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ABSTRACT

The first example of a three-dimensional self-similar
solution of Zakharov equations for a supersonic
Langmuir wave collapse is consiructed. The para-
meters of this solution differ essentially irom those
predicted by the model of a highly oblate cavity, in
particular, the maximum depth of the cavity exceeds
the expected one by nearly four times. An explanation
of this discrepancy is given.
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The interest to seli-similar regimes of a supersonic Langmuir
wave collapse [1] is explained by the important role, they are
known to play in a strong Langmuir turbulence (see Ref. [2], for
example). Numerical computations yielded some evidence for the
establishment of self-similar regimes (see, e. g., [3]), but the com-
pression coefficients obtained for the Langmuir waves trapped in
the cavity are still insufficient for reliable conclusions. The identifi-
cation of solutions of the initial value problem with the seli-similar
solutions has also difficulty in a poverty of available information
concerning the latter those. Up to now, only self-similar solutions of
one-dimensional equations, which presumably give an approximate
description of an electric field on the «short» axis of a highly oblate
cavity [4], and a self-similar solution with an almost centrally
symmetric cavity, which contains a slightly split triplet of identi-
cally populated ground states (corresponding to the unit «orbital
momentum» [=1) [b] have been found. No valid examples of
single-mode self-similar regimes of supersonic collapse which are
especially interesting from the point of view of the theory of a
strong Langmuir turbulence have been obtained so far.

Self-similar regimes of a supersonic Langmuir collapse are
described by the following equations:
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Here ¢ is the time envelope of a high-irequency electric potential, u
is the perturbation of the ion density, @ is the pressure of Langmuir
waves. Eg. (2) allows one to express explicitly the function u in
terms of @: :
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and thus reduce (1) to a closed equation for the function ¥. Axially
symmetric and odd with respect to the reflection of a specified
direction z, the solution of this equation can be expanded in
Legendre polynomials with odd numbers:

PY(r)= Y R{r) Pi(cos®). - (4)
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The «radial wave functions» R,(r) satisfy the equations
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are introduced for the [/-th Laplacian and Clebsch— Gordan coei-
ficients.

A finite-dimensional approximation of equations (5)— (8), used
below, is obtained by a formal replacing of all Clebsch— Gordan
coefficients with max ({, ,)> L=2K—1 in (6), (8) by zeros. Such
an approximation corresponds to the retention of first K terms of
the electrical potential expansion (4). The corresponding expansion
of the density perturbation u contains 2K harmonics. When K=1 in
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the expansion of electric potential only a dipole term is retained,
and the regular in the centre of the cavity solution of reduced equa-
tions (5) —.(8) depends on two parameters A and a:

Ri(r)| o =Ar+ar®*4-0(r®) .

The values of A and a are determined, as in [5], from the condi-
tions of the singularity
qu
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shifted to the infinity and the coefficient C turned to zero in the
asymptotics R (r):

Rilpls = [r+c- (%)]—I—{J (,«i) .

which valid for r;=occ. As the solution of the K-approximated
equations (5) — (8) is known, one can find the solution of the
K+ l-approximation in the fJollowing way. One should formally
multiply the Clebsch — Gordan coefficients with max (/, ) =2K+41
in (6), (8) by e. The solution of the equations, obtained in this
manner depends parametrically on e. It coincides with the already
known solution of K-approximation when e=0 and coincides with a
sought for solution of K- l-approximation when e=1. The deriva-

tives %(f=l, 3,...,2K+1) satisfy the linear nonuniform set of

K—+1 integrnﬂdif'ferential equations. The regular in the centre of the
cavity solution of this set depends on 2(K-+1) parameters a;,
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The values oi the parameters ay, ... are unambigously deter-
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mined by the condition of decreasing of all functions {;—T at F>o0,

i. e. of turn to zeros all coefficients attached to increasing at the

infinity asymptotics, a number of which is exactly equal to
a K

- 2(K+1). As — is known, one can calculate the difference between

de
solutions of K+ 1- and K-approximated equations (5)— (8). The
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results of numerical solution of reduced equations (5)— (8) for
K=1, 2, 3 are plotted in the pictures. The K=3-approximation turn
out to be quite suificient so far as the further increase of K does
not change the picture practically. Near the centre of the cavity the
isolines of functions u(r)=u(r., z), O(r) =d(r,, z) are highly
oblate in z direction ellipses: the axis ratio is equal to six for
u{r,, z) and is equal to four for ®(r,, 2). As the r, -derivatives
are negligible, one can simplify equations (1), (2) on the axis 2
near the origin:
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The constant B is simply expressed in terms of the values
E(0)=1.5; u(0) ~ —10:

14 u(0)
B—|— —F* — b e 0
[9 E m}] 5 E(0) ~ 3.1

Ii equations (9) were applicable for all the values of z, then the
condition B=0, which was assumed in the model of a highly oblate
cavity [4], is inevitably follow from the conditions on the infinity.
Really the longitudinal and transverse scales of variation of the
function ¥ (r,, 2) turn out to be approximately equal, when |z| >1.
This very fact explains the essential difference between the para-
meters of the self-similar solution presented here and their values
calculated earlier under assumption that model of a highly oblate
cavity is applicable uniformly with respect to z.

The authors are gratefull to M.P. Fedoruk for his assistance in
calculations and plotting the pictures.
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