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ABSTRACT

This paper starts a series of works devoted to topolo-
gical fluctuations in quantum field theories. Main idea
of the methods developed is the introduction of some
effective theory for such fluctuations in terms of their
collective coordinates. Introduction of such coordinates
into functional integrals and methods for their evalua-
tion in «smail lattice» numerical experiments are ex-
plained using the simplest problem of the kind, one-di-
mensional static potential with two wells separated by
a barrier.
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1. INTRODUCTION

Nowdays «numerical experiments» with computers are widely
used for studies of complicated systems in various branches of sci-
ence. However, for a long time quantum physics was an exception
because with traditional methods based on Schredinger equation
even quantum systems with several nonseparable degrees of free-
dom (to say nothing on quantum fields) were considered as too
complicated for practical computations, if no simplifying approxima-
tions are made.

The situation has rapidly changed few years ago, when more ef-
ficient methods of calculations were found, based on direct simulati-
on of functional integrals. Even the particular results [1, 2] obtai-
ned so far for lattice gauge theories [3] have provided much more
interesting information than it could be anticipated few years ago.
The story just begins, existing algorithms are rather straightfor-
ward and there are general hopes that with further work one can
develop much more effective numerical models for quantum fields.
It has also became clear that field of applications of such methods
can be essentially extended (see e. g. first calculations in quantum
mechanics, including applications to simplest atoms and nuclei [4]).

Nevertheless, the primary goal of this program—to obtain quan-
titative description of four-dimensional gauge theories—is not rea-
ched so far, and in order to do this more ingenious methods are
badly needed. There exist two main reasons for it. First, nonabelian
theories in four dimensions are indeed too complicated for available
computers, if one use straightforward lattice parametrization of the
fields. As we demonstrate below, in order to obtain accurate values
of local observables (to say nothing about correlation functions) the
number of lattice sites N should be taken to be of the order of few
hundreds, or even thousends even for simplest quantum-mechanical
problems. Obviously, it is technically impossible to do so in four di-
mensions. The situation in QCD is especially difficult in this respect,
because nonperturbative effects here range from scale of about
| fermi (confinement length) to about 0.2—0.3 fermi (power correc-
tions, presumably of instanton nature), see e. g. review [5]. In cal-
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culations with available lattices of size about 10* one assumes from
the start that there is only one scale of the correlation length and
that, say, a factor 3 is large parameter. Thus, the results obtained
are qualitative at best, and they can not be used but for exploratory
investigations.

Another problem is even deeper. Suppose one day technical limi-
tations are overcomed and one finds, say, the desired quantitative
agreement with experimental hadronic masses. This will be triumph
of science, of course, but we need not only numbers but also some
insight into the underlying physics. It is true that computer data are
much richer than experimental ones, but the standard way toward
understanding based on development of some approximate simplifi-
ed models can hardly be avoided in any branch of science.

'Both reasons mentioned force us to reduce a number of parame-
ters describing field configurations. The problem is how to do this.
One (widely discussed) possibility is to use renormalization group
methods [6]. Such approach has proved very useful in perturbative
context, as well as in the theory of critical phenomena. In both the-
se problems the fluctuations are rather similar at all scales, therefo-
re «effective theory» differs with the original one only in some «re-
normalized» coupling constants. Nevertheless, it is clear on general
grounds that such method can not work if the underlying physics
rapidly changes at some fixed scale, so that effective theory at lar-
ger scale may look completely different from the original one.

- In this series of works we study the possibility to construct so-
me effective theory based on completely different principles. Main
" variables are now not the «block spins» or some other local field,
but rather positions and parameters of some strong and «essential»
fluctuations, for brevity called «fluctons». (This word was picked
up from some different but related context. A.M. Baldin suggested
it for configurations in which two or more nucleons in nuclei are
very close together.) It is assumed that fixing parametrers of such
fluctuations one can approximately reconstruct individual field con-
figurations, at least its «most essential» features. This idea has
many roots, in particular in solid state physics. For example, inelas-
tic deformation, melting and other properties of crystals are attribu-
ted to dynamics of dislocations. Another obvious example of the
kind is the domain walls: fixing their positions one in fact fixes field
configuration in all space.

Such fluctuations happen in random places and, generally spea-
king, they are correlated. Therefore, an effective theory proposed re-
minds that for some liquid. Although numerical models in such case
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are somewhat more difficult to put into efficient code (compared to
«spin crystals» in lattice formulation), the economy in number of
parameters is usually so great that it more than compensate for it.
In particular, considering QCD applications for «instanton liquid»
[7] (see also [8] and later papers of this series) one may compare
them to nowdays lattice studies and find that the number of para- .
meters (per unite four-dimensional volume) is reduced by huge fac-
tor about 10*—10°. Even in the simplest problem considered in this
work, about a thousend parameters describing the individual path is
substituted by positions of just few instantons, again with essential
computational economy. |

In the present series of works we concentrate mainly on topolo-
gical fluctuations, but, in principle, methods developed can be used
in more general context and we sometimes consider it. The simplest
example of nontopological fluctuation in quantum mechanical frame-
work is just an occasion in which particle moves far into classically
forbidden region and then returns. Such simplest «iluctons» are al-
so studied below.

Topologically nontrivial fluctuations, of instantons, were first
discovered for a number of theories in the framework of semiclassi-
cal theory by A.M. Polyakov with collaborators 9]. It was de-
monstrated that barriers separating topologically different configu-
rations of the field (the so called «classical vacua») are penetrable.
We postpone detailed description of these problems till next papers
of this series, and now only outline the fundamental shortcoming of

semiclassical approach. It is applicable if the action for classical
configuration is sufficiently large

-Sciass:?"'l . {l;l
This in turn means that tunneling probability P is very small
P~ exp {_Scfass}":: <<l {2}

so that it is not easy to coniront it with any observable effects.

The main aim of the present work is to develop methods capable
to describe tunneling phenomena outside the semiclassical context.
The remaining condition is as follows

P« (3)
and it appears just because one should be able to tell tunneling

event from «ordinary» quantum fluctuations. Although conditions
(2) and (3) look similar, they are completely different from more
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practical point of view. In particular, below we show, using the
simplest example, that semiclassical theory is not reliable for P lar-
ger than, say, 1% level. Considering P in the range 1/3—1/30, we
show that our methods work here reasonably well.

Two different approaches toward understanding of fluctons are
possible. The most straightforward possibility is direct generation of
configuration ensemble and its subsequent studies. Unfortunately,
such «large lattice» calculations are not easy to perform because of
technical limitations. Therefore we develop alternative approach,
which, up to our knowledge, was not used before. Its main idea is
to introduce certain auxilliary condition, ensuring existence of one
(or more) <fiuctons» with given parameters. For example, paths of
some p-.tcle moving in the potential well comes via some distant
point very rarely, but if one is interested in such fluctuation he may
integrate only over paths with pass throgh it. The problem is to de-
velop methods capable to estimate how often such events happen in
real case, for the unbiased ensemble, and they are described and
tested in the present work. Such methodical improvement may turn
to be extremely useful in field theory context.

Because of technical reasons this work is split into several pa-
pers. First pair of them are devoted to topological effects in doub-
le-well system and the two-dimensional O(3) sigma model. Later
we are going to consider four-dimensional SU(2) Yang—Mills the-
ory without and with light quarks. (Some preliminary results on
«instanton liquid» for pure gauge SU(2) theory are already publis-
hed [8].)

2. TUNNELING IN THE DOUBLE-WELL fOTENTIAL

_ From the very first days of quantum field theory it was obvious
that traditional Schredinger formulation of quantum mechanics is
hopeless in this context, so some other language was needed. Hei-
senberg operator formalism suits better, but only few problems can
be solved on this way. After Feynman formulation was discovered it
was for a long time limited to gaussian integrals, nevertheless it
has produced such useful methods as Feynman rules, semiclassical
theory etc. Nevertheless, for quantum mechanical problems this met-
hod was considered as some curious way of presenting known re-
sults, rather than a tool for practical computations.

The main aim of the present work is purely methodical, we are
trying to develop a language natural for this formulation of quan-
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tum mechanics. Therefore we consider the simplest and well known

example, the nonlinear oscillator with two wells. Its action (in Euc-
lidean time tv=—it) looks as

uclidean m-{:?
Siienn }=Sd1[-§—~+f((x’—f*)’]. (4)
In what follows we use unites Ai=K=2m=1. |

Familiar methods based on Schredinger equation suggest that
the ground state wave function has two maxima at x= =J of about
gaussian shape (harmonic approximation). Small «tails» of the wa-

ve function in classically forbidden region are described by familiar
WKB formula

WWKB (1) = const-exp [— §Pp(x) dx] , P, (x) = (x*—F?). “(5)

What we are going to do below is closely related to these met-
hods. We also separate small and large fluctuations, also consider
gaussian approximation and test its accuracy in a number of ways.
However, an object of our discussion is not the ground state wave
function but the path ensemble {x(tv)}. It describes not only the co-
ordinate distribution in the ground state but also many other dyna-
mical properties of the system. Let us remind that such ensemble is
generated according to famous Dirak—Feynman expression for the
Green function (or transition amplitude)

x(1)=x

G(xOly7)= § Dx(v)exp{—SE“i 4 x(z)]}. (6)

x(0)=x
Writing standard decomposition over stationary states

G(x:0lxs7)= ?‘l’;{xﬂ Y. (x)e=™" (7)

one can see that at large enough v>>1/AE the ground state domina-
tes (AE=E,—E,, it is the so called mass gap).

It is instructive to say the same thing also in terms of one-di-
mensional discretized «lattice» model with «spins» x, at sites. Kine-
tic energy term is now the interaction of neighbouring «spins».
«Large t» means lattice long enough compared to spin correlation
length, so that particular boundary conditions become irrelevant.

Our interest in the particular system (4) is related to the fact
that it has in fact two different correlation lengths: v, the oscilla-
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tion frequency. and 7T, the tunneling time. Relation between them
can be written as

(P‘-ﬁ:l} Tose= P *T1un& Tiun [8}

where P is the tunneling probability.

Special feature of this system is the symmetry in respect to co-
ordinate reflection (x——x). At time periods 1<, coordinates are
strongly correlated in sign, but at larger time scale T=14, the tun-
neling mix them, restoring the symmetry of the ground state [10].
This manifests in the behaviour of the correlation function

K(T1) ={x{1}x[{]}}—r~cbust-exp (—AE-1) (9)

connected with fiiiite «mass gap» AE. Evaluation of such correlation
functions, especially at large times, is the central point of numerical
experiments with quantum field theories, therefore we pay special
attention to this quantity in our calculations.

3. EXPERIMENTS WITH «LARGE LATTICES»

In order to define parameters of the discretized system to be
studied in our numerical experiment one should write down the fol-
lowing sequence of conditions

ﬂﬂtnscittun'ﬁ:T:N‘l - {10}

Assuming that each strong inequality corresponds to one order of
magnitude, one should take the lattice with the number of sites not
smaller than a thousend! So, although we now deal with one-dimen-
sional (mechanical) system, its straightforward numerical studies
need rather large lattice. (Fortunately, for such simple system such
conditions can really be satisfied, but not for field theories in more
dimensions!) :

Generation of path ensemble is done by standard Metropolis al-
gorithm, its introductory presentation in this context is contained
e. g. in refs [4]. We only mention that measurements of the corre-
lation functions and other details to be considered below make it
necessary to have much better ensemble than, say, for measure-
ments of the ground state energy or the wave function. So, instead
of hundreds of iterations as done in refs [4], we had to make up to
10° ones. (Again, it is technically difficult to do the same for field
theories!)
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In our studies reported in ref. [4 b] we have found some arti-
fact, the «lattice instantonss, being the instantaneous jump from
one potential well to another, without a point under the barrier. For
lattice step of the order 0.2 or so this phenomenon produce signifi-
cant systematical errors, therefore in this work we both use smaller
step and compare results for the following two lattice actions

Ssmndurd: ;[{-’Ci—xli+1)2f4+(x{2'—‘f?)2] -

| f

St Z[(—xi41)/4+ S V(x)dt] . (11)

(The latter corresponds to paths consistent in some set of straight
segments, as shown in [4 b] it effectively kills «lattice instantonss.)

Traditional question no.l is the time-averaged distribution over
coordinates in our ensemble, corresponding to the ground state wé-
ve function squared. Our «large lattices results are shown at Fig.5
where they are confronted with other calculations to be specifi{:d
below. .

The nontraditional questions which are difficult to ask in ordi-
nary _statinnary state formalism.is how the fluctuations are develo-
ping in time. «Experimental» approach to it is based on selection of
events in which, say, the particle reaches | x| larger than some fixed
value x(bound). Superimposing maxima of these fluctuations we oh-
tain the average «flucton profiles, examplified at Fig.1. Note that
such fluctons are well localised in time and have typical «triangu-
lar» shape.

Fluctuations under the barrier (|x| <f) are specific for doub-
l{':—well system because there are in general four topologically dis-
tinct paths coming via some fixed point (see Fig.2). Two last cases
are known as instanton and antiinstanton, two other cases in which
the particle returns to the same well we call «fluctons». Unfortuna-
tf_,-ly, with finite density of fluctuations (per unite time) it is not pos-
sible to make clear separation of these possibilities. For example
close instanton-antiinstanton pair can be called z flucton as well. :

In order to give some meaningful definition of the instantons
one should make use of the idea of two separate time scales (8). It
mmu]t_anenusly helps to get rid of «zitterbewegung» phennmenan: of
very irregular and complicated behaviour of individual quantum
paths (see Fig.3,a). In order to describe some gross features of the

;)a_th it is_tempting to make them more smooth. Let the averaging
width 14 is taken somewhere in between of the two scales
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Tose L Tao < Tiun l: 12)

ensuring that the resu!ts are practically independent on 7, and the
particular procedure used. (We have used gaussian expression

xi= Xexp[—(v—m)'/21e] a/ V27 ta (13)

but it is not important.) For smoothed paths tunneling events are
clearly seen (see Fig.3,b), while the unwanted narrow «spikes»
which cross zero x are suppressed. Guiding by the <«smootheds»
paths we may locate positions of «true» instantons and measure
their characteristics. As soon as condition (12) is satisfied they are
reasonably stable, with uncertainty due only to unprobable configu-
rations with too close fluctuations.

The most obvious question is the average instanton shape,
shown in Fig.l. (To avoid misunderstanding we emphasize that it
corresponds to original, not the «smoothed» paths.) One may also
find the instanton density and consider their relative distribufion in
time. All these data should be explained by the theory to be conside-
red below.

In our discussion above the existence of two scales was connec-
ted with the specific behaviour of correlation function (9), an ana-
log of Green functions interesting in field theory context. Now we
present relevant data and discuss this point in greater details. It is
convenient to plot not the correlators by themselves, but their loga-
rithmic derivative

F()= — - log (x(x) x(0)) . (14)

Our results for f=1.4 and 1.6 are shown at Fig.4. At small
T~Tosc=1/wosc=1/4f this quantity is rather large: correlation is af-
fected by «ordinary» oscillations. At intermediate 7 it decreases: he-
re the correlator is nearly constant, close to (X) onewers (averaged
only over motion in one well). At large t tunneling effects come in-
to play and «mix » the correlation completely. Here F(t) tends to
constant, the energy gap, as is very clearly seen from these data.
(Again, let me note that so clean exponential asymptotics was never
observed in lattice data for field theories.)

Particular values of the parameter f used above correspond to
tunneling probability P about 1/10 and 1/30, respectively. As we
are going to show below, semiclassical theory is not capable to des-
cribe tunneling through so transparent barriers. Nevertheless, as it
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follows from discussion above, the two time scales tunneling effects
can clearly be separated from «ordinary» oscillations.

The last point we demonstrate in this section is the following
statement: the «smootheds paths correctly reproduce the long-range
correlations, see points shown by stars at Fig.4. It is important for
us because it is the «smouothed» paths which are parametrized by
collective coordinates, positions of the instantons, and they are the
basis of our effective theory. :

4. SEMICLASSICAL THEORY

It is instructive to start with simplest fluctons in the simplest
problem imaginable, the motion in some potential well in which
fluctuations are just occasions when particle moves far into classi-
cally forbidden region. It seems very natural that in order to study
them one may consider only paths which go through some fixed po-
int. Being more definite, let us consider ensemble of paths satisfying
the following three conditions

() =xi  x(t.) =x. x(t) =x. (15)
The corresponding three-point amplitude G (x;| x| x;) satisfies the fol-
lowing normalization condition

de,,- G (xil x| x7) =G(.r;-|x;} . (16)

. where G (x|x;) is ordinary two-point propagator. We are not inte-

rested in dependence of G (x| x| x;) on its ends: assuming that they
are at distance much larger than the correlation length we forge"t
about them and concentrate on the dependence on our constraint
parameter, x.. Note that under conditions JTE——I£|,|T¢:——I;‘| > Twun this
dependence is proportional to the ground state wave function

§dx G (x| xd x) =1 W, (x.)| 2 exp [—Ep(t—11)] . (17)

As always, semiclassical theaty ig hased am the idan b sood
important paths are close to some «classical» one, providing extre-
mum of the action. Starting with the simplest example, we show
that such conditional extreme path for linear oscillator is just

xcexp[—o(t—1)] 1>7

xﬂr(ﬂ:{ xcexp[+o(t—1)] 1<, el

I



The corresponding classical action is S, =mwx?, and therefore we

conclude that asymptotics of the ground state wave function is as
follows:

| Wo (£:) | *~ exp (—mox?) . (19)

Obviously, for this particular system this result is in fact exact,
and (19) holds at all x.

For our double-well system it is also easy to find classical paths
corresponding to the same conditions, say for |x| <f it looks as
(fthTﬂ.:xﬁ)

fth[—4f(r—= |2t -
Id(T)={ [(t—7)] 0 (20)
fth[4f(t—1,)] T>T,
(see also Fig.2,a). The corresponding action is equal to
- 4
Sd(x,;)_= —3—13—2I¢f2+ '—'S—fa e {2‘)
Important particular solution is the instanton
xer (t) =f th (4f7) . (22)

Comparison of these configurations with flucton and instanton
average shapes extracted from numerical data will be made below,
see igs 6, 7, and at Fig.5 we compare results following from (21)
to data for the ground state wave function. An obvious conclusion
about accuracy of these analytic results (in the region of parame-
ters under investigation) is that they are qualitatively correct, but
not very precise.

The next standard step is evaluation of quantum corrections in
gaussian approximation, based on diagonalization of the arising qu-
adratic form ’

x(t) =xq(t) +6x(1),
Slx(v)) =S[xa(r)] + § dv 6x W, 6%+ ... (23)

by standard decomposition into its eigenfunctions
r)= L 50T,

Wxi (1) =kaxa (7). (24)
Thus the so called functional determinant appears:
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§ Dx(v) exp{—S [x(v) ] }= exp (—Sc1) - (det W) ~'/? (25)

which is divergent and usually normalized to some other problem,
for which the exact result is known. Taking the ratio of the corres-
ponding Green function to that for linear oscillator one finds

2

G (xilxclxp) = G o(xilxe) Gy xelx)exp (—Se) det( 2, +m2) (det W)~1/2, (26)

4d1°

where G, is Green function for harmonic oscillator

mm
2nsh ot

Golxilx) =

mauw
exp{ Sheh mr[(xfﬂ—x?) chmt—?.r;xf]} : (27)

Note the subscript ¢ (which means «constrained»): only paths
satisfying (15) should be included in determinant calculation. Let
us write down the constraint explicitly and show that it can be in-
tegrated away with the help of «zero mode», existing due to tran-
slational invariance -

S Han EXp(.—?hn Cﬁ)ﬁ(z Cha x,,(t.;)—-xf)= (28)

1
Xo(t.) ydet’ W

the remaining «primed» determinant contains only nonzero modes.
Not going into its calculation in general case we note that for in-
stantons such determinant was calculated in ref. [11], renormalized
by means of linear oscillator it leads to the following answer:

det’'W= 1/12. (29)

Resulting density of instantons (together with antiinstantons) is
equal to [11]

2g=84/ L prexp(—Lp) (30)

it

This theory is more complicated than WKB semiclassical theory,
but it can be used for arbitrary number of variables. Second, it has
absolute normalization, while (5) contains a constants which is de-
fined by rather tedious consideration of the vicinity of «stopping po-
ints. (Advantage of the WKB expression, in its turn, is as follows:
it can be used for any state, not only the ground one.)

So far we have used the constrained paths for determination of
time-averaged x distribution, or the ground state wave function, but
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now we address the question concerning the flucton density. For
example, for simplest nontopological fluctons (at | x| >f) characteri-
zed by the maximum value x_,, and position in time 1, one may de-
fine it as follows

dn" L (1) de. s (31)

It is clear that at large enough | x| where fluctons can be reaso-
nably well identified some integral over their density is related with
. the ground state wave function considered above. Indeed, the proba-
bility to find particle at some coordinate x is the integrated density
of suffieiently strong fluctuations divided by velocity x at which
particle passes this point

o() = < §ate § iy P () /5 () (32)
0 X

This relation can be further simplified in the semiclassical limit.
Writing-the probability as

P(xmﬂx) oo exp [_Sﬂf (Imax}] {33}
and expanding the classical action '
Sff (Imax} =SCI (.-'{.'} + m‘i: {‘x._xmﬂx} {34]

one can integrate over x_,. and to write the final result in a com-
pact form containing potential V (x)

P(Xpax) 2V (X00) | Wo (Xipax) 1* - ' : (35)

(We have used that energy is conserved at the classical path and
that potential well bottom was taken at zero energy.)

5. THE GROUND STATE WAVE FUNCTION
AND CONSTRAINED PATHS ON «SMALL LATTICE»

In this section we continue discussion of constrained paths, ma-
de in the preceeding section in gaussian approximation, with the ac-
count for nongaussian effects. Obviously, they are treated by some
numerical methods, but now it is done in more economic way com-
pared to straightiorward «large lattice» calculations reported above.
The reason for this is that we now study only the vicinity of one in-

dividual flucton, fixed by constraint, and therefore one strong -
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inequality (in fact, the most severe one) in (8) is not needed. This
is what we call «small lattice» calculations.

The first natural thing to do is to generate path ensemble under
the same conditions as done in the preceeding section and to check
to what extent their average behaviour follows the classical pres-
criptions. Some examples of corresponding data for flucton and in-
stanton shapes are shown at Fig.6, 7. Deviations are clearly seen,
and they are due to nongaussian effects ignored in semiclassical ap-
proximation. In particular, {x),,, .. is shifted by (6x)® term.

The next obvious step is to compare actions for these two calcu-
lations, numerical and semiclassical ones. Here one comes across
two kind of problems, so to say ultraviolet and infrared ones. The

former is connected with the fact that actions (11) contain kinetic

energy which diverges at time step a—0, while the latter means
that the action attributed to some localized fluctons should be sepa-
rated from that of «ordinary» fluctuations, occuring all the time.
Both problems is easier to handle if one evaluate not the total acti-
on but rather distribution of its density (or Lagrangian) distributi-
on in time. The corresponding data are shown at Fig.8. The con-
stant level corresponds to «ordinary» fluctuations, while the notice-
able excess is due to constraint and is qualitatively similar to
Lagrangian for classical trajectories (shown in lower part of the
ligure).

Data analysis reported so far is sufficient for conclusion that the
semiclassical theory is not very accurate in the case under conside-
ration. However, it does not provide any estimate for the main qu-
antity of interest, the fluctuation probability. In order to do so one
may, in principle, directly compare probabilities of the individual
paths for our problem (the double-well system) with some «referen-
ce point», say the linear oscillator. Generating path ensemble for
the latter system one may try to average the following factor

Fpan=-exp (— {dtAV) , - (36)

where AV is just the difference of potential energies. Note, that
problems connected with divergent kinetic energy are gone, but, un-
fortunately, this factor fluctuates from path to path so strongly that
it is practically impossible to make this averaging for system para-
meters under investigation, and one needs mone ingenious method.
This is a point where «adiabatic switching method» [4 b] comes
into play, for it includes averaging of much less fluctuating quan-
tity. Let us introduce a set of actions with some parameter alfa, in-

terpolating between the two actions S, for linear oscillator and
15



Spy for double-well potential.
Suzsasc(]—ﬂ] +ESDW=SM¢+&-AV, {3?]

The average value of AV can be written as the logarithmic derivati-
ve of the statistical sum

| (Sdmv'}u:—%IOgSDx(T)exp(“SuL (38)

Integrating this relation back one has
|
Gpy=Goscexp[— § da ({ AVdr),]. (39)
0

Evaluation of the integral in exponent of (39) can be done with
(rather standard) trick: alfa value is gradually increasing and then
decreasing again. The measured <histeresis cycles» (see examples at
Fig.9) provide estimates of the magnitude of nonequilibrium effects.
(Note, that using such method we get rid of them in first order.)

Application of (39) to calculation of wave function is straight-
forward:

|Wpy (£e) |2 =1 Wosc(xe) | 2exp [(—Eosc+ Epy)v— § da (§drAV>.]  (40)

Even simpler is to consider the ratio of probabilities to find particle
at different coordinates

| Yow(x1) I“‘:e_mm_x;] exp[—§da((§arAV)O—(§aravy@)].  (41)
¥ow(xp)

(Note that in order to reproduce the wave function under the
barrier one should include all types of paths shown at Fig.2. Using
the language of wave function it means that two exponentials are
added, for example in the center this effect increases the probability
by the factor 4. In our statistical formulation the same result is due
to existence of four topologically distinct «fluctons» (with equal
probability at the center). This consideration is used for further re-
duction of the lattice size needed for wave function calculation, and
our «little lattice» length can now be taken smaller than t,,,. It was
typically taken to be about 2 unites, therefore we were able to use
very small lattice step a=0.05—0.01 and to study relevant fluctua-
tions with good accuracy.)
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Combining expression (41) and our data for ({dtAV). we have
found results for the ground state wave function shown at Fig.5 by
stars, to be compared to those found in «large lattice» numerical
experiment. Although calculations correspond to completely different
methods, different lattices etc., results reasonably agree.

6. NONGAUSSIAN EFFECTS AND THE INSTANTON DENSITY

In the present section we address the question of accuracy of se-
miclassical (gaussian) approximation for the instanton density (30).
Again we use «adiabatic switching» of nongaussian effects, and the
«reference system» is now chosen to be semiclassical (Gaussian)
approximation. So, our interpolating action looks as follows

S“=SG+{IGHG -
Svo=$ (4xa (1) 63+ 8x*) dv _ (42)

and with its help we are able to evaluate corrections due to nonga-
ussian effects to some amplitude, say to

G(x=—f,tlx=f,0) = exp (—Epyr) dy; 4f . (43)

Here the quantity d is, by definition, the instanton density (the latti-
ce length, as usual, is assumed to be much longer than t,.). Com-
bining this expression with similar one in gaussian approximation
one may express the quantity d,; to be

|
dyo=dg exp(——§da (S i), (44)

Note, that apart from correction to tunneling amplitude, the nonga-
ussian effects also modify ordinary oscillations, making the contri-
bution proportional to lattice length. In other terms, the ground sta-
te energy is shifted, and this effect should be accurately taken into
account. In practice, calculations were done as follows. The presen-
ce of instantons was ensured by antiperiodic boundary conditions,
and the measured integral effect of nongaussian effects was sub-
tracted from results of similar «control» measurements with perio-
dic paths. Our results for instanton density are given at Fig.10. In
order to see more clearly the effect of nongaussian corrections we
have plotted them as the ratio to predictions of gaussian approxima-
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tion (30). It can be concluded from this figure that such corrections
are really large enough for barriers considered, and, contrary to ge-
neral belief, semiclassical approximation is not very reliable, unless
the barrier penetrability is at 19 level.

[t is important, that such method can be generalized to field the-
ories in several dimensions, for which the role of nongaussian ef-
fects may be even greater than for the simple example considered in
this work.

In calculation reported above the presence of the instanton was
forced by antiperiodic boundary condition, but now we are going to
discuss how one can locate them by some constraint, introducing a
kind of collective variable—the instanton position. The simplest con-
straint possible (similar to that used in the preceeding section) just
fixes the point at which paths cross zero. Formally it looks as the
following trick: one irtroduces unity in functional integral

1= §dr. 8 (x(x.)) £ (1) (45)

and then put the integral over 1. outside. Note, that jacobian is now
simply velocity at constrained point, and in discretized lattice appro-
ximation it is relevant for updating of only «spins» next to the fixed
one at t=rt.. Such collective variable is much more convenient for
numerical calculations than the one following from ortogonality to
zero modes usually considered, because it is local in time. Another
advantage is that jacobian contribution to the action
S=—log (x(vc)) is not very fluctuating from path to path: in the
instanton center the motion is more close to classical one than in
other places.

7. INSTANTON INTERACTIONS
AND THE <INSTANTON GAS>»

As usual, we start with «large lattice» unbiased data and consi-
der some «experimental facts». Considering instanton interactions it
is most reasonable to study their relative positions along the time
axis. We remind that our definition of the instantons depends on
existence of two distinct scales, so for close enough pairs such defi-
nition can not be unique. Respectively, the question of the instanton
interaction at small distances can not have some absolute meaning:

For example, we compare two definitions. The first «naive» one
calls the instanton each crossing of x=0 line, another does the
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same but using instead of the original quantum path its «smoothed»
versions (defined in section 3). The corresponding distribution over
instanton separations are given at Fig.l11. At small distances beha-
viour is indeed different. However, at larger separation D=1 both
set of data are similar, producing good exponential behaviour

dn/dD~exp(—D/{D)) (46)

typical for «ideal gas» of instantons with density d=1/(D). This
means that no long-range interaction is present, whatever is the in-
stanton definition. This conclusion is easy to explain. Even in semic-
lassical framework the interaction at large distances is in this mo-
del exponentially small. (Note that it is not the case for field theori-
es: here interaction is of power type and more important.) At inter-
mediate distances one finds evidences for in-tanton-antiinstanton at-
traction (which is also quite clear theoretically, and even in agree-
ment with simple estimates coming from evaluation of action for
classical path with two points fixed), while at small D one observes
some repulsion.

Is the ‘ambiguity in the instanton interaction at small distances a
serious defect? We have to remind that our main goal is to con-
struct some effective theory dealing with parameters of fluctuations,
say the positions of instantons. So, this ambiguity just means that
such theory is not unique: one may obviously calculate functional
integral introducing different sets of coordinates. (It is another qu-
estion which one is more natural and leads to simpler calculations.)

Whatever is the definition of collective coordinate, one can fix
their values and study constrained configurations. For example, the
«zero crossing» prescription considered at the end of the preceeding
section can well be used for arbitrary number of instantons, fixed
at given places.

So, we may now formulate our final «effective theory» for .
long-range effects in the double-well oscillator. It is a gas of in-
stantons with the following partition function

L= ZS d*rl...dt;n(dmt)" exp[— 2Vin(ti4,—13)] - (47)
By ... €T, I
[ts main ingredients are the instanton density d,;, considered abo-
ve, and the instanton interaction Vi (D).
It is just simple exercise to make a program generating ensemb-
le of points 1;, the instanton positions, according to (47). With sim-

ple step-function parametrization of the paths
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one can indeed mimic correlation function at large times, provided
that instanton density was correct. Introducing mediate-range at-
traction and short-range repulsion one may also obtain «more rea-
listic» behaviour, similar to what is shown at Fig.11. We do not
present here all these data because such questions are much more
important in field theory context, for which we consider them in

great details elsewhere.

9. CJNCLUSIONS AND DISCUSSION

The main goal of the present work was development of theoreti-
cal methods for studies of fluctuations in various quantum systems.
More precisely, we have tested these methods considering tunneling
via one dimensional barrier.

The main conclusion of our investigation is that (contrary to so-
me statements in literature and initial hopes) semiclassical theory is
not sufficiently accurate unless tunneling probability P is at one per
cent level. Otherwise, the tunneling paths have noticeably modified
shape, and even much stronger modified probabilities. If it is the ca-
se for simplest imaginable problem, it can be so for instantons in
field theories as well.

Positive methodical result of our investigation can be formulated
as follows. Using special constraints ensuring the presence of fluc-
tuations of interest we were able to pass from straightforward
(«large lattice») calculations to much more economic and simulta-
neously more precise «small lattices ones. Properties of such fluctu-
ations, their interaction etc. can be measured in such way, providing
a basis for some «effective theory», the simplified model of the the-
ory we have looked for. Its test is produced by measurements of va-
rious correlation functions, with subsequent comparison to other data.

This work may have also applications in many other fields, whe-
re penetration through some multidimensional barriers is of interest:
say, in quantum chemistry, nuclear reactions etc. Some work in this
direction is in progress.
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Fig.1. The average profile of instantons (upper part of the figure) and nontopologi-

cal Tluctons extracted from <large lattice» numerical experiment. The particular crite-

ria for observing the instantons are discussed in the text. Fluctons are determined by

the condition that at least one point of the path is at x> 2. Calculation corresponds

to lattice of length 40 with step 0.1 (closed points) and 0.2 (open points). The solid
line corresponds to classical instanton configuration,
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(@) (8) (c) (d)

Fig.2. Four topologically different paths coming via the same point x under the
barrier.
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Fig4. The logarithmic derivatives of the coordinate correlator. Parameter of the po-

tential f and lattice step a are given at the figure. The dashed lines are only to guide

the eye. Points shown by stars correspond to correlation of smoothed paths with
width equal to 1.5.
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Fig.5. Time averaged probability to find the particle in some coordinate bin (or the

ground state wave function squared) at f=1.4. The dashed and dash-dotted lines

correspond to linear oscillator and to the sum of exp(—Scus) for double-well poten-

tial for all types of the paths shown at Fig2. Points shown by stars correspond to
«adiabatic switching» method described in the text.
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Fig.6. Example of the flucton profile at  =1.4 resulting from e«small lattices calcu_laa

tion with constraint at some point x=2 The curve corresponds to classical path,

open and closed points are for linear and double-well oscillators, respectively._Calcu-

lation reported has very small lattice step a=0.025 and, unlike the data given at
Fig.1, it is no more sensitive to it.



1Y

l."..'.'ll

.'ll (IXIIXYyYY

219
0

Fig.7. The instanton profile resulting from «small lattice» calculations. All notations

0.5

and parameters are as for Fig.6.
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Fig.8. Example of the time distribution of the action, averaged over 200 instanton-ty-

pe configurations of the «little lattice» with 50 points at a=0.04. The dashed line be-

low corresponds to classical instanton solution, the dashed straight line above shows

the average level of «guantum noise» in control configurations without instantons.

(Note, that at a—0 such noise becomes more significant.) Although a trace oi in-

stanton is definitely seen, quantitative measurements are not possible to do with such
data.
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Fig.9 «Histeresis cycles» for dependence of (AV), on parameter alfa, for three diffe-
rent constraints. The points marked «up» («downs) corresponds to increase (decrea-
se) of alfa. Constraint marked <flucton» corresponds to a point fixed at x=2, the
«instanton» one corresponds to antiperiodic boundary conditions, the «control» caleu-
lation are made without constraints. The dashed lines are only to guide the eye.
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Fig.10. Open points show the ratio of the instanton density 4 including nongaussian
corrections to the value d; (30) predicted in gaussian approximation. Closed points
show the «mass gap» AE=E,—E, in the same unites. The triangles at f=1.4 shows

values of the instanton density found in «<large lattice» calculations with smoothening

widths 0.1 (upper point) and 1.5 (lower point). The «star» corresponds to 1/{(D) fo-

und from instanton separation distribution, see Fig.11. The dashed lines are only to
guide the eye.

Fig.11. Distribution over instanton time separation D (in arbitrary unites read from

experimental hystogramm). The open points corresponds to «large lattice» data with

T=40, a=0.2 and most enaive» definition of the instanton as any zero crossing. The

dashed and dash-dooted lines are for definitions of the instanton including smoothe-

ning with widths 0.1 and 1.5, respectively. In all cases behaviour at large D is well
fitted by exponential exp(—0.29-D), shown by solid line.

31



E.V.Shuryak ;

Quantitative Studies of Topological Effects
in Quantum Field Theories
I. Tunneling in Quantum Mechanics

OrsercTBenHnsiii 3a suinyck C.IM.[Tonoe

Patora noctynuna 7 mas 1985 r.
[Noanucano B nevats 31 man 1985 r. MH 06678
®opmar Gymarn 6090 1/16 O6bem 2,6 neu.s., 2,1 yu.-nan.a.
Tupax 290 sk3. Becnnarno. 3akaaz Ne 71

Habpano 8 asromarusuposannoii cucreme na 6ase ¢oro-
HabopHozo aeromara PAIV00 u IBM «Irexrporuxar u
OTnexdarano Ha poranpunre Hucruryra adeprod @usuxu
CO AH CCCP,

Hosocubupck, 630090, np. akademuka Jaapenrsesa, 11.



