ G 3‘"5%:45’?9»1 3‘“ S(R)

7, - = e*sy’::'”ézrffé?nazhv: S(ﬁf)

i (29)

O = SB[ [, 120 ? - $ctu> 37]-0 12

Here HTP is the Hamiltonian of the T- and P-odd interaction
between s nucleus and electron and '2}1 = é f.ﬂ, *df

is the mean square of the nuclear charge radius. Below we
shall call the quantity Q nuclear Schiff moment,

The T= and P-violating interaction between an electron
and nucleus arises algo due to & nuclear magnetic quadrupole
moment (MQ]E}.II) [‘H]. In the gauge i A = 0, the expansion in
powers of /R of the vector-potential, produced by stationary
current density, has the form

(F)d
-y J 4 i -l{ 4/, 3
M) = }‘F&"/":'flfmﬂ’nmﬁ Il A0 f+. . 00)

The first term of the expansion corresponds to a magnetic
dipole and we have no interest in it. Let us tranaform the se-
cond term taking into account the equation derived from the
current conservation (Ja Ju =0) :

Y, =I3P (jr E(m ?"E’K)d}’*j[)m ?H 2}; fjir?m?xﬂ.ﬁ 2’m ?”] d% (31)

Since )i (mTu? is multiplied by the tensor symmetri-
cal in indices N, M , we replace

13



1
TR —

%(J: T Ly> — .%4(1{ T _J'm e (32)
The expansién of the right hand side in a sum of irreducible

tensor is

: . .
é< (Jl ?m —JMY‘I)?">=ELLMH(Qﬁgtﬂfgf-é:ﬁxﬂj (33)

where Cl( is a vector and ﬁi;kx is a symmetriecal tensor.

It is not difficult to find an explicit form for «, and
from equation (33) '

M

Kn
it - el g3 =i
A = Tfffc'?"fz (34)

o = = [y g iy

3

4

The vector potential .ﬁ is expressed through @ and
M in the following way

1
J. :[;;% (5:e4, ‘égaaj “é’&zn Mmcj % BET{ (35)

The quentity (¢ is an enapole moment of the gystem and
P1 is a magnetic quadrupole moment. For thgﬂguantum gsystem
in a state with a definite angular momentum I

14

e
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me. 21(11*1)1 ""Iﬁ I"-Im 3 T

Comparing (34) and (36), we gee that an anapole moment arises
due to spatial parity violation while the time parity is con-
gerved, and the MQM arises from both the P- and T-violation.
An gnapole moment of nuclei was considered earlier in the pa-
per [29}._1n this paper we deal only with the P- and T-odd ef-
fects.

The electromagnetic current of a nucleon in the non-relati-

vistic 1limit has the form

e WX eH T2 '
= — - : X é 31,

J=am (T T+ 2LV 2
where M , is the mass and the magnetic moment of a nucle-

on in nuclear magnetons. In (37) we have neglected weak depen-
dence of nuclear forces on veloecity.

Subgtituting (37) into (34) we find

z —F =
Mo = 7 $3M(S, T~ 5,8 C ) *

” 2?{Tk{‘1+?” fg‘}> {35}

15-



a) The spherical nuclei

Consider spherical nuclei with & single unpaired nucleon.
Teking into account the T- and P-odd interaction, the wave=
-function of an outer nucleon has the form

qfrm =RP(?)—QI{H1 5 )B Ri (TJ-ﬁ—Igm, (39)

P

(1 is & spherical spinor [30] i JiL == é%ﬂ : p
is a real mixing coefficient. With the aid of formulae (25),
(29), (38) and (39) we find

s g
d=-gmg C(9- P

= pht > —$5<0) o

b
M =2 (e o

Here

LETr2 ZﬁJR,Ri et

Note that according to (40) the MQM arises only due to the
existence of a nucleon anomalous magnetic moment. Quite easily
one can check it using the Dirac equation in the spherical po-
tential. In the case of g non-gpherical nucleus, the normal
magnetic moment contribute to the MQM as well. It is curious
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that by the same reason the atomic MQM induced by an electron
EDM in the central field approximation will contain an additio-
nal amall paremeter - the electron anomalous magnetic moment

o /2F . At the seme the molecular MQM induced by an electron

EDM haes no such suppression.

Using the Hamiltonian (19) one can calculate the mixing
coefficient B and quantities 3>, (7>, for exemple, with
Saxon-Woods potential. To start with, we perform the calcula-
tions in a simple model allowing an analytical solution, such
a calculation being in fact no less accurate than the numeri-
cal one. Consider the motion of an unpaired nucleon In the nu-
¢clear potential L{ neglecting the gpin-orbit interaction. The
shape of the nuclear density P and potential ({ is known
to be rather similer. Suppose that they coincide exactly:

Pal) = U (2) S(6) /U (D) - Then one can rewrite (19) in a

form
= = & Ll -2
HTF-_—?é"'?f{' ; F:?zﬁm 2{{5.)-*"“,2‘_1'0 ?-cm (42)

Correspondingly, the whole potential affecting the nucle-
on motion is equal to

ﬁ=u+HTp=u+§2'v*u:u(F+fz‘) o

Hence it is obvious that the wave-function with H’?’P
tsken into account has the form

Y =WT+¥Z)=(1+FE67) ¥(7) )

.where 'f/("'f) is a non-perturbed wave-function. With the aid of

(44), as well as (25),(29) and (38), we find
o o BN
e H)ﬁI (45)

q = -l ) T - $61]

17



N‘-’%(ﬁ“?}(ZI*J’)éﬁ (47)
where 7Z = J.;"‘Hi 2’25{32' ig a mean square radius of an

unpaired nucleon

1 I:{"'i
(48)

and z is the orbital angular momentum of a nucleon.

The numerical calculation with Saxon-Wood potential and
the experimental data on electric and magnetic radii of nuclei
show that the wvalues “-Z_i and ?;' are closgse to each other and
one can take I = 2'?2 = % R‘a § R=17, A3

: : ¥ :
being the nuclear radius ( ¥ =41 41 f m ) Then

Q = - eg[t: iz | A7 107y (rm)*

Hutxisthat the 6{ and M do not depend on A while Q increases ag
It is interesting to compare parametrically the values of
the nuclear EDM ca( and that of a neutron a/ﬂ . In general it is
possible only for a definite scheme of CF violation. However,

there exist a rather regular factor enhancing d compared with

dn -

d e

L -1
Here the factor ( Mg U &3) ig of quite an
obvious nuclear origzin. The factor 3J7 , being of geometric
origin, arises when d appears in a tree approximation while

18
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a’n only in a single-loop one. An enhancement factor additi-
onal to (50) in the KM model is of gquite accidental numerical
character. In the scheme where CP-violation is caused by @-term
(corresponding contribution to the P- and T-odd nuclear multi-
poles has been considered in the work [13])additionel numeri-
cal factors result not in increase, but in noticeable decrease
of the (50).

As one can see, for the S,&-nucleon (C=o0 , I=44)
the formula (49) yields @ = O. The matter is that we have ta-
oaxs i A g R while according to (46) in this case

f

- §rEE)

i.e. there takes place strong cancellation of two terms. Note
that this is the seame situation as for the contribution indu-
ced by the proton intrinsic dipole moment [EBJ. It 1s clear
that here at the strong compensation the above model, allowlng
analytical solution, provides us only with an-order-of-magnitu-
de egtimate for Q. Of practical importance are 2“.‘}-?"1‘1 and 2(}5T1,
where experimental data are available (see below). The numeri-
cal calculation with the Saxon-Woods potential using the for-
mulae (39),(40) yields

T, = 3 (52)
(s e 240K R Fm) 52

The similar calculation by formula (51) giVEE-hj-w'E. The

result (52) is also of no high accuracy, since, according to
V.B.Telitsin calculations [31], the differemce 7 -~ Z}

is very sensitive to polarization effects and even can change
its sign if they are taken into account accurately{with the
Saxon-Woods potential, (’-E‘I"" ?'; ,}/":’;- =0 13

while Ref. [13] gives 0.07%0.13).

As regards the other nuclei, numerical calculations with
Saxon-Woods potential show that the accuracy of formulae (45),
(46),(47) end (49) is ~ 50 per cent. Since this ancuré.e;,r is
comparable to that of a shell model, the further refinement of

19



the formulae (45)-(49) is reasonable only together with taking
into account the many-body effeecte in a nuecleus. As the nume-
rical calculations show, the corrections -~ 50 per cent can
arige from non-locality of the nucleon-nucleon T- and P-odd
interaction ( A ¢ ~ 4/m T .

According to the formulae (46) and (49), in the shell mo-
del for nuclei with an external neutron (¢=0 ) the Schiff
moment Q is equal to zZero. Due to the core polarization, for
g neutron ?-- 0.1, so that Q does not vanish in this case too.

The numerical values of  , , M for some nuclei are
presented in Table 1.

M

b) Non-spherical nuclei.

The non-spherical nuclei are known to have opposite parity
levels close to each other, This fact results in enhancement of
effects connected with the usual weak interaction. The possibi-
lity of enhancement of the EDM of non-spherical nuclei due to
the ground state being accompanied by a close level of opposi-
te parity with the same angular momentum has been pointed out
for the first time in Ref. [12] and discussed quite recently in
Refs. [8,13]. Unfortunately, among the heavy stable nuclei the
choice ig scarce., Actually, there is ¥y with a level

| 5/2 T >  being 25.7 KeV sbove the ground state [ 5/2 ¥ >,
and also 23THP (the ground state [|5/27 > , the excited
one I-"-.!:L i T s AE = 59,5 KeV). There are some mMOre nuce
lei with AE ~ 100 KeV (123Eu, 17%gq, '®3py, 233U ). at first
sight, one can expect a significant enhancement of the effects,
as compared with spherical nuclei where AL ~ 8 MeV. Ho-
wever, the enhancement factor for the nuclei listed can hardly
exceed considerably 10.

Por deformed nuclei the calculation is carried out in a
"frozen" frame (rotating together with a nucleus). The transi-
tion into laboratory frame is performed by the formulae

J d J

el e e N Bl vl

s,

— —

y
Mt =5:1 23+ 3 Maz (53)

We take into account that in the ground state of a rota-
tional band J=f]l , f] 1is an anguler momentum projection on a
nuclear axis. The quantities dz ’ QE . MEE are the com-
ponents of respective tensors in a frozen frame, the axis Z
is directed along the nuclear axis. The contribution corres-
ponding to a nearby level is equal to

7o g STl | AL T LIS
- IR

(54)

where T = 6{2 ’ G?z s M ZZ is an operator under consi-
deration, [f ) is the ground state and |[fL ) is the state of op-
pogite parity. The calculation of matrix elements in the for=-
mula (54) has been carried out with the Nilsson one-particle
oscillator model., Unfortunately, matrix elements between nea-
rest levels are small and calculations are quite unrelisble.
For example, the calculated matrix element <?’z+ f d’; 1!5}2,->
ig five times less than the experimental one derived from the
lifetime of a [%/3 ") level of 1611]3. The matrix element

(_,."1_,1' H“TP ,"_172:. > turns out to be also strongly dependent on
the choice of parasmeters of density distributjon f in Hemil-
tonian (19). Only the matrix element < A 1 Maz bl

being not small, can be calculated reliably. There are regular
reagons of suppression of matrix elements of d:! > 92. 4 HTP i
Firgt, the angular momenta I ’ If of components dominating

 in the Nilsson functions of anomalously close gtates differ

from each other by two units and therefore these components
are not mixed by the operators listed above. Second, for the
operator HTP there 1s a specific reason for the suppression
connected with its spatial structure. The similarity of a sha-
pe of dengity and that of poitential occurs in- -non-gpherical
nuclei as well. Therefore, when spin-orbit interasction is
neglected, the approximate formula (42) is true:

HTP ~ ? VU = n ,;.-‘,_f fﬁ', H.] - , Where
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Hn P /am + Uu is the one-particle Hamiltonian, for the deformed nuclei our calculations are only an-order-of-

ARECELORY AN T IR -magnitude estimates of d . G and H values. They pro=-
bebly can be improved using deformed Saxon-Woods potential.

¢) Light nuclei: 2H, JHe

CONHpp I L > 25N ([2F H]ILY o
The binding energy of deuteron is relatively small,

(55) Ex -2 MeV. Therefore, the wavefunction size is much greater
than the radii of both strong and weak (T- and P-odd) interac-

gV

o ; _En_

' tions. A non-perturbed wave-function outside the range of nuc-
lear forces is
i -£7
=X, = £
Y =A it = (57)
In & similar fashion the reason for anomalous suppression of
£ 0l 0?2 [ N1 calculated by the Nilsson oscillator model
= MWi(x+y2)
can be tinderstood. Really, if U = < =1 *
m wi 22 = 5 ' .
+ _—Jf_ then where 2€ = |{ImiEl and Xs is the spin wavefunction
. : (S=1). With - and P-odd interaction (18)-(20) taken into ac-
By B U _ LA € [ ] (56) count the wavefunction in the outer region is
dz Elzi‘. mm; 22 T muw, PEJH" - 25 e
1 k(f.-;[i ~3’_fg@af7;3p“ﬁ@n)?]w (58)
Consequently, < (L | dz LiL > is proportional to the
small difference of energies E.i'[ - EI‘L- as well. PR o=
where (I is the nuclear forces range, & » 3" are Pauli mat-
Thus, applying the formulae (55),(56) literally one ob- rices for a proton and neutron and ¥ is a dimensionless nume-
tains, according to (54), that the contribution of the anoma- rical fector. In the K M model, ?.{ - 34? , Ha=—Fo
o [ ] - a L
]:ua.'jr ci:si state to MEE and C?; has no enhancement, and _ The formule (58) can be derived under various model assumptions,
or d, 8 even suppressed. In fact, it is not true, since for example, for square-well potential. The ¥ parameter de-
the spin-orbit interaction cannot be disregarded and there is pends on the model, however, in all the cases considered Y~ 1.

no complete similarity between potential and density shapes. Note that no suppression of a wavefunction correction arises

The numerical calculations in the Nilsson model lead to the from the smell binding energy of the deuteron. With the help of
following conclusions. The enhancement of af and Q as compared (58) we find

with spherical nuclei iz abgent when calculated values - 3’-36

{notds WL D are used. However, with experimental 5{ = 37124 (?j i ?z)
valueg in use the EDM in 16 Dy turns out to be 5410 times en-
hanced (in EjTHp the experimental value is two times smaller Q o (59)
;;1;.1’1 the calculated one). The magnetic quadrupole in is{ny and M i '&_(ﬁ.ﬂ f-{ 1-/‘{" 72)}_“%
Np turns euttobe exhanced by sbouten arder of maegnitude. The cal- | 16 /2d r

culation results are given in Table 1. We stress once more that

22 ' 23



where M, , M, ere magnetic moments of proton and neutron in
the nuclear magnetons. The numerical values of o , ) and M
at a = i Fim are given in Table 1. The values of o and
M are seen to be practically the same as_in heavy spherical
nuclei, In the same Table 1 estimates for ’He are given which
are obtained by meens of formulae (46),(47).

4. Blectric dipole moments of atoms and

molecules

a) One-particle metrix elements between

electron-states.

The Hamiltonian of interaction of an eleeciron with a mag-

netic quadrupole field (36) has & form

A
HM 41[2T-1)

Emi = Irm R P ‘%-Sxm I(It{)

- o
Rl °[F" ¢, 0k T

im,( ﬂmg
(60}

Hmu ol

Here I ig the nuclear angular momentum, P(.,,., ig the Dirac mat-
rix for an electron. The matrix element ef HH between one-elect-
ron states is equal to

emMs
I(2T-1)

#

(Y TH =3

me <-ﬂ-gl€gm ”K"-gx”m‘ 2 (2;?‘-) Hkﬂm ,'n"i> (61)
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r

*

b}

where (] is a spherical spinor corresponding to a total elec-
tron angular momentum J = ’f/’z « The radial integral
can be calculated with the help of quasiclassical wavefunctions
given, for example, in [2?}

. 222
$=f‘§"z(ﬂj}*ﬁj’x)ff? & XE:WRH

(62)
£, 2, 96(%+2,-2) (Uit i

X =% %) (o-igr2) Ogti#3) it
= Gyt 2 Ogtlat (1= tar D POG*H72)

(Gatia-2)1 Ly, - ¥3) (53 3% *3)

. + - 3 1
bassii 2% vt yoledlt BT v hp WO =Y
QB iz the Bohr radius; -F . are upper and lower radial
components of the electron bispinor, Z  is the atomic core
charge and Y is the effective principal quantum number for an
external electron ( E = — Z} Ry /v* 5 R#’ ~ 88045 ).
The relativistic factor R, is defined so that R, =+ 4 :

at Z4 -0 . In the most important case of the S - F3,
matrix element, the numerical factor X =-2/3 ,
RH (Z:;f): .’{3 . RM(Z=3§}=J'.3’, In a gimi-

lar way the calculations are done for the matrix element of in-
teraction of an electron with the scalar T- and P-odd potenti-
al of a nucleus (22),(29). Here one has to take into account
the mixing of the S- and P- waves only since for higher angu-
lar momenta of an electron there arises the suppression

~ R Z/Q'S , R is a nuclear radius. Using formula
(22) we find

42Z2Z%€ Ry

r
e

The relativistic factor RQ is different for the P, -
and Pg, -electrons.

S| Hpp | P> = (65)

O¢ng 17N,



a8 <2
G ff)’!!zxp 42

ﬂfl (F(E'a;fi"f.f)]z

Tty =3 (66)
R e 48’ o

3, r’(ia;f; )2 B;a +1)

The formulae (64),(65),(46),(47) enable us to compare contribu-
tionz of Q and M to T= and P-odd atomic mement.s

(S| Hyp P> mem %f R ﬂ*ﬂhm_zﬂg@ Re . (61
<5l HHI'P> Ry _R:

Me s M are electron and proton masses. At I > 44 the coun-
tpibution of the NQM is seen to dominate. Only for atoms with
heavy sphericel nuclei ( A >2100) the contributions of
the Shift moment end MQM become comparable all the more that
Rg has steeper growth with Z than 'QH (at Z =81, R,&=
= Ty R;,f By RH = 1.8). As regard%;innspherical nuclei,
their MQM contribution can be enhanced fan order of magnitude
(gee sect. 3b).

b) Induced dipole moment of atoms

Note immedimtely that the nuclear MQM only contributes to
EDM in the systems with an unpaired electron angular momen tum.
The reason is that even withan external electric #ield & switched on
(it measures EDMj the magnetic field #{ of electrons does not
arise in an atom with zero angular momentum (it follows from
T-invariance that cannot be proportional to E )« Conse-
quently, the nuclear MQM does not affect the system state. At
the same time, the mixing (65) connected with scalar potential
of & nucleus does work in systems with closed electron gshells.
The latter is of particular importance for molecules where
electrons are usually paired.

At first, consider the EDM of a caesium atom. All the ne-
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cessary calculations have been performed in fact in Ref. [11]

(see also [iTJ) where the atomic EDM induced by the proton EDk
hes been calculated

dfﬂj e = Mme 2L R, Casep RZ :
s 15 (3}5 %p P bpEes |_ 45
28
() :
1 16 Q Z*(Ruy ¥ 2Ry, ) Uisep R (68)
g ] 3
% (hs %)"* BB
28

Here ?ésﬁp is the radial integral for the E1 amplitude in
Bohr redius units. The upper number in the curly bracket cor-
regsponds to the atomic total angular momentum F =T+ f: 4
(and is independent of I), the lower one to F = 3. The calcu-
lation by the formula (68) with M and Q from Table 1 and with
caesium atom parameters from, say, [ET] gives (in units of

.10"%4 cecm): (M) ()
T J =2? » 0{="’t‘9.23 at F = 2

(M)
and c.{ = =4,5, d{ﬁ'n -0.22 at F = 3. Like in the effect

induced by the proton intrinsic EDM, the contribution of d”ﬂ
igs seen to dominate.

From the experimental value {a'fs I < 3.'.7"}0'22 e*cm obtai-
asd Tor the state with F = 41%) we #ind the bouni 19/< 130.

In a gimiler way the calculations are carried out for the
atomic EDM of 133xc in the metastable state fP; 6s? '3}%
(E = 67068 cm_TJ where also the nuclear MQM dominates. The sgi-
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tuation ig different in the Xe ground state where the MQM does
not work. The EDM here arises mainly due to the interaction of
niclear Schiff moment with the externsl 5136 shell. The Schiff
moment défermines also the atomic EDM of thallium, because
for stable isothopes 20°71 and 29°T1 the MQM is equal to zero.
Here the contribution to the EDM is given by a closed 6s° shell
as well as by an external 6p electron. The special interest
are rere eerth atoms due to the presence in their spectra of ve-
ry close levels of nppoaite parity. E.g., in samarium there is
a metastable level 4£€(¥*F ) 54 (?F) 6s ’Fy
(E=14920. 45 em™1 } near to which (AE = 4.62 cm ')
there is & level ¢4 £€ F) 6sé6p(*P) 9(}3 [32] .
This circumstance significantly enhances the EDM of the metas-
table state. One can get its estimate without difficulty, ba-
sing on the calculations for caegium. The effect in samqrium
arises mainly from 5¢ -6p mixing due to the interaction of
electron with nuclear MQM. It follows from the formulae
(62)-(64) thet the numerical coefficient in the one-particle
matrix element (61) in this case is 5#10 times less than for a
3-p transition. Moreover, complex many-body states with number
of gimple components up to 10 (but not the one-particle ones)
are mixing herein fact. And this mekes the effect smaller by
enother order of magnitude. Thus, the EDM of the metastable
state of samarium exceed that of caesium by two orders of mag-
nitude (and not by four orders, as one can suspect comparing
energy intervals). The more accurate calculation using the wa-
ve functions of mixing states from [32] confirms this estimate.
The near level of opposite parity 2 P enhances the EDM
in the metastable 2g-gtate of deuterium: q;** 0.5°10%%pescm.
The principal contribution here is produced by magnetic quadru-
pole and direct contribution of the deuteron EDM connected with
the Shiff theorem violation caused by hyperfine interaction.
The inconvenience of experiment with deuterium is that the
electric field causes the quenching of 2§-level.

The calculated EDM of atoms are presented in Table 2.
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¢) Induced dipole moment of molecules.

In the papers £é8,33,34l it was shown that due to the
amall interval between rotational levels of opposite parity
the effects of T- and P-invariance violation in ﬁolar molecu-
les are considerably enhanced. At first, consider the diato-
mic molecules with paired electron angular momentum. As we ha-
ve already seen, the nuclear MNQM does not work here, and the
molecular EDM in the stationary state arises due to Shiff mo-
ment.

In order to explain how one can obtain the bound on the
T- and P-odd interaction constant from the experimental data
on the search for the T-invariance violation in the molecule
T1F [5-?] , we conaider a simple model of the electronic struc-
ture of thia molecule. We suppose that the outer electron of
the Tl atom goes to the F atom. The distance between nuclei i=s
Z,= 3.920, [35]. The T1" ion is then in the electric field
g = E/?* i which polarizes the outer shell 6s%, Therefore,
one-particle orbitals become a mixture of 6s- and 6p-states:

twy =fes,w> + g - £ Isﬂ, > + [F 6Py, e>)

R AT 2
B = 66P  _ o (69)

E .~k g'é?

Here Z“Ep is the radial integral and £ . , Egp are
the energies for 1%, The quantities Eésfp s Ce are expres-
ged in units of aa i o= i/ is the projection of one-
-eglectron angular momentum on the molecular axis. With the aid
of formulee (69) and (65) we find the effective Hamiltonian of
the T- and P-odd interaction of the spin of the Tl nucleus

with the molecular axis ¥

_H_ﬂ e Z ZE(R: "'EK%’) Q.ﬂ/
Ry 35 0 o :)3& fa; = 4410 q"?

-]

(70)



The effective charge of T" is Z; = 2, 3£3 = 1,63, Y%p =

= 2,15 { - zfﬂﬂ /yy* ¥ %PES = 2.3, The more accu-

eads to the result 2.5 times less than (70).

Taking into account this circumstance and using the value of
(;Tf from Table 1, we obtain:

rate calculatio

e

3

. r Y " 2 LAt (T1)
H%(Tf‘c)= RV xw:(j_ )fov ?.Ti-*—f}:ﬁ'.fo Y

The index T1 means that we have in mind the interaction of the
gpin of 71 nucleus with the molecular axis. The best of the
experimental bounds on the constant BETi is [?j:

Xy, Ry = ATH (§£42) 107 He (72)

1t follows from (71) and (72) that

II:: « D4 1'06' . {T3)

The estimate (71) is valid for the other compounds of Tl with
halogenes sgince they have analogous electronic structure. In
the T1I molecule, interaction of the iodine nucleus spin with
the molecular axis becomes alsc of importance. We estimate its
value starting from the calculation IB] for the T1F molecule
and taking into account the regular factor of growth with &
from fluorine to iodine: Z* (Ry, +Rs,) (see (65)).

He = - 0.46 10°y & =Ry 2, (T) 7.

1

Xz arif-m*’; (74)

Comparing (74) with (71) we see that the contribution of the
T1 nucleus still dominates perhaps. About the same value asBﬁT
in the molecule T1F (Cl,Er,I) has I%lir1the molecule BiF

(Cl, Br, 1). And probably, ?l’u,, in the molecule NpF is 4-6 ti-
meeg larger due to larger Z and Q of the neptunium nucleus (if
such o molecule exists and has sufficiently simple electronic
gtructure).

4nd at last, on the molecule CsI which seems to be very
convenient from the experimental point of view, Here also im
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the first approximation there is one extra electron on the io-
dine atom and by its electronic wave-function near I it resem=
bles T1I. Therefore, one should expect that &X; has about the
game value as in the T1lI molecule. The same order of magnitu-
de has also X¢g . The largest of two values of the constants
# for the molecules considered are presented in the Table 3.
Emphasize that these values are in fact estimates accurate up
to a factor of 2-3.

Calculate now the T- and P-odd molecular EDM in the sta-
tionary rotational state. The experiment is carried out in a
magnetic field, breaking the hyperfine structure due to the
interaction of nuclear megnetic moment with rotational one.
Therefore one caen write the molecular wave function as & pro-
duct

Iy FE T LD (75)

Z. denotes rotational angular momentum of the molecule. The
EDM in the state (75) arises due to the T- and P-odd mixing of
rotational states of opposite parity by the interaction fﬂﬁ;=

= Rﬁ J?f/_[ .
U o3 g Eal el Hey [ L 1T 1 XTI, [Beklipiry
~dd E - £, :

(76)

= D, 27 KOl

I I : e
7 E -£&.

= ik 1, L{+4) -3
32 ﬁﬂcf TV
I 2(+4)(22-1) (22+3)

Here jﬂﬂﬁg denotes the dipole moment of a polar molecule
in its rest frame (see [35,36]), E, =8/ (£{+41). The formula
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(76) is valid at not too strong electric fields: .awga B -2(t+4).
In an arbitrery field the Stark shift of energy levels can be
found by means of plots of {W;) from the Ref. [37]. The EDM is
maximel at £=0, I,=I'

x R | '
le/ “‘i‘é‘i'@n«' (77)

i1

The numerical values of 5{ for the meolecules considered are
given in Table 3. Due to smaller rotational interval the EDM
of the iodine compounds exceeds those of fluorine ones. Howe=-
ver, at the electric field § ~ 5 + 10 kV/cm this advantage
disappears because the molecular polarization degree does not
practically increase further.

Pags now to the molecules with an unpaired electron angu-
lar momentum. The effect of nuclear MQM dominates here. Take
as an example the 201HgF molecule. The electron stete of this
molecule is 22:. The electron spin in such state, as known,
can be regarded as being uncoupled from the molecular axis.
Therefore, only the orbital electron wave function need to be
congidered in the rest frame of the molecule. We find this
wave function asssuming that one outer electron of mercury atom

goes to F. The wave function of the remaining electron has the
form (¢f. (69))

4 Z
[27’:[65>+ﬁJ6F’>; ﬁ:%# SIS S oay )

Now, considering the expression in the brackets in the formu-
la (61) as an operator, with the aid of (78) we find an effec-
tive Hamiltonian

e S 2L 23Ry f@ncﬁe

__I_____

E:} - €dy ,Qﬂ'yj I(21- 1) <Z{§em“? 5:.;”}”‘2!?:!?‘!1," [Z):

(79)
e ’;“”*M i Budl
® s %, T(Z21-1)
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Deriving (79), we take into account the relation

L2|8,0 Nt S, Nen= 2B, MM Z D= 2885, v, r 35, )

Due to the magnetic interaction between the electron spln and
nuclear one the stationary state has a fixed F Frf .
Using the formulae

Flémgd,, IF>= AFk

: 3 (80)
g = X+ fI(Iw*i)[_X_"_f‘_)
s P ) 3 X=F(F11)-Ia+1) -3,
we pass from (Té} to the effective Hamiltonian
= F W

(81)

' F=1+}

48 Mme Z12UR, 1 ;:

T 2a, e
L g @+4)(1+%,) 2
= F=I-%
T (I+1y)

For Hg+ the parameters Z;‘ ’ 3’;’5 ’ ‘%P ’ ?';pﬂ are practically
the same as for m1* (see the calculation of T1F). We agssume as

for the case of T1F that an answer (81) is overestimated Dy a
factor of 2.5. As a result we find

]

-of F=Z

- ¥ == 3'1041?? :
] 1

(82)

-
h
1=
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The result of similar calculations for molecules BaF and
Bal are given in Table 4. Due to large nuclear MQM of 161Dy
and EBTHP (see Table 1) it can be expected that 2 fe- DyF and
NpO is about 20 times larger than that for HgF, of course, if
thege molecules have sufficiently simple electronie structure.

llow we calculate T- and P-odd dipole moment of molecules
with an unpaired electron spinina definite wrotational state.
We suppose that in the first approximation F is uncoupled from
the rotation, I¥>=[FHR> 14,l;> ., then analogously to
(7€) we obtain

Z
_xby, Fp L4434
s = SR8l T oo
(83)
e " e

SR x’ﬁﬁw_
A= 38 2

The numerical values of 5J are given in Table 4. For molecules
BiO, B4S due to the strong coupling of the electron spin with
the molecular axis the above calculation is not applicable 1li-
terally. Nevertheless for these molecules one can expect for
the EDM the same or even greater value than for HgF

—y
( d ~ 10 5?-e~ﬁyﬂ ). The molecules La0, LaS can be also
suitable.

5« Conclusion

The regular enhencement of T- and P-odd multipoles in ato=-
mic nuclei drastically inecreases the actual physical value of
experiment on the gearch for T-invariance violation in atoms
and molecules. While the gap in experimental bounds on nucleon
EDM (1) and (2) amounts to three orders of magnitude, the dif-
ference in corresponding bounds on the superweak interaction
congtant is only an order of magnitude weaker (cf. (1) and
(6b), (73) and (20a)).

Moreover, just going from T1F to other compounds without
increasing absolute accuracy of the molecular experiment,
the advance by one or two orders of magnitude might be achie-
ved. The dipole moment values of dysprosium and neptunium

34

compounds expected fran KM model (see Table 4) are close tc the  gsen-
gitivity of experiments on the search for the neutron LDV,

Even if diasfomic molecules of dysprosium and neptunium are
difficult to synthesize one might think about their more com-
plex compounds among which there are some volatile ag well

(see [38]}. Remind thet dysprosium has a stable isotope and
neptunium has glmost stable isotope where T-odd moments are
additionally enhanced by about an order of magnitude due to

the presence of cloge Levels of opposite parity in their nuclei.

As regards the atomic experiments, the efficiency here
might be increased by about two orders of magnitude by going
to metastable states of rare-earths, where asnomalously small
energy intervals between opposite perity levels exist., On the
other hand, the obvious experimental advantages of the usual
atomic xenon in the ground atafﬁ?@#ﬁrweight with odds the sup-
pression of the effect taking place in it in comparison, say,
with atomic caesium. lMoreover, the experiment could be perfor-
med with liquid xenon. In this connection, we would like to
drow once more attention to the possibility of the search for
the T-invarience violation by meens of NMR in the ligquid phase.
This possibility was discussed in detail earlier in Ref. l}?_.

Qf particular interest might be the experiments of NMR
type in ferroelectric, where the effective eleciric field ac-
ting on nucleus is not much smaller than the atomic one., In
other words, here the enhancement of the effect of the same
kind as in the diatomic polar molecule occurs.

And &t last, in experiments with superfluid -He in the
polarized ﬂj -phase one might expect that the =DM of jHE nuc-
leus would be measured at the level -~ ?D_?T e.cm LQﬁ]. From
Table 1, this number is seen to exceed by two orders of magni-
tude only the KM model prediction,

Therefore, atomic and molecular experiments undoubtedly
atill heve unexploited possibilities for the significant advan-

ce in exploring the nsture of the CP-invariance wviolation.
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APPENDIXK

Wwe list for reference the quasiclassical formulae used
for calculations of the EDM of ground and metastable
gtates of xenon and thalliuwm atom. In the ground state of =e-
non the electron angular momentum is zero and the EDM arises
due to interaction of electrons with the nuclear Schiff mo-
ment. Assuming that the principal contribution is given by
the 5p6 shell, we find

o

e %9%{&&*293&)2 E&" Rz{

x TRV £

e ns ‘E‘ﬂ}&)s Ens %}_,

For the numerical estimate we have taken FHS“EFP = Eo'f
Vsp ® Yas = 1 v Tspas =91 . Thege numbers are in a

reagonable corregpondence with known polarizability of a
xenon atom. In the metastable state 3]?2 (E = 67068 cm"1) the
principal contribution to the atomic EDM is given by the nuc-
lear MQM if nuclear angular momentum I ~ 13’2. Therefore con-
gider the '2'Xe isotope with I =2/2. The wave function of the
BPE gstate has the form

|3P1 'ja':i;’ = | m;l 3 jf E'iﬂﬁizzj J2 =J;-’i>5

where |31, > is the wavefunction of the 51]6 shell

with a hole in 5 p; ~ state. The E_r_i_n-:ip_al contribution to
the EDM is given by mixing with [3Fs, AT & &P

states. The energies of these states are in the
range 78000- 30000 cm 1,

In the simplest case, when the total angular momentum is
maximal (F =I+4= 7/2) the answer for the EZDN has
the mame form as for the caegium

i =l Ms R
Ae 5
(%s Y,

?Ese_r:: R’H

3y
P ) - Eﬁj?mEﬁi

The numerical value is obtained at “}és = 1,9 Y.
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The experiment on the measurement of the EDM of the metastable
gtate 3p2 had the =same gensitivity as that with caesium

but was carried out, as far as we know, only for the even iso=-
tope of xenon. Therefore, the bound on the constant ¥ cannot
be derived from it. The angular momentum of nuclei EOBTI and
265'1‘1 ia equal to I = 1,!’2, and only the Shiff moment of the
nucleus works here. In the ground state of thallium at

- —T.Ifj =1 the EDM is equal to

de=Yolpfs wan e L,
T¢ 8 [ns () yé%)% Eas™ Eomy,

+ 2 Z ?HF'ﬁS ('E"fz L ‘?‘e"‘fz) K -
3 e
o {.}23 Vﬂp) 2 EHIF- Eﬁj
The sums in this formulas are saturated practically by
6P — 65, ¥S transitions. The necessary values for the parame-
ters Y , F s, T can be found, e.g., in Ref. [?T}.
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i i o sy %(E n)-40¢  Stefn®) 4’ He imys?

el P, dsp 1.2 1.4 1ok

m}l’eﬂ T 0.5 ~0,2 0.5
5 ke P, fae =09 3.0 1.7
B e o e A ol oy
3 Mtf”S‘mq n fy, 0.8 ~0,2 2,3
E ziji Hj‘ 30 ", P, -0.8 ~ 0.2 0.8
i ,205‘7?31 P, Si ShE . >

s p, hgy -1.0 3.8 2.3
%E D n, St .7 ~1 27
g ‘é 23?M133 P, % ) 4 40
£ oo CH, 2 0 |
C
~ é ’He , 1 ~0.1 -

Neutron 5 e 10~
Table 1

Electric dipole, Shiff and megnetic quadrupole moments of
the nuclei. Paremeter i ig a coefficient in the Hamiltonian
of P- and T-odd interaction (19). Presented value of neutron
EDM is obtained from (6b) by means of division by Do (20a).
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o 1334, 131z¢ BBy 147,129 |
State F=3 FF = 4 groundrj c-£l F=1 |E = 1492 &
slale &: 2 ki
24
f.’m (eccm) | - 4.7 2.6 | 0.01 | -0.7 0.3 200

Tabhle 2
Atomie E D N

F | 1 8ir [ 6.1 [ | y1ler [ er
|Z]. 1017 0,6 0,6 3 0,15
_gﬁﬂzo{e-cm} G,9} 7 D,Sj 14 / 30 0,5/ 5

Table 3
Ganstahfrof P- and T-odd interaction of nuclear spin with

molecular axis (gee (71)) and EDM of molecular ground state

BaF |Bal | HyF | HeT DyF ! vl | Jol } Mo
[Z[- 1017 0,6 3 ~50 ~50
Fi%1ﬂzoﬁrcm) 1,5 |15 4 BG'I ~T0 ~500 ~TD/~150

Table 4

E?nstantsof P- and T-odd interaction of angular momexitum

F=14+35 with axis (see (81)) and EDM of the molecules at
F = I - Sj L = DI
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