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ABSTRACT

Amplitude of the ele” — eie“‘”’ process is found in

the main region of scattering angles m/E £ 6; & 1. The result
has a simple form convenient for the calculations of various
crogs sections. Energy .a"lu’/.:;r’r.a..f‘.rr.?"'m{t and energy-angular
ﬁ’ﬂ'fd"k’, du?z 2 dﬂ’/d‘iﬁ’fﬁ’jﬁg distributions of the photons are
found for the case when initial electrons are polarized and
the photon polarizations are measured. It is shown that the
measurement of the mean photon helicities allows one to deter-
mine polarizations of the initial electrons.

*) Sektion Physik, Karl-Marx-Universitat, 7010 Leipzig, GDR

A, Novosibirsk State University, 630090, Novosibirsk, USSR

1. INTRODUCTION

1. The double bremsstrahlung (DB) process is of great in-
tereat for experiments on the ele” colliding beams since it is
used as the standard calibrating process for the luminosity
measurement on a number of the e'e” colliders at Novosibirsk,
Frascati and Orsay. It was suggested and the method of it's
theoretical description was developed in ref.[ 1] where the
differential cross section and photon spectra was found for the
cage of the unpolarized particles. As a rule, it is registered
by coincidence of both photons emitted in opposite directions
at amall emissgion angles &gzrvfwfé‘ where M 1is electron mass
and £ is its energy in the c.m.s. of the beams. The scatie-
ring angles of electrons are also small F3 4 ~ m/E. In the
present paper we consider the efe — eie'J}’ process when the
emission and scattering angles may be larger or of order of
m[E but much less than unit

mlE £ 6,, «1. (1)

Besides the useful application mentioned above DB is a
background for a number of experiments. All that determines the
interest to ..DB both from the experimentalists and theoretici-
ans.

The first exXperiments on DB were performed at e e and
ete™ beams in refs. [2,3} . Barlier DB was used in such a set-
-up when one measured the photon energies Wy and Wz only.
Moreover, the angular dimensions of counters were considerably
larger than the characteristic emission angles ~m[E . Such
a set-up corresponds to the cross section o6 /dw,dw, inte-
grated over scattering angles of photons end electrons. Recent-
ly, in experiment [ 4] one studied not only energy but angular
distribution of photons as well, to be exact, in ref. [4] the
cross section G'G'/dsﬁ? ﬂfwt in the region & £ 12m/F

was measured (here K; is momentum of the ¢ -th photon).

2. Calculations of various cross sections for the unpola-
rized particles were performed in a number of papers [1,5—7] (SEE
reviews [8,9]). The experimental needs demand the calculations
of the radiative corrections fo .DB in ref. [?,1{}] -



On the other hand, in literature there are practically no
caelculations of the polarization effects (cf. ref. [E]}. But
such calculations will be very useful when discussing the pos-
gibility to measure initiasl electron polarization by means of
DB . Besides, the calculation methods used as a rule are ra-
ther cumbersome even for unpolarized particles, therefore, it
is quite desirable to develop a gimple and convenient method of
calculation of DB in region (1). Both these problems have be-
en solved in the present paper.

We obtain analytical expressions for all 64 helicity amp-
1itudes of DB . They have such a simple form that the whole
result occupies only a few lines - see formulae (9, 13, 4).
This allows one to calculate without difficulties the cross
gections dﬂ'/dﬂfdh’g and dﬂ’/ﬂ”ﬁ}dﬁ’; for the most interesting
case when initisl electrons are polarized and the photon pola-
rizations are measured.

Finally, we calculate the inclusive for both photons cross
gection du"fd‘a!{fdjﬁg for the case when at least one of them is
emitted at the angle considerably larger than M/E « This cross
gection is of practical interest for fthe accelerators with high
luminosity. The point is that in the case of a collider with
high luminosity the use of DB presents a problem because of
the background of random coincidences due %o independent emis-
sion of two photons in two single bremsstrahlung (SB) processes.
However, the cross section of SB decreases with the growth of
emission angle of photon sharper than the cross gection of DB
(see refs. [5,9_] ). Therefore, registration of both photons in
the region miE &« 5’;;24:{ can help in suppressing the SB back-
ground.

Our method of calculation is close to that used in refs.
[6,1‘1] , but we made two new steps:a) we present amplitude in
such a form in which dependence on £ and dependence on trans-
verse momenta and energy fractions W;/Ef are evidently sepe-
rated; b) additional simplification is achieved taking into ac-
count & hidden symmetry of our problem. This symmetry is the
reflection of the symmetry for the cross-reaction '{ e g e
under the replacement e’ «> e .

3. The basic notations are given in fig. 1. We use the

centre of mass frame of the colliding beams

P = (E0,0p); h=(606-p); S=4*»m>.

Instead of the photon energies W; , photon emission angles
6,4, (t=1,2) and the scattering angles of electrons it is
convenient to use the dimensionless quantities

-~ — — — -
e Wy po_ o KiL ;}-__ Kee+Fan _ Kay + PyL (2)
P e b S Ll S T R m 3
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Here X; is the fraction of the initial electron energy which
ig cerried out by the [ -th emitted photon (we assume that the
quentities X; are finite at £+°9 ). The ﬁ: vector modulus is
equal to the emission angle of the [ —th photon in the units
m [ :

Ly S AR S GRS S

Vector M is connected with the total transverse momentum of
electron and photon in the upper or lower block in fig. 1a; for
seft photons its modulus equals ﬂ=|93 E/m , where 93 is the
scattering angle of the electron. We show below that the ener-
gy of the virtual photon is very small therefore the energies
of the scattered electrons £; and £, are equal

Ey =(1-%)E, & = (1-%)E. (3)

The DB amplitude depends on vectors ﬁ: in the form of
the following combinations only

= "y n- A, y
‘ 1+ ﬂf 1+(h-h,)2 2 Ll n;‘" 1+ (n- ,':_.:Jz
0 =§(h~hy Fs=-7) R=RI(R+ry A»-h) (4)



Among them the quantity Lf" is symmetric and K is antisymmet-
ric under the replacement*

e g e

¥l Hﬂ—f?f

1 (5)

2. AMPLITUDE FOR DOUBLE BREMSSTRAHLUNG

The DB process in region (1) can be considered as two-
-jets one (see, for example, ref. [131]. The main contribution
to its cross section is given by the block diasgram of fig. 1a
with photon exchange in the ¢ -chennel. Let €; be the pola-
rization vector of the L -th photon and & =¥y, (£;) be
ap:l_nor corresponding to electron with momentwn F and helicity

ﬂml‘tting the terms of relative order of

S U (8)

2 In our paper [1'1] it was shown that the amplitude of the
crogg-reaction n‘- eteTete” {gee fig. 2) depends on the trans-
verse moments of the first e'e” pair in the form of the follo-
wing combinations only

- on Psi R= m ; (6)
- - 4 -
T A P“ e

Among them the first one is symmetric s_:_ld the second one is anti-

symmetric under the replacement FPry *Pir . Using the substitu-
tion rules (see ref. [12])

E.L “f-Ff B B EI'J.
P — X5 Pos = Pay - K= %~ X, S0

we obtain that the DB amplitude depends on quantities (4) which
have a certain symmetry under replacement (5).

one can repregent the DB amplitude M]r in a simple factorized
form (see appendix A)

£
Mg == h 127 (9)
L

where the vertex factors ;{f and j correspond to the upper
and lower blocks in fig. 1a (in particular, :,l, corresponds to
the process of virtual photon Compton scattering, fig. 1b).
These factors depend on variables (2) only, but not on S

?j}’d - A - - ol
J;?ﬁ smx %&[2’@ tod J-ef (44, - P)]H'f (10)
!

where J’J_"'(&'x:!y) ere the Dirac matrices. The expressign for
o can be obtained from (10) by the substitutions {- 5 5
E"‘R ] 1 & 2! 3 R

To prove 2’,; independence of § , one should replace spi-
nors MJ- by two-component spinors }"}J. which obey the equations

- = i — P:‘
a V. = . =
I (o

where E are the Pauli matrices., Indeed,
-j-i-) ﬁp o 4 Ik - -
w= Ve[V, ) T3 > W, = 2E " Vi-x, ry (1,5)

and therefore

7, =z L v’f_x,ﬁ fax) 460 ix5[GeRT, Bl gy | 2

Formulae (10) and (12) are given for an electron, for a posit-
ron g, can be obtained from eq. (12) by the substitutions

=i -
qu_* l?-"-"'f', .?p?.f -2zl Ph.hﬁ_;"'z‘i‘i‘?— « A3 & result, we get
helicity amplitude



=

gf(e:a-ejjg,?): Yrd = f (2= +22 2 %) (N, Gy~ a:;,)
{13)
?z;,.ﬁ? d. S J

I;-f) "Ad }"; 1 }I.f

b

(the quantities f? and R are defined in (4)).
Let us discuss briefly the results obtained above (9-13).

a) When the photon energies are small, X; &{ , our result

J =7 8/awd “—“Jf_ Saf}tj (14)

coincides with that obtained in the approximation of the clas-
gical currents. Indeed, in this approximation the amplitude of
the ee —= ee fJ process in the region of small angles has the
form -

My = umol Ay Ay My s My = 4Ty iy futy gt

A:‘ =(Tfjp_ i Fire )ﬁ,p (15)
[

‘%f¥+£

where Mg is the amplitude of the elastic process ee —» ee and
Ai is the factor of the accompanying clasgsical emission. The
calculations similar to those done in appendix A lead to (at

X; « 1 and with the accuracy (8))

] o
4" mﬁgqi 2 kab)

My=- 3 %.,,E,L}B'&MA ‘"——ﬁ’f

This result is identical to (9), (14). Note that at small ener-
gies of photons My o f/ww, end that the electron heliciti-
eg are not altered.

b) Useful relations take place for the quantities defined
by eq. (4)

-2

§£+1?1= L E‘tﬁ 4 = (4e)
) T (1+7g)[1+ (7+7)* ] Z

From here and from definition (4) one can see that at small h
quantities (4) wvanish

lgLEﬁ{ n at n«ny : ja.f}gv{ n at h<ng (4b)

Therefore, at small q,l we have

g{_ ol i_L {473}

As a result, the amplitude H]r; has the finite limit at§, =0
and the region of small values ‘}i «m gives small contribution
to the cross section.

¢) The photon helicity in the ampliftudes with the change
of the electron helicity is strictly comnected with the helici-
ty of the initial electron A =2}, :

L{e elJ’z;) =Hrd J_—R ?f (9 > € J’i-z.h) GiH)

d) Relative magnitude of the spin-flip amplitude is given
by the relation

[ 9, (2==),)] X IR

| f, (=2 dl e

which vanishes in the soft photon limit (at X, = 0) as well
as in the limit of large angles (at m;'.ir”_,m‘f?-nt? )
L

L a)



3. DIFFERENTIAL CROSS SECTION

Results (9-13) are convenient both for analytical and
numerical calculations of various cross sections. In particu-
lar, the cross section fO0r unpolarized particles cen be obtai-

ned by summing up the squares of helicity amplitudes (13). The-

refore, here there is no need to calculate the traces which
earlier wes the most cumbersome procedure.

Consider now the case of polarized particles. The polari-

zetion state of the [/ -th electron is determined by the pola-

rization vector éi. , its longitudinal component

—ta

- - E-
SR : O — (19)
S5 2. §e 7

where {A;) is the mean electron helicity. Introduce the usual
dengity matrices of electrons

1 =2
G ey el
'P_;uj lF-r"j 2 (f+ adﬂ)

e =

(for the positrons the vector 55 should be replaced by G'%f 3.

The polarization states of the first and the second pho-
tons are described by the Stokes parameters¥;, ; andlﬁglj
corresponding, among them ¥, and Ez is the mean helicity of
the first and sccond photons and the degrees of their linear
polarizations ff and f’z are equal to

E:’ e La"'f.:- b zl N gﬂ' +?31 (20)

\

The density matrices of photons are
¥ e e
i. Ll o~ -~ e
f.:z-tf'zf *%(*"}1@_5.1"5."'}3“3% S =g

When writing down the density matrix of the second photon we
take into account that the natural reference frame for the
second photon coincides with our one after reflecting % and

2 AaxXes.

10
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This cross section (end all ones obtained below) deper_n_d on
the initial electron polarizations via the combinations 2 ‘5‘,

and EL 3, only. Therefore, to find the polarizations of the

initial electrons, it is necessary to measure the circular po-
lerization (helicity) of the photons. The dependence on the
most interesting longitudinal polarization of the beams is con-
nected with the quantities /|; while their transverse poleriza—
tions are connected with the interference of spin flip and non-
£1ip amplitudes. For example, the corresponding term in Uf

equals

- X (1-%) §, i@ R (23a)

This term chenges its sign under replacement (5), it leads to
azimuthal asymmetry of the photon and it vanishes after avera-

ging over azimuthal angle of the photon.

To get the cross section for the unpolerized particles, it
¥ .= ecti-
is enough to put §“’3 = ?-f,z,,.i" 0 and to multiply cross s
on (22) by the factor 2.2 = 4 which corresponds to summing over
photon polarizations. Thus obtained cross section coincides
(after some transformations) with the result of ref. [6].

4, ENERGY DISTRIBUTIONS OF THE PHOTONS

To obtain this distribution it is convenient to in‘te_'grate
UE over E; and then to perform the mtEgration nvez"_!? .
Due to rapid convergence of the integrals over 4, and 7 the
upper limits of integration can be extended up to infinity.
Using formulae (A.11) from appendix A one obtains

.
fU,;d A F, P(R) +[6; + 200-%:) . coszf] vl(z) |

2
22244 _ 4 _ Awshz '
?E’i‘)='f1‘mﬂ¢5}?9} (ffé)-z z—"ﬁzm (24)

12

T

Here fi is the degree of the linear polarization of the [ -th
p}intnn (20) and y; is the azimuthal angle between the *ve:ctnr
n and the direction of the linear polarization of the ( -th
photon. The funection ?(‘E} iz well-known in the =moft photon ap-
proximation; the function Y/2) is everywhere. smaller than ?fe) -
The ratio *ft?)/?(f} is equal to 0.25 at Z =0 and to 0.1 at
2 =1; when 2% 1 it becomes equal to 1/{41112}.

Having substituted eq. (24) into eq. (22) we perform the
integration over # . After integration over angles of the wvec-
tor ¥ the integrals appear

[A, B cf =ﬂf ;f [P), Pl i), v*2)],

As a result, we get

2!
d6 =ﬂ_:£ a:; 1:; [EF 4 +[5;,F£+E;£i)3+ﬂ;6&Cq-z(f-xf}{f—xg)ff:&m!fﬂl

—Z3(3)r 22230 g=Loepy L :
A=y 36+ LB =@ =007 o

= R : =
€ =530)- 2 =00385¢; " 30)=1202,

Here Y12 is the angle between the direction of the li-
near polarizations of the first and second photons, the quanti-
ties F , 0y are defined in (21). For unpolarized particles
eq. (25) coincides with the result of ref. [1]

Formula (25) can be written to within a sufficiently high

13



accuracy (< 1%) in an "almost multiplicative! form using appro-
ximate numerical equality A =~ 8% |
24" d Xg d '

X
g s x: [ELA *z”'“"m'”’-)cﬁ’émzdfﬂj:

de

(26)

'Pq' = F+ B/A =4—11+ﬂ.5?.!f+If(f'E33"f) 3 1.'{]-;,)

B, = £ + 6o B/A= - Ra*O6RK + 5 (1-033%) §, T, Y, .

Tt is seen that in the energy distribution of the photons the-
re are considerable spin effects. Even at Y. £ 1 cross gection
(25) can chenge for yC/A = 13% when the angle J42 changes.

5. CROSS SECTION d o /d’k, dw, |

To avoid unnecessary complexity, we put here § ; = $43 =
= 0, i.e., we only consider in this section the case when the
circular photon polarizations §, and ¥, are measured (it
should be reminded that the polarizations of the initial elect-
rons are connected with these very Stnkes parameters) . Cross
gection can be obtained by integrat:r‘_._ng eq. (22) over 7, and;?' .
The result of thf.-_ integration over Y, is given in (24). Having
integrated over 7 , we obtain

¥
do = 287 o gy A e [ oG frh e o6 d-

n

- x,(1-%) §, ?"? (Fff+63;§)‘] (27)

Here F{ ; 5': are defined in (21) and the quantities a+g are |
repregented by the following integrals

d*n = =
[a,6,c,d,f,q] = L [ 2 [4n, @ 2(Z) n,R*2(F) 2n, G0 (),
: (28)
n R29(7), 4R, GR2E), 27 AR Y (2)],
A11 these quantities are functions of M =f'5’f/m : the result

of the numerical integration over formulae (28) is given in
table. All the quantities a+g vanish at r;f = 0 andhy=+roo ,
all of them have their maxima at my~1 .

b
At N, » 1 the following asymptotic expressions hold (we
use integrals (B.5) from our paper [H]}

3t - 2{-3 o
S =

(29)

f=2(0-2), g-2L5, fbit), nt>

1

These expressions agree with the table data at A 2 4 for

the coefficient a with the accuracy better than 1.5% and with
a little worse accuracy for other coefficients. Thus, for the
coefficient f the accuracy is better than 3.5% at A, 2 Tabe
The coefficient a has the maximum (@)maee = 0,543 at n, = 1.2
In the region M 1 this coefficient is larger then the
others due to the fact that ratios V¥/2)/P(z) and Et/@ are
gmall in this region. Even for 7, = 1.5 the coefficient a is
at least 5 times as large as any of the beg coefficients. Note
that the leading logerithms in & arise from two different
regiong: { < :‘ﬁ'—-ﬁ;)i(c H;' and 1 & F’."t(:: nf , the first region
giving two times as large a contribution as the second region.
For the soft photons the first region corresponds to the case
when the electron with the momentum P, moves cloge to the
direction of the first photon, 6;x  , while in the gsecond

region 5& & 91. .

15
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Table
n=6E| a-10%| b10° | c'I0?| a'10% 2°X0%| g°10°
0.15| 8.24 | 8.01 |1.94 |I.56 | 2.23 | 0.415
0.3 |17.8 |13.8 |4.08 |2.67 |7.50 | 1.38
0.5 |31.8 |16.8 7.04 | 3.26 |14.3 2.58
0.7 |43.8 |I16.2 9.42 | 3.5 |I7.2 3.00
I 0N nois ) TS RS G A (o Tgn ¥ 11503 2.50
1.2 | 543 0 T ol vt i0 S atay HliTp s 1.9
1.5 |51.6 9.13 |10.2 | 1.89 |8.68 | I.29
2 |43.3 6.89 |8.27 |1.456 | 4.77 | 0.708
2.5 |35.2 5.3 | 6.54 | I.II | 2.99 | 0.483
3 |28.7 4.22 |5.20 |0.846 | 2.12 | 0.382
4. 907 2,67 |3.41 |0.497 | 1.32 | 0.269
5 | 14.2 1.75 | 2.34 |0.302 | 0.906 | 0.I88
7.5 | 7.15 | 0.730 | 1.07 | 0.107 | 0.404 | 0.0784
10 4.15 | 0.368 | 0.574 | 0.0478| 0.204 | 0.036
20 0.967 | 0.0633 | 0.109 | 0.0062| 0.03 | 0.0042

Finally, one points out the relation between the functi-

ons as#b and the coefficients A,B,C in eq.(25)

A=nfﬂ"’”f; B=bjga’uf=!“f”f,, C=!dd”f-

16
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The first four items in cross section (27) only depend on
the longitudinal polarizations of the electrons. A azimuthel
agymmetry of this cross section is determined by the last term
which is proportional to (cf. eq. (232))

¢

" - (23b)

E

X (1- %) T

hy

where ﬂ, is the azimuthal angle between .;t:-.”_ and the directi-
on of the transverse polarization of the first electron S'H g
Relative megnitude of this asymmetry is < ’ff.iz « The quantity
f/a has its meximum (f/@),a, = 0:45 &t A, = 0.5 and it
is not small in the region n, < 1 only. Already at n> 2
this quentity is small, J[/g < D11,

For unpolarized particles eq. (27) coincides with the
result obtained in ref.[ ?].

3
6. DOUBLE INCLUSIVE CROSS SECTION o 0'/d’k, d°Kq

As it wes mentioned in introduction, the case has a prac-
tical interest when both photons are emitted at the angles
which asre considersbly larger than m/f , i.e. when H;‘ » 1
and n; >» 1. We consider here a more general case when

.
[Fl'f * ngJ = {‘9,E+5'; +26,6, r.m.ﬂf) Ei¥m® » 1 (30)

where fhf is the difference between azimuthal angles of the
first and the second photons. In other words, our calculation
ig valid when at least one of the photons is emitted at a
large angle, say mE« 6, & { , but €£~m,’£ + As for poleriza-
tion effects, in this section we restrict ourselves only with
the consideration of the most interesting case when the mean
helicities of the photons and the initial electrons are not
equal to zero (cf. section 5 where the effect of the transver-
se electron polarization has been found to be small).

17
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To get the cross section discussed one needs to integrate
cross section (22) over N at condition (30). The correspon-
ding integrals are calculated in appendix B. As a result, we
obtain

Lokt e d*n, dx, d*h, dx ~ % &
2 S oy S (fRarqabeaT6ad)

admt (7 +R,) 1+A% X, 1+RS Ke

G = fnli o) -1+ 250 — e

1'+nf" 1+n,
o ool # 4 7]
b = 4  2{1+aY 2d,
(31)

L ilisl e

rRPYIPELy 2d
L) -- i L
d - (nf+”!.] = 1+ ﬁ?‘

3{4+E!‘J{f+ﬁ: / L &4 1+, 2

The quantities F. , §; were defined in eq. (21). Omitted

terma in (31) have the relative walue . i LI
f/f' ”r*”a] >

For the unpolarized particles in the region Hf »7 eand
- = [ 4
fnf-rnﬂ)q;}f the cross section has a simpler form

18

The main contribution to this cross section is given by
the first term which arises from the amplitudes without chan-
ging electron helicities. When integrating over n , two sym-
metric regions give the leading logarithm: {1« (n- E‘)E{{r‘r};fﬁi)i

and f{.:,-’r?-nﬁ;]a‘f{,‘ﬂ ...F_.;]?' . For the soft photons the
first of them corresponds to the case when electron with the
momentum pP; moves close to the direction of the first photom,

&6 while in the second region 6, %6, -

For the soft photons (x; «4) ‘the leading logarithm in
our result (32) coincides with formula (3.51) from »&€f. [9].

7. DISCUSSION

Ve have found the DB amplitude in region (1). Our result
(9-13) has a simple form which is convenient for the analytica
as well as for the numerical calculation of vérious cross sec-
tions.

The most interesting feature of the energy diatribution
of photons (25-26) ia that the longitudinal polarizations of
the colliding electrons 3, v, and 3V, are "tramsferred” to
circular ploton polarizations. It is seen from eq. (26) that
the degree of circular polarization Ti.e. the mean helieity) of
the i-th photon is equal to

A b

V. ¥ 1-033 % (33)
(% Tog-w+067xF

This quentity becomes of order of 1 ai x£=u%'f5~ { only and
vanishes for the soft photons %; « 7 : in particular, at

X; = 1/4 it equals 29%. One can estimate from eq. (33) at
what level the measurement of the circular photon polarization
allows one to determine the longitudinal polarization of the
initial electromns.

Photon spectre do not depend on the transverse polariza-

19
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tion of the initial electrons 3;, . Dependence on f, | eppe-
ars in the energy-angular distribution of the photons (see
eq. (27)) and it determines the azimuthal asymmetry of this
distribution. The magnitude of this asymmetry is of order of
(cf. (23a))

~ X(1-x)E, |5, | f (34)

@

l.ee 1% 15 not small in the region hy <1
see from table and formulae (29).

88 one can

Using the substitution rules of type (7) one can obtain
some new results for crogs-reaction Yy-—= e+e_e+e_, they are
given in appendix C.

Qur results can also be applied for the single bremsstrah-
lung whose amplitude can be written in the following form

Mei‘e-_.‘:re-fr =M¢+ME y
Ma = Esi T4 d2 (358)
Mg = Ma (Preope, ps e»pi)

where 7,, is the same as in eqs. (10), (12), (13) and

.’Iful = a — ! ’. E#-_'_mﬂn;-t
= R A=V, gt TS
2 1- g

mE " }’-J (35b)
| e —..’_ f+ (ﬁ." n f

di- S 1= % [ k

Finally, it should be noted that the similar method of

the amplitude calculation is quite useful for some quantum

chromodynamic processea (such as Jfr-?f'+X? “,_,f':rv and so

m) in the region s>y 4 » {0.3 gev)Z.

We are very grateful to V.S.Fadin and I.F. Ginzburg for
tgeful discussions and to G.V.Fedotovich, A.P.Onuchin and
U.A.Tikhonov for explanations of the experimental situation.
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APPERDIX A

Tt is convenient to introduce the "almost light-like"
4-vectors p end p’

mb6

m2 i mt 2 L ' i‘_‘_"j -1___ rd -

e S Al S Dl e e

and to decompose 4-vectors K; ,f:- , § 1into the components

r P =
in the plane of the 4-vectors p and p° and in the plane or
thogonal to them

f L
Ke = olp plappe iy i2t2 P hPrfiPrl ,j=38;

g =Pl tpgpt b -

igbles, in
Parameters of and }6 are the so-called Sudakov varia .

the c.m.f. of the initisl particles the four-vectors K;, ,f:“ .
g, have X and Y components only, €eg.

- -2
9, =(0,9¢,%y,0) =10 g,,0), 3t=-19 .

Tn & jet kinematics 4-vectors h‘f and p, have large wfl;
ponents along p, (or p ) while Kz and Py - almllg pp (or ,::h y
therefore at S-w the following quantities are finite (all the
formulae given below are valid with accuracy (8))

E
Wy £ _Agp_ Y L By
£ =£§L£,=?”f; 5= da o EE e L)

On the other hand, components of Ky and fs along Py .as well
as those of Kz and fy =elong 4 are small. Indeed, using mass-

: 2. 1_ [ - e e | one easi-
ghell conditions & -Sd,f,.+ru-5' » Ky=0, pr=pf=m
1y obtains
-2
d =""'P.-Jd'l =m }ﬁldsﬁl" .P"‘_ <ol [.ﬂ-ag)
| .":.lf 3 .'SJ&_,, iy
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ry 2S
gﬂ 2 ;;: %: q'f, -’f:*r"’;*-!ff}.f‘:-.?f’ :-—.fg‘p'_ (A.T)

From eq. (A.7) one can see that the vertex factor in eq.

(9) is equal to

2 y” (4.8)
g‘f & 5’ !‘4; QJ_!‘ x

g

In other words, it coincides (up to factor -29, /-1} ) with
the amplitude of virtual photon Compton scattering (see fig.
1b) in which the virtual photon has the "mass" squared

‘i* o q:' and the polarization wvector e’'= %ﬂ/q .

It is convenient, however, to use (4.6)
E Aty ) e E M
JJ-TM‘I' F}"? ]1'_5 1P1ﬂ (A.9)

and to calculate J,; in the limit S$-» ¢ (assuming quantities
(2) to be finite in this limit). For the case when the upper
black of fig. 1a describes the emission by electron we have

2
s

e

P'lp -k +m) & & é'*"{éwfﬁmﬁﬁrJ i (A.10)

yarol E-,[

Denominator of the first term 24k = f«, +mpg,  cen be trans-
formed, using eqs. (A.1) and (A.2) to the form Lhk =
= xym* (1+A) . In the numerator of this term we substitute
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4 “

N = &y p' (pr-¥+m)e "y

= E; f;r[”*ﬁf}ﬁ- Eu + f—ﬂqumlfl,}ﬁ'-rm} 15;':;* Wy 3

A
take into account that ﬁ'ﬁ'.—. ¢ and transpose Pf' to

N = H_,,pi * [~ ta- xf)me]d-.f

Using Dirac equation pu,=m iy
= = € Kkq /% (it follows from gauge invariance condition € &,
= € (dyp'+ % p+ K”_) = ¢ eand from estimation € p'. €p )

we obtain

“Lr-r)p-xi ]},

and substituting

N= 1y [-2(8 Ku/ry) + e (ky+m)] .

Let usg make gimilar transformations for the

eq. (A.10), that leads to eq. (9) and (10).

Integrating Uy

arisge

d*n

fﬂd?pz =-_2.L§£/a

over n,

the left

E’f .Ff =

gecond term in

, the following integrals

?(zﬂ} it (2%;*’-—5;/,) "F(gi):ﬂ:’,ﬂ= XY,

[4RE Lo o). [GRd'F =

with functions P)

and ¥ (2)

24

defined in eq. (24).

(A.11)

APPENDIX B

The problem of calculation of the integral
d-'l;r -9 2 (-.l 9 ~3
L[5 (3%« 406)(0E ~ £R') s

can be reduced to calculation of four simpler integrals (gee
eq. (4a))

4 Pl

nY i n n EJ R:EI
[Ifjrﬂ;’g I ] n‘f [ﬂfgfq.!;g ’R .l.g,ﬂ ﬂfsf R }

where the notations are used:

a; = "'*E&'; ‘ﬂf:"’*r"'”’); gz:f+["*”g) e e

Using Feynman parametrization, the first of them can be calcu-
lated exactly

b In £ 1y 7 (B.2)
if.= ( t )% : .
1 ﬂ.f ﬂ: H'j.! ” hfji +lf

As for I, , we consider first the case A4 a, . It is
easy 1:-:: gee that the main contribution arises from the region

E;,"_ | A e Intrnducing the variable P =h-n, , we obtain

d’p /
= - - - i a }?ﬁ '
IR- 4, I{F"'”Ji[‘f"'(?‘*”ﬂ]tjrf'f'ﬁlj a, n,f.. de 5 (B.3)
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In the case Q3»a, we divide the n integration region
into two intervals: n®'<0 and n*>0 , where ¢« 0°&r, .
The contribution of the first interval is equal to (after in-
tegration over angles of the vector n )

4 t
—— T =% B 2
2, J ntlat ar,  rp a,a; :

where F =\/|"nc--n*}z+¢m'- and the quentity f-p is introdu-
ced to avoid the divergences in some items. In the second in-

]
terval one can put ﬁ?ir 4/&, and after that the contribution of
this interval equals

=]
] 2
1 J‘ dn~ ¢ )
L] 2 =y (]
@ % o N T 4, a, o

In the sum of two intervals the parameter ¢ cancels
and

Qy
I = 1 [ +_ﬂ."_ ——--f)] ) d;})af.
& 2 o il (B.4)

Both the results (B.3) and (B.4) can be written in the single
formula

1 [ ) Qg
i i e g
Ii df a 2 ‘f af {‘&? ﬂf ] # (3-5:'

2 My

26

One can shcw that this formula is also wvalid in the case

Q,~ ﬂ.lkﬂu}'}f as well as in the case Q%

sult

Substituting [,  to

formula (B.5) is valid by the single condition nﬂ » 4

Similar consideration leadas to

2 (fo2t-1)],

f
oo [1+
Y ooa,enf (B.6)

I, = *——r

(B.1), one obtains eq. (31).
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APPENDIX C
Notations for the Jy—= eleTel
fig., 2 and in formula (6). The amplitude of this process can be
obtained from formulae (9), (12), (13) by means of the substitu-
tion rules of type (7)

e reaction are given in

= IKeKeqwr i 1 N
My=- =z 30" 1 (nee,) =-idsma:

MG T B (24,708 E)(3)+ 19, [,

(C.1)
- Ry T} pp = LRV Y (1-4,) [(2g,-1+2Ae)

. v f
-(i.r o x + ¢ 3) SM,-M T2, &fh ghxi?*r]-; e fF:n' ;

Here gt-:f‘n‘w‘. y Eq+Ey=wy £y + Ey=Wg . The e'e” pair,
produced by two photons with momenta K; and 4 has charge
parity C = +1, that is why the vertex factor ;{f changes its
sign under the substitutions p, & P;_“ Yrord-Yq 5 Me? 23 .

We also give the formula which is analogous to eq. (27),
but for unpolarized particles only

g’ = . =
0 dydgsdn, (Efa+ hf+Fesd),

| Posl

) E = ?‘..t_ i * f‘.f' 2 (Cez)

Hf:

where the functions .asd are the same as in egs. (28) and (29).
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