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ABSTRACT

We study the possibility to quantize gravity on Regge
lattice periodic in a ghen coordinate system. The lat-
ter is fixed by imposing gauge conditions on the tet-
rad: e; =0 at a<<p, e/ =1 at a=p. In this gauge any
usual local gravity action (say the Einsteinian one) is
polinomial in e , a= p. We study the functional integ-
ral measure in these variables and find it's entropy.
The measure turns out to be singular at e¢f =0 thus
leading to an unstable theory.
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INTRODUCTION

The problem of a consistent definition of the functional integral
for the Einstein gravity [l] is complicated by nonrenormalizability
of the theory. In this connection Regge calculus [2] is of interest
for it allows one to work with discrete set of field variables. This
approach deals with the piecewise-flat Riemannian manifolds built
of flat simplices. Geometry is defined by specifying the edge lengths
L;, the curvature being represented by the appearance of deficit an-
gles. Regge calculus proves to be useful for solving the problems of
classical general relativity (see references in papers [3—10]). Re-
cently some important problems of quantum theory also have been
analysed within this approach, namely, quantization of the string on
the lattice [3, 4], studying the gravity theories with higher derivati-
ves [d], simplicial minisuperspace [6], Monte-Carlo simulations
[7], dynamical generation of symmetries [10] and so on. Summing
over discrete manifolds using a functional integral quantization was
suggested in Ref. [lI1], and systematic functional integral formula-
tion of Regge gravity was given in Ref. [12]: to construct the mea-
sure the DeWitt metric on the space of inlinitesimal variations of
metric tensor ||8g||® [13, 14] is used. Metric tensor is defined by the
lengths L; and four functions E"(x) parametrizing gauge transfor-

~mation. Then the following expression for ||8g]| in terms of 6L; and

8E" is obtained [12]:
18112 =8L: Kij §L;+ 6E* G, OE" .
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It allows one to write the measure of interest as

{@u(L)={ ] dL:/Det K \/Det G.

The advantages ol Regge approach allowing one to approximate
the continuous Riemannian manifold by still continuous, not the dis-
crete one with any desired accuracy and to get approximate descrip-
tion of the system immediately in terms of invariants make the idea
[10] on the simplicial structure of real space-time quite attractive
one. The usual smooth metric arises as the result of some averaged
description at large scales. We can fix the coordinate system and
construct the measure on the space of equivalence classes of metric
by computing corresponding Faddeev— Popov factor. In the continu-
um case the latter suffers from UV divergences but it can be con-
sistently defined on Regge lattice. The full solution of the problem
would involve averaging over random lattice (as discussed in

Ref. [10]). This seems to be quite difficult task. It turns possible, -

however, to calculate the Faddeev — Popov factor on the lattice peri-
odic in a definite coordinate system. In this paper the coordinate
system is chosen by imposing a definite gauge conditions on the
smoothed large scale metric. As a result, we get the measure singu-
lar in the vicinity of flat background which leads to an unstable
theory. The paper is organized as follows. In Sect. 2 the gauge is
introduced and considered. In Sect. 3 the formal Faddeev— Popov
determinant is written and in Sect. 4 it's Regge lattice analog is
considered. In Sect. 5 we calculate the measure on the two-dimensi-
onal Regge latiice of the type considered in Ref. [8]. We show that
the main efiect of introducing Regge lattice develops through the
appearance ol IR unstable diagrams in the perturbative expansion
for the Faddeev — Popov factor. We first sum up the leading IR sin-
gularities. In the final answer the IR cutoff decouples and enters
the overall normalization of the functional integral. Instead of IR
divergence we get nonanalytic behaviour of the entropy of the mea-
sure in the vicinity of flat background. In Sect. 6 we study the
structure of corrections of the next orders in eff and ¢ (& is the lat-
tice spacing) to the result obtained and also observe decoupling the
cutoff. In Sect. 7 the Regge lattice of an arbitrary dimension is con-
sidered. Then we conclude. '

2. THE GAUGE

Let us specify the tetrad e; corresponding to the metric
g, —e,e, by imposing the following conditions:

e,=1, a=p; =0, a<p: anpn=lI,..,n. (1)
Hereafter we refer to this as to the «triangular» gauge. The contra-

variant components are

E'l awv

A
g —olpdt

ajL a
e —1Na—py Wiee —0 a1 ]
[ R k41 _m k41
e =—e ' + ) en & — W iR
Eom=—k+I{ h=m=—n="Fk+4!

with ™ being polinomial in e; of the degree n—1. In terms of g
the gauge conditions read

g.li—lm—i H.'z—l,n
g.'r.n—l g.'m

g:m.z | ) dEt

:l,1 gEdetgpv=] [3}

Conversely, with (3) being fulfilled the tetrad is reducable by
means of local Lorentzian rotations to the form (1). In turn, gp.
can be reduced to the form (3) by transformation x™=y"(x) obey-
ing the equations

L v Fr I:I— '-'” - J-ulr-r ".-z— l.;'l
g:“l y,F” y = 1 dEt ler H.’L [-,-H I LJ, y.“ Ivy. | e 1‘ el
g_un' .f::lr,.l.' H n—1 g_un' y..'l H,.'r
(det gi.,) (detyy)°=1. (4)

Eqs (4) allow us to express y, in terms of ¢, v<<n, and solve by
iterations. This gives, at least formally, a solution of the Cauchy
problem in the vicinity ol an initial hyperplane x"=const.

The Einstein action takes the form

: T 1 1 3 13
SG vgf ﬂ‘f”x= gd I-r{ gw [Ea e_::rl ehlﬁ "'IrJ i ?Eu? e!i!" Ebl E'f:}‘ —|_

| a o Ly Ik vp
+ 5 €y er, (8™ g —¢g' g‘}]}. (5)

[t is polinomial in €, and this property also holds for cosmological
term and higher derivatives included. Finally, let us write out the
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field propagators. These can be read off from the solution of the
Einstein equations

Rglv_%gpv RITI.ET!- “#v (6}

In the linear approximation
2
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(unwritten terms and formulas correspond to all possible permuta-
tions of indexes 1, 2, ..., n). At n=2 the Einstein action is a topolo-
oicdl invariant and at n=3 the wave propagator A~' is cancelled:
the three-dimensional general relativity is locally trivial [15].

3. THE FORMAL FADDEEV — POPOV DETERMINANT

Let us write out the local gauge-invariant measure on the tetrad
space,
dp(e) = [] [dete(x)] ~ Ha’e (8)

X

An element de, of the tangent space can be parametrized by
n(n—1)/2 elements Afz—f‘&lf of the local Lorentz group, n ele-
ments m" of the general covariant group (x"=x"—n"(x)) and
n(n—1)/2 elements 0; (a>p) corresponding to the physical
degrees of freedom:

St =0, +ev n ) +ei As . (9)
Fop n=—2 e g.
a eA 40 A+n)
ﬁeu=( i S 1 2 )
Oten, 40, —A “ens+n;
b

ERkEs

A=Ai=—A}, e=e?

T

e

Then we rewrite (8) in terms of 0, 0" A;. In what follows we
identify DO, with De; in the irlangular gduge The DA, Dn"-integ-
rations are cancelled by dividing by the volumes of the correspon-
ding groups as far as gauge invariant physical quantities are consi-
dered within the functional integral approach:

du(e) =®(e) D6 DA Dy’ Dn?, D[..] =[] d[...],

Dibel, deb, Se3)
fD a8 = - == DE'I: L ) I I
( } D{ﬁ-! Ll L+ TIE,I:I { ]

SR G

Det means the determinant in the operator sence.

4. THE MEASURE ON A REGGE LATTICE

The determinant (11) requires the UV regularization and we
would like to use a Regge lattice as the natural regulator. Now on
the lattice the definitions (8), (11), (12) should be modified be-
cause some averaging over simplices attached to any given point is
to be done. A more general way to introduce the measure is that
using the Gaussian normalization [16]:

L exp ( 5 ;—jlfm n ?) dp(e) =1 . - (13)

Here the infinitesimal metric on the tetrad space similar to that of
DeWitt [13] is introcuced:

. TRUMF S| i i TR -3
10en2= { [ oef ot + < (g™ 5,07+
+C£(gm ‘5 ﬁ"; __gu‘v gi'l 68‘]1}» ﬁg‘cp)}glwdﬂx- . “4}

Up to an overall factor it is the most general invariant without the
derivatives. Now we can substitute (9), (11) into (13), (14) and
perform simple Gaussian integration over D8, DA:
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a0~ = { exp — L (@ete) d[ (Loy*+ Covl) | u' Dnt. (15)

l
2
Naively, this leads to (12). At the same time (15) can be easily ae-
fined on a Regge lattice, the expression under the exponential sign
being the sum over simplices. Working with the class of the piece-
wise-flat geometries we adopt the gauge group to be that of the
piecewise-linear transformations. Therefore the derivatives v’ are
uniquelly defined as finite differences once n"(x) at the lattice sites
are known. In the case of a periodic Regge lattice the eq. (19)
gives a recipe of averaging Det L over simplices of the elementary
cell; namely, the operator L should be understood in the sence of

the root-mean-squared value, (LTL)"2
For arbitrary n we find

o)~ = | exp{ — 5 {[ Xle e™n*+cmi)?] X

X (dete?) d"x} Dn'... Dn" (16)

Note that (15), (16) are valid for e, written in a more general
form than (1): the diagonal elements e; are not required to be
unity. In fact, using the freedom connected with the local Lorentz
rotations we can always choose the tetrad g, (o) in each simplex o in
this form. As for the metric g, (o) it can differ irom the smoothed
one g, obeying the property (3) by the terms O(e). Thus

ey (0)=6, +0(e) , ._
elio)y=0, @< (17)

(Here we imply the following construction [17]: the edge lengths
are chosen to be the geodesic lengths in the smoothed Riemannian
manifold.) In the leading approximation in e the tetrad field does
not depend on the simplex chosen in a given cell and obeys the con-
dition (1).

The main effect of introducing Regge lattice arises, as we shall
see, due to the differences between the expressions for the differenti-
ation operator d,(o) inside the different simplices o in the cell.
These expressions are equivalent up to the terms O(g) only on the
set of sufficiently smooth functions. However, the diagrams of the
expansion of (15), (16) in terms of ¢, are UV divergent. This

8
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means that the functional integrals (15), (16) are saturated by the
functions n*(x) which vary strongly from site to site on the lattice.
Therefore the dependence of d,(c) on o is of importance here.

5. THE TWO-DIMENSIONAL CASE

Consider the periodic Regge lattice described in Rel. [8]: Lhe
elementary cell is formed by links connecting a given vertex of
hypercube with other 2"—1 vertices. Thus the hypercube is repre-
sented as the union of n! hypertetrahedra. At n=2 we have the two
triangles o, and o, (Fig. 1). Let T, be translation in the x" direc-
tion by e, Tfr =Ty ", §,=T.— . Infinitesimal metric ||8e|® takes the
form (we put C=0 for simplicity):

S {Lq)z{det Elf) d2x= % Zl (Tgaﬂ]l —362111]2—1—(5111‘ —ETlﬁg'q') 2—}—

+ (82 +ed2m')* +(T1d2n* +eT182m')?] +O(e) - (18)

After Gaussian integration over Dn?® in the leading approximation in
e (18) reduces to

“;,'Z{ (81m'+eds n') +(8im' —eTidam")?] . (19)

- Let us temporarily omit all the terms in the square brackets in
(19) with the exception of the first one (i. e. consider the case in
which averaging over simplices is absent). Then we have"

In®=Tr In (6, 48" ) = const +

[ 5]

4 Z ,L_[n}"_l Trl[(—.?ﬁﬁi_al_l)n= const 4+ ;1ﬂ[l+€{xjj 1

=]

®= Det (8, +ed3") = const-[] (1+e(x)) . (20)

") To invert the derivative the boundary conditions should be specified; we define &
as follows: (6n)a=Nag1—Mn (at n=1,2, .., N—1), (&n)y= —ny. That is, we [ix
n=0 outside some large although finite interval 1, 2, N. Then
(B~ ') = —Na— Mt 1— - — Ny
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This expansion can be interpreted as the sum of the diagrams for
the functional integral representation for Det L(o;) in terms of anti-
commuting variables 0, 07, There is also another expansion for this
determinant which follows when expanding the original Gaussian
integral over Dn as power series in e.

z*

e e
(0,€) (E€) "‘» 0 % 1
o _,.FE" Sl
A e
a:i.
00 (g0 (@) (b)

Fig. 1. The cell of the simplest
two-dimensional Regge latlice.

Fig. 2. The diagrams with anticommuting

ghost fields (a) and corresponding diagrams

with scalar ghosts (b). The arrow denotes the
derivative.

Lel us compare both expansions. There is the corresyondence
between the diagrams with Fermi ghost fields 6, D+ (see ‘ig. 2,a)
and the diagrams of Fig. 2,6 with the scalar field n'. Let us denote
the derivative @, at a vertex by an arrow. Then the diagrams of
Fig. 2,b are those with all the arrows similarly oriented. Of course,
the diagrams having at least two neighbouring vertices with opposi-
tively oriented arrows are also possible, see Fig. 3,a. However,
these two vertices form an effective local vertex (the propagator of
n' is (8i"8;) ') which is cancelled by the vertex —e®(0d21')*/2 (see
Fig. 3,b). Therefore, in the naive discretization the sum of all the
scalar diagrams reduces to the sum of the diagrams of Fig. 2,b.

If averaging over simplices of the cell is present, the sum of the
diagrams of Fig. 3 (a,b) is proportional to 65 d;— 83" 3> (superli-
ning means the averaging) and differs from Zero (it is a negatively
defined bilinear in terms of ds(0:) —d2(0;), i, j=1,..,nl). For the
considered Regge lattice the graphs of Flg 3 result in the effective
vertex

-

T 35
__%(e . ag-n’), | (21)
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3 e
7
_’Ld’_a 3 ‘v’
|
(@) (b)

Fig. 3. The elements which are absent in the
diagrams of Fig. 2b (they are mutually can-
celled in the naive lattice discretization).

Fig. 4. Infrared divergent diagrams

arising in the Regge discretization

(the blob denotes the sum ol the
graphs of Figs 3,a and 3,b).

As a result, the IR divergent diagrams arise (see Fig. 4). The
cutoff can be introduced by imposing boundary conditions on n' at

large x'. In the x-representation the propagator (n'n')=(8{"8:)"
takes the form
i eyt gk e g el R O SRR )
Cn'el, ) mil, )y = b (- — 5 I 1) (22)

Here £*, [* are the coordinates in units of &, N is the IR cutoif —the
size of an interval in the x' direction outside which we put n'=0.
The resulting dependence on N is fictitious: it is connected with
nonanalyticity of the measure. Let us sum up the most divergent di-
agrams. The latter are those which have 2n e-legs joined in pairs to
form the blocks (21). We take into account only N-term in the pro-
pagator (22) connecting different such blocks (21) (then T; can be
gubstituted by unity in (21)). We find that (for sufficiently small
Ne?) these diagrams are summed up to give

2a :
In ®e) — Z S % %m [1 s % Po(pa+ieds) Y eX(x', ) l’g[pg+f£ﬁg}] W,
X el 4
Lop) = — —8%(p) 8(p) = — (e~ " =) (" —1). (23)

Here Wy(x?) =1 is the constant function on which the standing from
the left operator expression O(x” po+ieds) acts. For arbitrary e’
(23) is understood in the sence of the analytic continuation.

In the continuum limit e>0, N—oco and N-dependence is in-
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cluded into the overall normalization of @ ™:

@ = const- e’(x', x¥) = const- &2t oty de’ . (24)
[/ 11

It is essential for summation over x' in (24) that e*(x' x?) is
known in the vicinity of some initial hyperplane x*=const at all x'
(see the discussion following (4)).

6. THE STRUCTURE OF THE CORRECTIONS

Here we show that taking into account the less divergent diag-
rams or the terms O(N~!') and O(e) in the already considered
diagrams does not break the decoupling of the IR cutoff and gives
at small e the small corrections to the result obtained (24).

There are corrections in e and e. The former can be taken into
account by adding to (21) the blocks with more than two e-legs.
These blocks are constructed of a number of vertices eyn and eenn
by «partial> Wick pairing of all but two fields n' intended to form
external lines, only finite parts of propagators of n' being taken in-
to account. On the contrary, different blocks are paired by propaga-
tors with only «infinite» ~N parts left (therefore the derivative d,
acting on the external n' leg of such the block gives zero). Summa-
tion of these diagrams results in the expression of the type (23)
with the terms like ~eeeN, ... taken into account under the loga-
rithm sign:

2n

5 ap: 1 N
no=} §2n = (14 -T) ¥,
I'="Ty(ps+ieds) Zez[x],f) To(pa—+ieds) + O e] 3. (25)

Disentangling the derivatives under the logarithm sign in (25)
leads to the corrections in e (there are also corrections connected
with the terms O(e) in {(Ln)* arising, e. g., due to the more accu-
rate determination of e, (¢), see (17); taking into account them re-

) We omit the terms like (20) in In ® which are nonsingular at e =0.
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duces simply to a modification of the efiective vertex ' in (25)).
Let us check whether the limit N—oo exists for them. Consider ex-
pansion of (25) over commutators. There is the expansion of a
function f(a-+b&) of operators a, b acting on the eigenvector Wo of
the operator a with the eigenvalue ao [18]:

F(a+b)= F(ao+b) — o ["(@o+0) [ a,b] +
+ - ["(@o+b) [a—b,(a,0] | + 51" @+b)[a,6] *+ .. (26)

Now f(a+b)=In (a+0b), b=1+ NI'(x,p) /4, a=N|[I'(x,p+ied) —
—I'(x,p)] /4, Wo=1, ap=0. A term of the expansion containing &
DEeratDrs a and [ operators b contains also the factor
T e ) ~b" "' Therefore the dependence on N at N—oo is
cancelled at I's20, but the integral over dp, can become divergent
since I'(x,p)=0(|6(p)|?)—0 at p—0. At [inite N this integral is
effectively cut off when I'~1/N. If I'(x,p)|,.o=const-p® it is not
difficult to see that the answer is proportional to &"N’,

g< (m—1)/a. Thus, the repeated limit linﬂl Limw does not exist. Ii,

however, one passes to the limit e—0 at the fixed lattice size
Ne =const, the considered corrections in & vanish.

7. THE CASE OF ARBITRARY DIMENSION

The above analysis can be readily generalized to the case of ar-
bitrary dimension n. For example, at n=3 we have

(Ln)>= ((detef) & (3 +en+eins)’+
g 923 -]

FmE4ePnh teinh +ete®ns) 4+ +ena+ens)’l . (27)

Integration over Dv® in the leading order in & is trivial. Integrating
over Dn% Dn' we temporarily omit n' in the second term in [..] in
(27) as if the naive shift of the integration variable were done (the
analvsis below shows that this shift is indeed possible in the leading
approximation in e, €;). Then these integrations are factorized and
things go parallel to the two-dimensional case. Now averaging is to
be made over six tetrahedra of the cubic cell. The answer for In @
in the main approximation reads

13




In®= %E"'z de' dx’ In S{eza}za’x?-k

L
! il : dp: dps 3
+ et fdetdx’ §~§E{_|n{ Zm1 —=|— . “ZDI{UJ| }m:ﬁ,
D'(0) = [ 205(0) +&'"%95(0) | —, (28)
di(a)

the derivatives being taken in the momenta representation in which
the translations are written as T,=exp(ip,).

Now let us show that the naive shift of the variable performed
when integrating over Dn® above is possible in the leading approxi-

(b)
613 613
4 2 i 4
i 7 vt 9 9 7
i g o
"2 E TR L o s i A + - - —
1 2 L R
. b 7* 5 e o
Fig. 5. Examples of the diagrams (a, b) in which both n' and n? propagators are

S[lhﬂtltUth by their divergent parts; solid lines denote the propagators in which only
the diagonal insertions n'n' and n’n® are taken into account (e, d).

mation in e, €. For this purpose we consider the diagrams in which
the field nt from the second term in [...] in (27) is present. These
diagrams can be lesmhed into three types accmdmg to which pro-
pagators, (m'n'>, (n’n®) or both these ones are substituted by
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their IR divergent parts Ny and N.. The diagrams of the first type
(i. e. those proportional to NY) contain at least orre eifective vertex

of the type

——————

%1][[ atelds

5 008 — éﬂeﬂﬂag]n‘+0([ei 3. (29)

+l52

Since [ 8,,€/] =0(e) it is O([e]®) in the leading d'ppmximation in e.
Analogmmlv, if IR divergence is produced by N-piece of (n’n®) we
get the effective vertex of the typ{,

?TI ag E"[ag {?2 E" 62 T|2. (30}

i :3
Due to the occurence of the derivative d» acting on the external
n°-leg the diagram vanishes. Finally, the dlagrams proportilnal to
MN"‘ contain 2k vertices of the type n'n® see Fig. 5 (a,b) for
k=1,2 respectively; the solid line den{)ies parhaliy dressed propa-
gatms in which insertions of the type n'n' and n’n® are taken into
account, see Fig. 5 (¢, d). Explicit expressions for these propaga-
tors can be obtained analogously to the expression (23) for In®:
the difference consists in some changing of combinatorics due to
which the diagrams are summed to the inverse function, not to the
logarithm. As a result, the contribution of the diagram 5,a to In @ is

—;—a—' (dx (e})?(e®)*[ ((e')?dx'] '[ [(e®)?ax?] ~. (31)

The sum of all such the diagrams can be written as
% Trin(1 —0) =0 ' (32)

where O is the following operator on the space of the functions of
2

V& o
(O%) (2, x%) = (g(x®, y*, *) W(y’, ) dyf?,
82, 7, 2% = (f(x', 2%, %) o, ¢, x7) dit
Fr!, 2% %) = ef(e®)? (', %, £%) | {(e)*(y', %, ) ay'| ~

SRR e g dytfe (33)
In general case in the leading in e;, € approximation In @ is re-

15




presented as a sum of n— 1 terms, the a-th one depending only on
eoun=1;. . a=—1Ir

___I_ - dp] Epa d,ﬂr:
L 2 Z Z § 9% 2n T 9 X
a=1 x..2&..x"
I ; ;
xln(n—!;iD(ﬁ)l o H!ZD(G)UFE:(:, (34)
]
Dﬂ_ L a fi
©)= T e" o) 505 (35)

The cap in (34) means that the corresponding symbol is omitted;
0.(0) are functions of py, ..., psn (some polinomials of T,=-exp(ipy)).
[t is important that ™ enter this expressmn by means of a positi-
vely defined at almost all py, ..., pu, ..., p.’s quadratic form under the
logarithm sign. Indeed, this form is zero only if D(0,) = D%(o,) for
any two of n! simplices o, 0,. With taking into account (35) this

gives an overcompleted uniform linear system for €™ having the

F

unique solution é™ =0 provided the momenta p,, ..., p, ..., p. do not
belong to some set of zero measure (this set is singled out by trivi-
ality of the translations in some directions, T,T,...Th=
=EXP£({3”—|—pv—[—...+PL]:l}. Expression (34) is of the order of

g and is logarithmically singular at e, 0.

8. CONCLUSION

Thus, the entropy on the measure of the considered Regge lattice
is nonanalytic at the Euclidean point ¢ =0 and results in the insta-
bility of the theory. Analogous conclusions can be made also for ge-
neral form of the metric on the tetrad space at C=0, see (16). Be-
sides that, we can generalize our result to any Regge lattice perio-
dic in the considered coordinate system. In this case we still get ex-
pression like (34) for the entropy in which n! is substituted by the
number of simplices of the elementary cell and the derivatives d,(o)
are determined by the simplicial structure of the cell. A possibility
to get physically acceptable theory can only be connected with brea-
king the periodicity and making use of the random Regge lattice.

The author is grateful to I.B. KhI’Ip]D‘ﬂCh Ya.l. Kogan and
. Vainshtein for useful discussions.
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