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ABSTRACT

Connection between Schwinger terms in commutators

of fermionic current componenis and gauge non-inva-

riance of the transition amplitude for the system of

Weyl fermions in an external vector field is estab-

lished in the successive Hamiltonian approach. Then

we investigate properties of a gauge group representa-
tion in the space of fermionic field states.

© Hnucruryr adeprod pusuku CO AH CCCP

1. INTRODUCTION

For the first time the complete expression of the gauge anomaly
in the theory with Weyl fermions was obtained by W. Bardeen ELL
who explicitly evaluated Feynman diagrams. Afterwards more ele-
gant technigues were developed for evaluation of the local gauge
anomaly in the path-integral formalism [2—4] and its connection
with various forms of the index theorem has been clarified [5].

The works [6, 7] have revived an interest to the Hamiltonian in-
terpretation of anomalies and Schwinger terms in the commutators
of the generators of gauge transformations. The algebraic methods
of [6—8] enable one to obtain these commutators starting with the
known expression for the anomaly. '

On the other hand, it is interesting to find a reverse way: from
Schwinger terms to the anomaly in the framework of the successive
Hamiltonian approach. In this way features of the space of quan-
tized fermionic field states and of the evolution operator, acting in
this space, become more clear. OQur paper is devoted to such
approach.

We study the system of left Weyl fermions in the external gauge
vector field. In Sect. 2 we evaluate the gauge variation of the evo-
lution operator and commutators of different components of the fer-
mionic current thus arising. Our results disagree with that of other
authors [6, 7, 9, 10] obtained earlier. Sect. 3 is devoted to the
study of features of the states space for the Weyl Fermi-field. The
results of our work and their relation to that of other authors are
discussed in Sect. 4.



2. ANOMALOUS COMMUTATORS AND ANOMALY

Consider the system of left Weyl fermions in the external c-num-
ber field A,(t,%), described by the secondly-quantized Hamiltonian

H(t)={dz v+ @)[i6V —Aot, ) — FA(L, )] W) (2.1)

The transition amplitude of an initial state vector of the fermionic
field |¢) to a final one |f) during a time T equals

Sff¥{f|Texp(—viT§de(t)) iy = {(fISli}, (2.2)
i .

where T.... as usual, stands for chronological product.

In order to find out how does the transition amplitude (2.2)
change under an infinitesimal local gauge transformation of 'the ex-
ternal field and initial and final state vectors we make the identity

transformation of §;

Sy = (FLUT N Uo(D) SUT ' (0) Uo(0)1) (23)

with the help of the unitary operator
U, ()= 1+ dxo’(t, D)p"(9)=1 +i§ po(t), (2.4)

where p*(¥)=191(¥)t"w(¥) is the charge density operator, t* are co-
- - - l -
lour matrices, normalized by the condition Tr f“f:;f)“b (in Abe-

lian case v°—uv, p(¥)—p T (¥)P(x)). Expanding (2.3) into the power
series in v, we have:

i(f1S§ po(O)liy —i¢fl § pu(T) Sli) +

1§ dtCITESIHW, § e+ S § o5t 11) =0 (25)

0

(we denote time derivative by a point). The first ard the slecund
terms in the left-hand side of (2.5) correspond to the variation of
the initial and final state vectors under gauge transformation. As

for the third and the fourth ones, the formal use of the canonical
anticommutation relations '

(), $(&) |={$T (@), v*(3))=0,
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{ba (%), ¥o(&) }=8p (X —7) (2.6)

for evaluation of the commutator [H,{pv] turns these terms into
the gauge variation of the external field

A, (t, %)~ AL (t, )=A, (t, D+ D, v (t,?)

in the Hamiltonian (2.1). Then the transition amplitude (2.2) proves
to be gauge invariant:

(A A1) = S[A] 1),

Show now that the need to regularize local products of the singular
operators ¥ (¥) and ™ (¥) leads to violation of the last equation.

It is convenient to regularize the operator of the charge density
with a spherically-symmetric smooth function Q.(r):

p'®)=[d7 QU v (¥~ £) fo(F+4).

lim Q(r)=5(7) &)

=

(subscript e is dropped in what follows). Evaluating the commuta--
tor of | pv with the free Hamiltonian, we obtain:

[Sdfmw{f)fﬁ“ﬁlb{f}, (i SdFQ(r)¢+(§,-_ E) U@w(ﬁ—k.%)]:
= —i (a7 @) ¥ [arQunv*(7— L) oo+ L)

We see that it is natural to use the same function Q(r) for the re-
gularization of the current density operator j*(¥)= — 1 (X)c £ (X).
Then the last expression takes the form

i|d¥o’(® v (D),
relating to the Abelian part of the gauge variation of A ({,%).

Turn now to the commutator of the interaction Hamiltonian with
the gauge transfiormation generator:

—[§ ax AL D) ju®), § dgo’(t, i)’ @)=
=— [ dZ AL, D 0", B[ L@ +i Wa(t). (2.8)

Its non-canonical part



—

W= {dr Q) [ar @) §az[w(F— TE) A(#— T)e( 2+ o) X

—

xw(f+ ?Jj’) —~1p+(f— %) A U{f}ﬂ:(f—l— %) iy ;:—a}]z

—i {d% [d7 o ) (A0 ®, 0 Dhan— A DD, 0’ D) (29)

is expressed in terms of anomalous commutators of the charge and
current densities. In (2.9) we use A for Ag+GA and omit the time
argument for brevity. Note that the last expression is equal to zero
in the naive local limit. Now eq. (2.5) can be represented in the

form

T

(FISIAE Y — (FISIALL iy =i (di( I T(S W) 12). (2.10)

0
Right-hand side of (2.10) can be different from zero due to singula-
rities only, which arise for close ¥ and g in the matrix element

CFI TS (@) 0a(®) 16) = (FI ST, )W () $a(¥)S(E, 0) 1),

where a, p stand for Lorentz and group indices. This matrix ele-
ment can be expressed as the product of Sy and the limit

—ilim Goplt=F% . 1 ) Sk

T——10

of the causal Green function of the Weyl fermion in the external
field:
Gu(t+7,%; 1, 5)=

— L 0(0) S (IS, 147 0D Sl ) 0! @ SUE, 0 1) —
— L= S IS )W @St 141 @D S+, 018y, (211)

One can be directly convinced that (2.11) satisfies the equation
(indices are omitted)

(si ~fa'f:) G+, % £+
aT 0x

a1 gdr'Q(r)ﬁ(z+«c, T4 g) G4, F+7; 1, f)=0@)FE—5).  (2.12)
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It is worthy to emphasize once more that we are interested in the
part of the Green function which is singular when x—y. Just this
part can be evaluated using the equation (2.12). We shall search

for its solution by the standard iterational procedure as the series in
powers of the external field

G=G 161Gt . (2.13)

From the dimensional analysis it is obvious that singularities are
contained in G with n<<2.

Free part G” of the Green function in the limit of > — s, by
the definition (2.11) ;

G[m(’[—b— copiyalipyal

4 X i —— e
1 g d pd‘ g P HipX—1) p.;;—crp+ R .
(2m) p*+4i0 2n® (X—if)!

(2.14)
Substituting (2.14) in the expression for G"
Ut % 9=~ (drQ() [dr a2 6O t4v—t, 5+ =
Ay O yr 35 =4 T
XA, 2) G (,: ——t,z—yw{—?), (2.15)
and picking out the singular part, we obtain:

0.7 £t g g . (@r)(Am) | &@Xe)+nb
( Do\ P (i st £ T )

where A=

¥l o % et
—G1 7] — —A— V Ay and 5=V XA are the Abeli-
an parts of the electric and magnetic fields. The vector-potential

and its derivatives in (2.16) are taken at the point ( z——ﬂt-lz)
Similarly, singular part of G®

6Pt 4,7 t,5)=— (arQ() far dEG“”’(Hr-_r::er _;'_ _..,:,;) >

XA, ) G“}(f’, 4 E; ‘ g}') (2.17)

equals




i T(AXA")

) : 7 Qr
G?t—0,% ,féﬂ—* Sd’ (’}Sd’ J(r AL T
S AXMAG—i AWA'XA) | g (67) (A ) (A7) ) (2.18)
e F—g+7+71) :
where
B Pt i L Yo ifi i Gl
ST Ttk A“"A“(f’ (‘r+y+ 2 )+ ﬁ(x o ))
L it His Ty LA (AT S S
A;:A.{ (r+y+ - gr )—g( g I r+2r ))

Before substitution of the obtained expressions into (2.9), (2.10)
note, that anomalous commutators contain two kinds of terms.
Those ones, which do not violate parity, exist in the vector theory
too. For the first time the existence of non-canonical terms in the
current commutators was pointed out in the pioneer work by
J. Schwinger [11]. The explicit form and physical origin of the vec-
tor Schwinger terms were discussed then in works [12, 13]. In the
following we are interested in the terms only, which are specific for
the chiral theory.

In (2.16), (2.18) such terms contain absolutely antisymmetric
tensor ;. Substituting them into (2.9), (2.10) and taking the local
limit we arrive at the result, independent on an explicit form of the
function Q(r):

[P, p@) ln=— —— 7, (2.19)
i (%), p(H) Jan = T Eeem%’ 8, 8(X — ) (2.20)
in the Abelian case, and
ia [ 3 L f i B —

{p (ﬂipﬁ(g}]ﬂﬂ_‘#ﬁ_}'dab Euk( _Efd A;dAf)ﬁkﬁ{x—g}')—i—

Ll 000 ﬁ 4% e G ALAL S(F— 1), (2.21)
ol p = b ey t ahc 9 pode ad ge = _
[ff I:J'E‘], P (.’I’ JE”T_ 79 “-_;: buk(fq +a A{] 4 f ‘4} ;‘q{]) 6;?6(.x g'j
. plbic 1 cde d a2 i e , =

=i md gk (0 A A — Ap 0,4, )8(X —7) (2.22)
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in the non-Abelian one. We imply here that anomalous commutators
(LTS 0 @lan) i)

(FIS|i) :
(29). In (2.19) —(2.22) €=—A—V Ay and F=V XA are the
electric and magnetic fields in the Abelian theory; d**° are symmet-

ric constants of the joint representation normalized in the standard
way,

are equal to , where [..,p (§)ln are defined by

d =2 Tri*(t°, ).

Vector-potential and its derivatives in (2.19) — (2.22) are taken at
the point ( %i) Note, that right-hand side of (2.21), (2.22) in-

cludes terms of the canonical structure (i [**ji8(x—7)). They can be

dbSDl‘bEd in the redefinition of the Current operators in the Hamilto-
nian (2.1):

o”(¥) > pa(X) = (@) + RGN (2.23)

5?6 :

@) — (@) =i ®)— e (0; Ag Af—AL 0, AF),  -(2.24)

576 n*

It is equivalent to the addition of the local counterterm

— | dX[A§ (pf —p")— A" (T —T“)=0 (2.25)

to the Hamiltonian of the system. Then the anomalous commutators
for the non-Abelian theory take the form

! idume}-m(ﬂfﬂf—% f“d”A;fAf) 0:8(X—0), = (2.26)

[oEE o =n [
PalX), p (Y)len=— —
(2

i
72 n®

L e Jy afic i [ 3 code 4d ae et -
L7 (9, 0 (Bon = g EE-M(A,- + 345 — —f ¢ AfAﬂ) a:0(x—g). (2.27)

Our result for [p°(%), 0" (§)]n does not agree with any one obtained
earlier [7— 10]. Possible origin of this disagreement is discussed in
Sect. 4.

The compact E‘X]]FLS&-]UH for the right-hand side of the equation
(2.10),

fTSd_f GIT(SWL ()i =

]



= 2;12 | d'x e Tro au(mamﬁ— %mﬂuﬂu) -+ Spi»

(2.28)
which agrees with the well-known expression for the consistent
local anomaly [1, 14], can be obtained from (2.21), (2.22) (or
(2.19), (2.20) in the Abelian case) after the addition of the local
counterterm

I Sds:’TrAﬂ{ A5+ %Mxif}, (2.29)

TrE

is made.
Thus, for the local in the time and space gauge transiormation
(v(f, 1X]|>00) =0(0,X) =0v(T,x)=0) we have
| CFISIAY) 16> — CFLSIA] 10y =i oty (FI Sliy, (2.30)
- where

1

uﬁr:.l:
24 1

{ dx e Tr 00,( AvuAs— %AvAmAﬁ) , (2.31)

and the evolution operator contains, except the fermionic Hamiltoni-
an (2.1), the local polynome of the external field (2.29). '

3. SCHWINGER TERMS AND SPACE OF FERMIONIC FIELD STATES

In the Schrodinger representation infinities in matrix elements of
local operators and Schwinger terms arise due to the singular cha-
racter of the wave functionals ® [$™ (¥)] (see, e. g., [15]). For fer-
mions these singularities relate to infinite number of filled states in
the Dirac sea. For example, the vacuum functional @, [p™* (X)] of
the fermionic field in a fixed external field A,(¥) has the form

Da [T @]=]] bn.

n

A
b= [d% %™ (D) e, Svt

where y.(¥) is the set of negative-energy eigenfunctions for the
Weyl Hamiltonian in the external field. The action of some local
operator, say p(x), on @,, ;

10

Pl (D)= lim

o
n

bb,

N I 5 M
)t D@ ba—[] bm. (3.2)
is not well defined, and a regularization is necessary either for
p(x), or for @, [pT(X)]. We regularize operators (first M—-oo,
then N—o0). il |

In our opinion, the origin of the anomalous commutator
[0°(®),0")n is in the fact that the vector @, , where
g(¥) ~6(X¥—Xxp) is the parameter of the point gauge transformation,
cannot be represented as a normalizable linear combination of vec-

tors irom the Fock space built over @®,. Really, the gauge variation

of field coordinates a7, b, does not decrease when n increases. (The
situation is similar to the ordinary spontaneous symmetry breaking,
when, e. g., a homogeneous rotation of all spins in the infinite fer-
romagnet to an arbitrary small angle leads to the state,” which is
orthogonal to the initial one. In our case the infinite number of ne-
gative-energy states with arbitrary large momenta is crucial. (See .
also [16]). In fact, the point gauge transiormation is homogeneous
just for these degrees of freedom.) A regularization of the gauge

transformation operator (say, a restriction of its action to finite
number of modes, as in our case) changes properties of the gauge
group representation in the space of states. Now the gauge-trans--
formed state is a normalizable superposition of states from the initi-
al Fock space. (Similar approach is developed in [17].) The pheno-
menon of such kind exists even in the quantum mechanics. Really,
any finite reduction of creation and annihilation operators a and a™
would spoil the commutation relation [a,a™]=1, since
Tr [A, B] =0 for any two finite-dimensional matrices A and B. (See
also [18].)

Consider now, how does the operator U, transform a fermionic
state vector | ),. Take for simplicity the vacuum state vector |0},
in a given external field. (All the following is valid for any finite-
particle state built over |0),.)

In an interacting theory the operator U, transfers the vacuum
|0Y, into some superposition of states over |0),.. To returh to the
initial configuration of the external field, we pass along the infinite-
simal loop in the gauge group with the help of the operator

I(u,v)= Uy, o Us ' Us ' U, U, . (3.3)

Remind that we are resricted now to a fixed moment of time.

11



]f the vacuum state [0), is completely determined by the exter-
nal lield and hence is the only for the given external field (up to an
arbitrary phase), then

1(u,0)10)5=10) . (3.4)

Rewritting (3.3) in the form
I(u,0)=1—[{ pu, | pvla, (3.5)

where the operator [5 ou, | pvls, is defined by (2.9), we see, that in
the chiral theory the action of /(u, v) on the vacuum is non-trivial:

A0 (u, v) |0% =1 +in(u, v]|A). (3.6)

Here m(u,vll-'il)-——nif,(f}l[g ou , S 00]an|0), does not vanish in general
case and is determined by the right-hand side of eqs (2.19) or
(2.21). It means that the fermionic vacuum in the. chiral theory is
not a functional of the external field [7]. It can be easily shown,
that in the non-Abelian theory the operator /(u, v) transfers one va-
cuum to another:

I (u, 0)10), =¢""""" 10y . (3.7)

In fact, consider the vacuum expectation value of the charge density
operator:

A{UIp“{f} 10% =< 011~ (1, v) I(u, v) p (D) Yu, v) f(u, v)[0Y,.
Since
I (1, )08 1=, 0) =" @)+ [0°®. [ { o, § pvhe,
and for the non-Abelian theory
aC0Hp"(®), [§ pu, § pokn 1094 =

AdE ,_J Tf{ (E—i— '%IHKTXJEI) Irf”, W, N o= :.‘,._.1 “7”:]_'_
L8 A L

48 n* 9

i

a ST ER e ¥ | - e ek (48 1
(.l NV AXD+ G (554 wAxA) e woll) ). @38)
the operator /(u,v) has to transfer an initial state vector to another
one, with different vacuum charge density,

401" 0°(®) 1034 =4(01p°(®) 10 )4 —a¢ 01 [0° @), [ { o2, | p0)aa] 10)4,
12

=

but with the same energy
AC0|” HI0Y: = 4¢O0I H|0 4.

In other words, there are several physically non-equivalent fermio-
nic vacua in the given external field. Discussion before shows that
they can be distinguished by singular operators only.

The explicit calculation gives in the Abelian case:

4€01{p(x), [o(7), p(2)] ] [0 )4 =0. (3.9)

Therefore the eq. (3.6) in the Abelian theory can be written down
more directly:

I(u, 0)10)y =€ gy, | (3.10)

Making now the identity transformation in the scalar product
H<0|0>ﬂ-’3
40100 =4¢ 0/ IT~"10 ) = exp i[a(e, v |A)— o(e, v| A)] 40104 ,

and using the explicit form of the phase w(u, v|A), we come to con-
clusion that fermionic vacua of the Abelian theory in different mag-
netic fields are orthogonal.

In two dimensions the expressions for the charge and current
densities coincide, and the anomaly arises due to non-zero commu-
tator of the charge densities. In order to compare with the four-di-
mensional case, and as a simple illustration of a somewhat different
approach, consider the two-dimensional Abelian theory with Weyl
fermions. Put Ay;=0 and restrict ourselves to time-independent
gauge transfiormations.

The Hamiltonian has the form

Hy= | dx(pF(x)i dxp(x) — A(x) p(v) ,

3,11
o) = ™ () W) Vi ki
The Schwinger term in the commutator
(o). p9)]= 58/ (x—) (3.12)
Jt

does not depend on the external field. Adding the local counterterm
AH, = de;-lﬂ(x) to {(3.11) (or, equivalently, taking in place of p(x)
its normally-ordered counterpart p, (x) = p(x)—A(x) [19]), we

13



manage to obtain:

UsHy Uy ' =Hye,

Ue=1+ifdeplx)o(), A*=A+0s0, . Gl

Therefore, the anomaly can display it$élf in -the transformation of
the fermionic state vector only. Fixing some field configuration

A(x), we define the phase of the vacuum vector |0), along the
gauge orbit by the relation

M exp(# { dx ﬂ{x)A(x)) U, 0% (3.14)

for A=A°. The gauge transiormation is now accompanied by the
phase:

Uo 1095 =610y, (3.15)

where

o(v]A)= — ﬁ { dx v(x) Ax). (3.16)

This phase has appeared due to the two-cocycle ay in the gauge
group representation [7]:

UEUU:E\ERE{E‘U]UEQ, 3 l
1 _ {344)
Oy = — S dx g(x) 8. v(x).

4

Thus, the transition amplitude and its gauge-transformed counter-
part are connected by the relation

(P S[A%) 187y =€ (f1 S[A] i),

where the anomaly

Jef’u=:llg (S dx v(x) A(T, x)— S dx v(x) A0, x)) =
= # | dtdx o(x) A(t, x) (3.18)

coincides with the known expression.
The two-dimensional theory differs crucially from that in four
dimensions. The point is that there is no a local functional of the

14

external field in four dimensions whose addit?on ’m. the Hamiltonian
would provide the validity of the four-dimensional analog of
eq. (3_}3)'. The anomaly in four dimensions cannot be reduced to
some time-boundary terms even for time—indepen‘dent gauge trans-
iormation. The similar phenomenon is discussed in the recent work
[20] . Earlier close issues were considered in [21].

4. DISCUSSION

The straightiorward calculations of Sect. 2 show that the
Schwinger terms (2.19—2.22) lead, in the sence of eq. (2.5), to the
consistent gauge anomaly. However, the anomalous commutators
themselves are regularization-dependent.

In fact, let consider for simplicity the Abelian theory. The ex-
pressions for the commutators together with the vector terms are

{

: ; (4.1)
[Hﬂﬂﬂ=—5ﬂmw—m—ﬁﬁﬁmaﬁﬁ@—m+m,
where
L e Bl QIrQ(r’) 49
g? _SHESdrdr (F-I—F’}?" )

They contain quadratically-divergent term [11] (dots stand for
inessential finite vector terms). It is easily to see that the anoma-
lous terms in commutators of the operators
2 y8 e T
[B=T0— ==& X]®.
(4.3)

EE

PR =0+ == B (D).

which coincide with f{i’) and p(x) in the local limit, van_ish. The
origin of the gauge anomaly in this regularization is the difference

between j(x) and the current in eq. (2.8), and the explicit depen-
dence of the operator p on the external field. Note, that for the eva-
luation of anomalous commutators and anomaly one can use any

15



possible regularization. But in any case the result will be comple-
tely determined by an explicit expression of regularized operators
through the field operators. If such expressions absent, the succes-
-ive analysis in the Hamiltonian framework is impossible.
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