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ABSTRACT

Energy levels, fine and hyperfine structure as well as
El-transition amplitudes in thallium and gold are cal-
culated. Application of relativistic Hartree—Fock equ-
ations with taking into account electron shells polari-
zation and correlation corrections to wave function, as
a rule, provides a few per cent accuracy. This is an
order of magnitude better than accuracy of simple
Hartree— Fock calculations. The estimation of structu-
ral radiation is carried out.
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1. INTRODUCTION

Hartree—Fock (HF) method does not provide high accuracy of
calculations in heavy atoms. For example, in Li the accuracy of io-
nization potential HF calculation is 19 while in Cs it is 10%, and
the accuracy of fine structure HF calculation in 6p-state of Cs is
30% (see, e. g., Ref. [1]). HF calculations of matrix elements of
operators also lead to large errors.

Consideration of only electron shell polarization by external field
(random phase approximation or Time-Dependent Hartree—Fock
(TDHF) method) is not sufficient. For example, accuracy of relati-
vistic Hartree—Fock (RHF) calculation of hyperiine structure
(HFS) is 389%, taking into account of electron core polarization
decreases error to 269 . Accuracy is drastically improved if we take
into account both polarization and second order correlation correcti-
ons (inaccuracy =<2%, [2, 3]). The similar situation takes place in
Fr [2] and ion Ra™ [4].

Alkaline atoms have an external electron which overlaps very
little with the electrons of compact core. This property permits to
use perturbation theory in residual interaction of external electron
with core for calculation of correlation corrections.

In the present work methods of polarization and correlation cor-
rections calculation developed in Refs [1—3] are applied for calcu-
lations in thallium and gold. These atoms, similar to alkaline
atoms, have one unpaired electron. However, this electron .is close
to internal electrons. At first sight this means that perturbation the-
ory in interaction of external electron with core electrons is not ap-

3




plicable here since the interaction is not small. However we will see
that perturbation theory results have high accuracy in Tl and Au.
This fact can be easily understood: the potential of external electron
is nearly constant in the core region and practically does not
change the wave functions of the core electrons. By other words,
the non-diagonal matrix elements of external electron potential are
small.

Calculation of correlation corrections can be essentially simplifi-
ed if one takes into account only the dominating correlation diag-
rams rather than all second order diagrams. It is convenient to do
by introducing so-called correlation potential into the equation for
single-particle orbital. Correlation potential is a non-local operator
calculated by means of perturbation theory. It’s average value iden-
tically coincides with the correlation correction to energy. For com-
parison of two methods we have carried out calculations of TI
hyperfine structure. In the first calculation we took into account all
the second order correlation corrections in residual interaction. In-
the second calculation we took into account the dominating
diagrams only by means of correlation potential method. These
diagrams correspond to renormalization ol one-electron wave functi-
on. It is seen from comparison with experiment that both methods
jave inaccuracy of the same order of magnitude. The methods simi-
‘ar to our correlation potential method were used to calculate light
alkaline atoms HFS [5] and scattering phases (see Ref. [6] and
ceferences therein). :

Correlation potential method provides high accuracy in electro-
magnetic transition calculations too. Our calculations in Cs [3] and
present calculations in Tl and Au show that the disagreement in
El-amplitudes between calculation and experiment is about a few
per cent. .

Except the dominating correlation corrections which are the re-
normalization of external electron wave function, we consider se-
cond order renormalization of electromagnetic vertex (structural ra-
diation). In the present paper we obtain the approximate formula
for structural radiation. The situation here resembles low-energy
theorem for bremsstrahlung (Low theorem).

Recently preprint [7] appeared where energy levels, HFS and
El-amplitudes were calculated by RHF method with polarization
taken into account. Correlation corrections were not considered. Re-
sults of Ref. [7] agree with our corresponding values for Cs,« Tl
and Au.
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2. CORRELATION CORRECTION TO ENERGY.
CORRELATION POTENTIAL

To use perturbation theory, the exact Hamiltonian of an atom is
devid_ed into two parts: the first part is a sum of the single-particle
Hamiltonians allowing an exact numerical solution, and the second
part represents the residual interaction.

N
H= ¥ H, (%) +U, ' ' (1)
R :
Lhh, 2
Hy= 85 (B =222 e pioaly, | 2)
F
] N
UZ e 14 e | o
i<j :

Here o and B are Dirac matrices, Z is the nuclear charge and N is
the number of electrons, V¥=!' =V, + Veren is the sum of direct and
non-local exchange potentials created by (N—1) core electrons.
Core orbitals are calculated without taking into account interaction
with external electron. The main advantage of such method is the
following: H, generates complete orthogonal set of single-particle
orbitals, both for core electrons and for the external electron.
Correlation correction to the ionization energy of external elect-
ron is calculated by means of perturbation theory in residual inter-
action U. First order correction is zero. Second order correction is
determined by four diagrams shown in Fig. 1 (Ja) is the state of
external electron; |n), |m) are the core states; [B), |y) are the sta-
tes outside core; for detailes see Ref. [1]). Note that contribution of
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diagrams l,a and 1,b at y=a corresponds to rearrangement of core
in the average field of the external electron.

Results of energy levels calculation are presented in Table 1.
Fine structure intervals can be found as difference of corresponding
energies. Comparison with experiment shows that the accuracy of
calculation with correlation corrections is 0.1 —0.7% for high levels
and 3—49% for lower p-levels, error of fine structure intervals
~29% for p-levels and 7% for 6d-level.

Table 1
Energy Levels (lonization Potentials) in Thallium and Gold
(in units em™") :

e RHF Experiment Brueckner

sjale RHE . +mrrel;t-iuns XPF Irél']ﬂéﬂ ::rbita Is
6p, 2 43909 50654 49264 50642
6p4,2 36670 42704 41471 42780
7s 21100 22952 22786 23100
7Ps/2 13359 14227 14103 14129
6d; 12218 13130 13146 13310
6ds,2 12167 13042 13064 13205
6s 60136 74286 74410 74840
Au | 6p s 29353 35484 37051 36363
632 26679 31339 33236 32067

In Tl and Au the average field of external electron is not small.
Therefore desire to take this field into account in zerb approxima-
tion arises, i. e. to ‘carry out self-ccnsistency prucedurj for core or-
sitals including interaction with external electron [8,/9]. There is
an inconvenience in this method: the core electrons states and exter-
nal electron states are not orthogonal. Therefore, to use perturba-
tion theory one should introduce projection operators or use two
close orthogonal sets of states. And the formulae for correlation
corrections become more combersome. Nevertheless, we have carried
out such calculation in Tl. But agreement with experiment did not
become better. Moreover, in the calculation of HFS errors became
larger than in our previous calculations. Therefore we do not inclu-
de external electron in self-consistency procedure. -

For further applications we consider another way of correlation
correction calculation. Let us add to V¥~' in eq. (2) a non-local
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correlation potential & chosen so that its average value for the state
of external electron coincides with correlation correction to energy.

$Es=<(al 2 la),
S ¥, = 2 (7, FEd) W () dor,. | (4)
It is easy to write the correlation potential explicitly. For example, a

part of the mass operator 2 (7}, 7,, E.) corresponding to Fig. l,a, is
of the form:

S (E R E) =
I}'P(F]r"" Ll LA o yr (F,) W, (Ta) yrt [F}r" yr (Fs)
=4 da_da " a’ri3 Ryt ¥ 2 g L\'3 B L 4rio4 r:-i_ 5
Eﬂ;f ) &rsdir, EBE, E, B, (%)

Detailed description of & calculation can-be found in Ref. [3].
Solving the equation for single-particle orbital in potential
V="Vair+Vexen+ S we get external electron energy with correlation
correction. Difference from direct perturbation theory calculation he-
re is ~(2)? and is small. Note that the single-particle states, found
in such a way, practically coincide with Brueckner orbitals (see
e. g. Ref. [5]) and despite some distinction in definition we will
call the orbitals in the potential V¥='+$ the Bbueckner orbitals.

3. HYPERFINE STRUCTURE (HFS).
ENHANCEMENT OF CORRELATION POTENTIAL CONTRIBUTION
TO CORRELATION CORRECTION

[t is convenient to include hyperfine interaction Hy; in single-par-
ticle orbitals rather than take it into account by means of many-
-body perturbation theory (see, e. g. Refs [5, 2]). In linear approxi-
mation in Hy we can write W,=W,4+0%¥, &.=e,+0e, VV'=
=V¥!' 1+ 8V, where §¥,, 8¢, and 8V are corrections to wave func-
tion, to energy and to exchange potential, induced by hyperfine inte-
raction (correction to direct potential is zero here). Corresponding
equations have the form

SV=VYT (B, Wy )= VT (B s Byt (6)
(Hy—e) 8 =—Hy-W—8V-W48e-V, (7)
Se= (W[ Hyl ¥ + (¥ V| ¥). (8)



These equations should be solved seli-consistently ior all core elect-
rons (without external electron). Corrections 6W and 6 for exter-
nal electron should be found at frozen core. External electron cor-
rection 8¢ determines atomic hyperfine structure. Term (W|6V|Y)
in eq. (8) for 6e corresponds to core polarization contribution to
HFS. In many-body perturbation theory this method corresponds to
summation of diagram series in Fig. 2.

el O - S 1

Fig. 2.

.Correlation corrections to HFS are calculated in the same way
as corrections to energy. It is necessary to select terms linear in Hyy
from formulae for second order correlation corrections expressed
through W, €. Detailes of calculations can be found in Rei. [2]. Re-
sults of calculation for TI HFS are presented in Table 2.

. Table 2

Hyperfine Structure Constants in **TI
(in units 1072 cm™')

u RHF + RHF 4 ; Brueckner orbi-
"IfIR;fﬂ‘I"I' + polarization, |+ polarization+ E“f;’irgf]"t tals+ polarization,
VLAWY Y by V1 W) |+ correlations [ (Wil Hyg+ 6V1 W)
6p, | 580 707 694 710.853 726
6Dy 43 —64 9 8.8407 —64
7s 252 347 415 417 416
7pys 6.2 39 13.3 10.3(2) 6.5

Direct calculations in second order in residual interaction are
quite cumbersome. There is an essentially more simple method of
approximate correlation correction calculation based on correlation
potential (4) [3]. We find the orbital of external electron ¥ in
«Brueckner» potential V=V + Vewn+ 2 rather than in HF potential

V=V + Verer. And then we calculate 8¢ (8) using «Brueckner»

function ¥ found in this way. In many-body perturbation theory ba-
sed on HF basis set this method corresponds to taking into account
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the diagrams shown in Fig. 3 (renormalization of external electron
wave function) and neglecting the second order diagrams for renor-
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malization of vertex (several diagrams of this type are presented in
Fig. 4). In the Ref. [3] it is shown by means of numerical calcula-
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tion that this approximation works well in the alkaline atoms and
theoretical arguments clarifying this fact are presented.

Results of thallium HFS calculations based on correlation poten-
tial method are presented in Table 2. Comparison with experiment
shows that accuracy is practically the same as in exact calculations
in second order of perturbation theory. It is 1—3% for s- and
pyo-levels. For p,,-levels accuracy is low due to very strong com-
pensation between Hartree—Fock value (6py,| Hul 6py; ), core pola-
rization (6p;,,| 6V|6p;,» and correlation correction.




4. E1-TRANSITION AMPLITUDES.
CORRELATION POTENTIAL METHOD

El-transition amplitude is determined by the matrix element of
the operator

fi. (9)

ME

D=e

i=1

For single-particle states

(BIDlay =e(Blfila)R . (10)

Here (B|#la) is angular part of matrix element (i=r/r), and R is
radial integral

o0

R= S (fofatgpga)r dr (11)
0

where f and g are the upper and lower radial components of Dirac
spinor. Results of radial integral calculation using HF orbitals are
presented in the first column of Table 3. Amplitude {_:alculated with
many-body effects taken into account or obtained in the velocity
form (see below) can not be presented in the form oy, €1i1).
However it is convenient for comparison of the results tnﬁ use the
radial integral which we define formally as an amplitude dw!ded by
angular matrix element (Bl7]a). One can extract the jexperlmental
value of radial integral R.x, from oscillator strength using standard
rmulae  (see Ref. [10]).
§ Pnlariéatiﬂn effeq[::ts];re taken into account by using TDHF equa-
tions. Let us remind how to modify HF equations in the presence of

time-depended perturbation
Hoi= (e +F" ). (12)

Total atomic TDHF function is Slatter determinant constructed irom
single-particle orbitals

{I}ke_m“ at {‘Fk—i-Xa e—-iu}l $ Yk El‘m!) E—-fak.!. {13)
Equations for corrections X, Y, induced by perturbation Hi. can be
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Table 3

Amplitude of El-Transitions in Thallium and Gold
(in units eag (Bl fil @), see formula (10))

RHF TDHE 3 RH.F+ o H?Ck"w B rui:i::ilerr??t]i:.::]s+ Experiment
(81 Dl ) +polarization,|  ortitals: + polarization, (22, 23]
{ﬂ'l D"""‘SFEE} {ﬁ'BrI ﬂl D-Br:' {ﬁBr! D+ 8V uﬂ.r}
1] 250 2.32 2.32 2.14 |
SBhertS L e L dg 9.32 1.90 9.15 2.25(6)
Il 343 3.13 3.10 9281
Opse—13 il iogs 3.13 2.55 2.84 2.85(0)
1| 080 0.75 071 0.64
T e B 0.75 0.56 0.65 06742
ot e e 0.70 0.77 0.63
1 [P 4 6 0.70 0.61 0.65 =
Ll <2gia oF; a7Ee _7.59 —7.90
P75 |, —7719 —7.86 L5707 =713 = R
o 7T R _7.08 __6.85
Tlip =18, 1 5F Sanoo —7.45 —6.66 _6.79 i
|, R —92.40 ~2.18 -
Soie—b0p Lol b7 | e | Vi 5o _9.39 LAl
pi o saae | —3.08 _9.84
632 —6dyp | | _o5gg —9.94 —2.94 _3.00 e
GilE g anul o a0 907 _92.3]
TR o DI et _92.72 — 294 —9.94 —&ediils)
—3.21 —92.65 296 _9.93 ;
st S T ORI R 915 T2t
obtained from variational equation
8¢®| H+ Hin— i %Iﬁn —0 (14)
by variation of X, and Y,
(Hy—e—o) Xi= < (F+60) v,
(Hy—ei+w)Yi=— (Ft+6V+) ¥, (15)
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N-1 "
o= Y { LY @) Wa(@) + ¥E @) K@V ()~
k=1

Irg"-rgl

—[YH(2) We(l) +WH(2) Xe(1)]Y(2)}-

Similar to stationary case we solve eqs (15) self-consistently only

for N—1 core electrons (V¥~' approximation). Wave function of ex-
ternal electron can then be found in frozen core field. This method
allows one to find complete orthonormal set of orbitals with quasi-
energy e.

Expression for external electron transition amplitude M, from
state |a) to state |B) induced by the field (12), can be found by
comparison of solution (13) of eqs (15) with conventional time-de-
pendent perturbation theory

Mﬂ-u ]_P,vﬁe—l-mf- {Iﬁ}

¥, =W,
y + E.;-—-—Eg-l-m

We keep here only the resonant term (w=~Ep—Es). On the other
hand, as follows from eq. (15)

2 (Wl f +6VI W) oot

T —iwt
Iy~ (Kt = b (17)
Comparing (17) and (16) we find
Mpa= (Wl [+ 871 Wo). (18)

Contribution of 8V here corresponds to direct and exchange electron
core polarization (compare with formula (8) for 8e). Formula (18)
corresponds to well known random phase approximation (see, e. g.

Ref. [11]).

The Hamiltonian of electron interaction with electric field of
electromagnetic wave

E=Eu' [E—iml +Eimf} (Ig}

depends on the choice of scalar ¢ and vector-potential A gauge.
Conventional «lengths form of interaction corresponds to the choice

¢ =—2EF cos (wl—FkF) ,

a4 ?ﬁf—k cos (of— k) =0, (20)

12

H , ~ —efE(t), [i=—efE,,

where £ is a wave vector. We neglect here corrections ~kr and
magnetic interaction. Another standard «velocity» form corresponds to

¢=0, e 0 sin (ofi—EkrF) ,
L]
H,—L‘;} ~ -—EELE“ sin wf, Auzie& L. (21)
[U] o

The gauge (21) can be obtained from (21) by means of gauge
transformation

cp—}(p+§-;ﬂ', A d-%70,

0= £ sin (0i—%P). (22)

It is known that in TDHF calculations amplitude is gauge invariant
(see e. g. Refs [11, 25]). It is easy to verify. Gauge transformation
of wave function

@ =0 exp(i kze(rk;) (23)

leaves TDHF wave function @’ one-determinant. Therefore, if @ is
the solution of equation (14) in one gauge the transformed functi-
on @’ is the solution of the equation with gauge transformed H’
(it is easy to verify by direct substitution of the transformation
(22), (23) to equation (14)). The common phase in wave function
(23) does not influence the transition amplitudes and the field of
electrons.

The relation between solutions X, Y in /-form and v-form can be
found from equations (23), (22) in linear approximation (see e. g.

Ref. [12])

efE,

XU=XI+ IPI!
1]

vy, ¢ g (24)
1]

These expressions are valid both for core electrons and for external
electron. Gauge invariance of the amplitudes immediately follows
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from (24). According to (17) the amplitude is resjdue of (¥|X,) at
Hartree—Fock frequency o =Egs—E,, but gauge term in (24) has no
pole.

Note that gauge invariance of amplitude in TDHF takes place
also when any additional single-particle interaction is included
(e. g. weak interaction, Refs [13, 12]) and in many-photon transiti-
ons [l3].

Therefore, coincidence of [- and v-forms in TDHF is identical
and is the test of numerical calculation accuracy only.

Other test of accuracy and self-consistency of TDHF-equations is
the value of electric field at the nucleus. As known, static electric
field at nucleus is shielded completely by electrons (Schift theorem
[14]). We have shown [15] that this theorem is valid in TDHF at
o =0. Therefore, static field at the nucleus must be

Ei(0) =Ey+ (E.(0)) =E, %- (25)

where Z; is the ion charge, E, is the external field, E. is induced
“electron field. For example, in TI* ion E;(0) =E,/8l. Optical transi-
tion frequency is small with respect to core electron excitation
energy, and E;(0) here is close to (25) (see also Ref. [26]). For
example, at the frequency of 6p—7s transition the difference from

static case is —4-1073E, only. A plot of E;(r) was presented in the

same Ref. [15]. It is interesting that «shielded» field E, can be con-
siderably larger than E; and has nontrivial radial dependence.
Asymptotic value (25) is reached near the nucleus only.

Results of TDHF calculations with core polarization taken into
account are presented in Table 3.

To refine the calculations it is necessary to take into account
correlation corrections. As we have mentioned in the section 3 the
contribution of dominating diagrams presented in Fig. 3 can be
easily taken into account by means of Brueckner orbitals for exter-
nal electron. It is enough to use them in formula (18). Note that
core polarization 6V can be calculated at Hartree—Fock frequency
w. Contribution of frequency shift in polarization due to correlations
has a higher (third) order in residual interaction. But the shift of
frequency in operator f, (21) in v-form should be taken into acco-
unt because it is the correction of the second order.

Final results of calculation by the polarization potential method -

are presented in the fourth column in Table 3. In this case there is
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no exact theorem about coincidence of [- and v-forms. And the diffe-
rence between them is the test of physical approximation. It is seen
from Table 3 that coincidence of /- and v-forms and agreement with
experiment are quite satisfactory. The exception are 6p—6d transi-
tions where the difference of ov-form calculation with experiment
reaches 15%. This difference becomes smaller if we taken into
account structural radiation which is not very small in v-form (see
following section 5).

5. STRUCTURAL RADIATION AND LOW-ENERGY THEOREM

Introduction of correlation potential allows us to take into acco-
unt dominating correlation corrections (Fig. 3), where interaction
with electromagnetic field is included into external line. In linear
approximation in correlation potential their contribution to the am-
plitudes of the transition 1-2 (E,>E,) has the form

My=(Y,| & (E)IW))+ (W (E))X,) (26)

with conditions
(Yol W) =(¥,l X,)=0. (27)

These conditions follow from perturbation theory. Correction to
function ¥;

L | n) (nl 1)
= Z Ei—E.,

n=ki

is orthogonal to ¥;. Conditions (27) allows one to find unique solu-
tion for equations (15) for X, and Y, inspite of the fact that there is
the resonance in them (w=E,—E,).

In v-form calculation the term corresponding to the frequency
shift due to correlations in the operator f, (21) should be added

A((21fol 13) = (2lieTE,l 1) (m:&m _%) -

— B0 g KBy B9 o) orEyli),

(1] (1

Corresponding contribution to the amplitude is equal to
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My =—22 (2l 1), (28)
Ao=(2212)— 1|2 1).

The polarization in formula (28) is the third order correction and it
is out of our accuracy of calculation. But as follows from gauge
transformation of X, Y (24) and condition (27), gauge invariant re-
sult should contain contribution (28) with unshielded operator er.

Correlation corrections (26), (28) discussed above are equiva-
lent in linear approximation in £ to addition of correlation potential
in equation for external electron orbitals. However, natural question
arises how to estimate remaining diagrams (see, e. g. Fig. 4). By
analogy with bremsstrahlung problem this contribution will be cal-
led structural radiation.

[t is easy to show that the relative contribution of structural ra-
diation is proportional to small factor AE./AE., where AE, is a dis-
tance between energy levels of external electron (AE.~wm), AE, is
an average core electron excitation energy in the sum (5). Indeed,
electromagnetic vertex in diagrams in Fig. 3 changes a state of ex-
ternal electron, and denominator is E,—E,~AE,.. If the vertex is
placed into internal line (Fig. 4), the many-body perturbation the-
ory denominator corresponds to core electron excitation energy AE..

Thus, contribution of diagrams in Fig. 3 is AE./AE. times larger -

that of Fig. 4. Numerical calculation shows that AE.~2Ry,
AE.~0.2—0.3Ry, i.e. structural radiation suppression factor
~AE./AE.~1/10.

Using the parameter AE./AE. one can estimate structural radia-
tion more accurately.

The largest contribution is probably given by the structural radi-
ation diagram shown in Fig. 4,a. Indeed, this diagram determines
long-range asymptotics of electromagnetic vertex correction. Simi-
larly asymptotics in mass operator is determined by the dominating
diagram shown in Fig. l,a (see, e. g. Ref. [3]).

e‘a

b {ﬁ--“?ﬂ = E1,.::1 (7, Fy) = m_EF '5{F1_F2} :
Fyafp—+00 1
g Z i@f-"zg}jgmﬂ} : (29)
n occupied o
¥ unoccupied
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Here a is core polarizability. Estimation of diagram 4,a contribution
is similar to derivation of formula (29). Structural radiation ampli-
tude is

My, .~ (2|T(Fig. 4,a)] 1),
Tia (B T EEy) =

(30)

¢l <= 1Byl v) (oI Dy (ol (B = In)
:Z R BN E+ELE_E)

n
By

Since external electron energy E, or E, is small in comparison with
core electron energy E,, we can approximately substitute E, by E,
in formula (30) and use completeness condition 3 [y) {(y| =8 (F—r").

T
Thus we find at E,—E,=0o~AE.<AE,

P opd (31)
oF

Analogously substitution E, by E, leads to

ey

93 -
ﬁI"ED' (32)

At large distances r,, r, S is local (see (29)) and expression (31)
coincides with (32) identically

.

ear

Cya (7 7y 00) =~ S50 8(7—7)
r 0,2\ (nlrly) {ylrdn) 33
a'=2e Z (En_Ey)? ! (33)

ny

This formula (cutted off at core radius) is suitable for rough esti-
mation of structural radiation. However in numerical calculations
we use exact non-local expression for $. In this case formula (31)
does not coincide with (32). This fact can be used for estimation ol
accuracy of transiormation from (30) to (31), (32). The point is
that first corrections to formulae (31) and (32) in (E.—E,)/AE.
expansion have opposite sings. Difference between calculations
using formulae (31) and (32) constitutes 10—409%. The result can
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be refined as follows

__L1l[poz 92 nH
L= 2[D6E+6ED]' &%)

In this case first corrections in (E,—E;)/AE. compensate one
another.

All the remaining diagrams of structural radiation compensate
each other and give small contribution to the asymptotics of T’ (7).
For example, contribution cof/r* of diagram 4,6 compensates cor-
responding contribution of 4,c, and their asymptotics is 7/r®. As a
result, matrix element between the states of external electron is
small.

The method described above is not applicable for estimation of
structural radiation in v-form. Here the states with large energy
difference E,—FE, give essential contributions in the sum (30), and
it is impossible to use completeness condition. However, the magni-
tude of structural radiation in wv-form can be easily expressed
through its value in [/-form using gauge transformation of wave
function (24). The result is

M) =My + — (218 (E;) F—78 (E))I 1) ~
~ = (2[2 (E), 7 1). (35)

We take into account that E,—E,=w, E=(E,+E,)/2 and

s (Ei_gl) ~% (E}:‘_;-E_ <.

In the second order of perturbation theory in residual interaction
there is one more contribution to the amplitude related to the
change of the normalization of wave functions ¥, and ¥, due to
configuration mixing. It is easily transiormed to the form

) 8% ]

1
M =2 DIDy [c21 2 12+ 1l 22 1) (36)

Total correlation second order correction is determined by for-
mulae (26), (30), (34), (36) in {-form and (26), (28), (30), (39),
(36) in v-form. Using the wave functions transformation (24) it is
easy to verify that total correction is gauge invariant.

18

Results of El-amplitude calculation in Tl by TDHF method, cor-
relation corrections and total transition amplitudes are presented in
Table 4. It is seen that contributions of structural radiation and
normalization in [-form are small and compensate each other. Thus
the result in [-form practically coincides (with accuracy of order of
small corrections ~2?) with simple calculation by correlation po-
tential method (see Table 3). In v-form structural radiation is lar-
ger because of the term proportional to 1/w (see formula (39)).

Table 4

Perturbation Theory Calculation of El-Amplitudes in Thallium
(in units eag (Bl 7il a), see formula (10))

Mass
F .
( o;:_e:ti{r & n:slul.llilll.':imjr Structural |Normalizati- r;:::ﬁi. Experiment
TDHF HURL :ilm in v-form radiation |on of states ¥ ;
tential TDHF + [22, 23]
mp:tlljl—izl:tai;n, operalor, (34), (35) (36) + correlations
(26) (28)
1| 232 | —0.22 a3 0.02 —003 | 200
ik 2.93(6
6p2—7s | 1039 | 027 | —053 | 006 | —0.03 | 209 (6)
I] 313 | —0.40 st 0.03 —0.04 .72
e 2.83(6
6pye—Ts [ | 313 | o048 | —092 | 007 | —004 | 272 (6)
075 | —o.10 = 0.01 —0.01 0.65
1 : 0.67(3
o185 075 | 003 | —0.45 | 003 | —001 | 0.65 &
g |1 070 | —0.05 for 0.01 —0.01 0.65 _
62—8s 11070 | om | —018 | 003 | -—001 | o065
i|—2.15| 0.06 = —0.03 | 003 —209 |
EL —1.99(8
Op =S|y | 915\ —046 | 043 | 006 | 003 | —209 il
' (l—294] o021 k- 004 | 004 | —2m3
b _2.64(13
E’FM ﬁ%{“iu —2.94| —055 | 066 0.06 | 004 | —2073 s

Note that formula (35) has some analogy with a well-known
Low theorem about the @—0 limit for briert'lsstrahtung amplitude in
scatteriqg (see, e..g. Ref. [24]). Similarly to discrete spectrum case
the largest lcontribution here iis also given by radiation from exter-
nal line (diagrams shown in Fig. 3) due to small denominator
(~1/w) in the intermediate state of external ele¢tron. According to
Low theorem contribution of the following order in o, including
structural radiation, is found from gauge invariance requirement.
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Similarly it can be done for discrete spectrum transitions. Dominat-
ing term in v-form structural radiation (35) = (¢2|[Z,7]|1) also
)]

can be found here from requirement of amplitude gauge invariance.
In [-form calculation, structural radiation is ~® times smaller
(compare (35) and (34)) and can not be obtained from gauge in-
variance requirement. This fact can be clarified as follows.
Dominating diagrams (Fig. 3) besides the enhancement ~1[/w due
to small denominator, can have additional enhancement factor
which is large matrix element of operator r between high excited
states (limit w—0 corresponds to a highly excited atom). Compari-
son with v-form calculation shows that this enhancement is ~1/w

also ({2][7]1) =—~(—i~<2|ﬁ| 1>). But structural radiation (2| F-j%l [5

has no such enhancement.

6. CONCLUSION

In the present work we discuss the following method of atomic
calculations. Wave functions of closed subshells are found by relati-
vistic Hartree—Fock method without interaction with external elect-
ron. Hartree—Fock Hamiltonian generates complete set of orbitals
including external electron states. First order correction in residual
Coulomb interaction to the ionization energies of external electron is
zero in this case. Second order corrections are found by means of
perturbation theory. :

Polarization corrections to matrix element of interaction operator
(e. g., hyperfine interaciion or electric dipole interaction with radia-
tion) are found by solving Hartree—Fock equation in external field
(time-dependent Hartree—Fock method). Second order correlation
corrections can be found by two ways. First method is many-body
perturbation theory, and it is very cumbersome. Second approximate
way is the correlation potential method. Orbitals of external elect-
ron used in matrix element calculation should be replaced by
Brueckner orbitals found with correlation potential taken into acco-
unt. Correlation potential is calculated by means of perturbation
theory. This method is essentially simpler and corresponds to taking

into account dominating diagrams (correlation corrections to wave
function) only.
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Thallium and gold are probably most complicated atoms with
one external electron. To test physical approximation we have calcu-
lated by two methods the energy levels, fine and hyperfine structure
and several El-amplitudes. Earlier we carried out some similar cal-
culations for cesium, francium an ion Ra™ [1—4]. In all the cases
when there is no strong compensation of different contributions to
calculated value, the accuracy of calculations is some per cent in
both methods. .

Thus, simultaneous consideration of electron core polarization
and correlation corrections to external electron wave function
allows one to obtain an order of magnitude better accuracy than
simple Hartree—Fock calculation.
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