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ABSTRACT

The notion of chirality for electromagnetic field which
is conserved in interactions with gravitons is formu-
lated. The corresponding chiral current is the one-par-
ticle-state analogue of the Pauli— Lubansky vector.
The anomaly of this current in an external gravitatio-
nal field is found. The results obtained are used for
the calculation of the electromagnetic radialive correc-
tion to the fermionic chiral anomaly in a gravitational

field.

© Hucruryr adepnot ¢uauku CO AH CCCP

1. INTRODUCTION

At present chiralities of massless bosons and fermions appear on
quite unequal footings. For massless fermions interacting with elect-
romagnetic field there exists well defined U(1)-symmetry with res-
pect to chiral rotations. This symmetry generates the Noether axi-
al-vector current a, which is classically conserved but because of

the famous triangle anomalies [1—5] the divergence of this current
is nonvanishing

QE{I TR 1 P4 IR
it AL S e e ST
= 9 p lgzﬂ,?R’l /_.R * {l}

where a*={y"y°{. ¢ is the massless Dirac field with electric charge
Q. V is the covariant derivative

Vat= % ﬂp( Y a“)!

Fuv is the electromagnetic field strength tensor, R, is the Riemann
tensor, and ;

Pre —— o™, R = R
2N —g 2=

To extend the notion of chirality to bosons let us consider an
electromagnetic field in an external gravitational background. It is
well known that the Maxwell equations both for free photons and
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for photons in a gravitational field are invariant under duality
transfomation

Fly=cos & Fuy+sina Fyy. (2)

This transforination, however, is not expressed in terms of the vec-
tor potential A, so the corresponding vector current cannot be obta-
ined through the standard procedure.

This difficulty is avoided in the light-cone formalism. In this ap-
proach photons are described by a complex field A and the action is
bilinear in A and A", In this terms the photonic chirality is defined
completely along the same lines as the fermionic one.

Noncovariant Lagrangian density in the light-cone formulation
leads to the conserved but noncovariant photonic axial-vector
current. A Lorentz-covariant current which generates the same
transformation can be written as

Kiore S WITRE G (3)

NEr

A 3 1 -
This current is of course nonconserved, ?”K-":—?F,WF'”’. Ne-

vertheless the chirality conservation results in «naive» vanishing of
expectation value ( vV, K*) in a gravitational field. But the triangle
diagrams in this case also are anomalous and their contribution
leads to

I

 puvrk 4
Qﬁﬂ;? Ruvxn R : { ]

1 e
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This anomaly was found in our paper [6]. In a different form
chiral anomaly for photons was independently obtained in Ref. [7].

Physically anomaly (4) seems to be very natural. Indeed the
term proportional to RR in the fermionic case (1) arises because ol
the fermion spin interaction with the gravitational field. This in-
teraction is known to be universal, it exists both for bosons and
fermions universally.

Eq. (4) presents the one-loop anomaly. We show in Sect. 9,
however, that this relation allows to calculate the two-loop radiative
correction of order a to the fermionic chiral anomaly in a gravitati-
onal field. The result can be obtained by taking the expectation
value of expression (1) and the substitution of (FuF*") from

eq. (4).

The paper is organized as follows. In the second section we pre-
sent the definition of the photon chirality in the light-cone formalism
and check the chirality conservation in the gravitational interactions
of photons. In Sect. 3 the expression for the chiral current is consi-
dered and in Sect. 4 the anomalous current nonconservation is dis-
cussed. In a short Sect. 5 electromagnetic corrections to the fermio-
nic chiral anomaly in a gravitational field are calculated. We con-
clude (Sect. 6) by the discussion of some unsolved problems and of
earlier works on bosonic chiral anomalies.

2. CHIRALITY OF PHOTON FIELD

Let us discuss first the case of free electromagnetic field. The
Maxwell equations being of the form

3. F', =0, « 8,fv=0

the symmetry with respect to duality transformation (2) is obvious.
The eigenstates of the duality transformation

F =FnFiF, (6)

can be considered as the fields with positive and negative chirality.

Unfortunately transformation (2) is not formulated as a trans-
formation over vector potential A, in terms of which the theory is
quantized. Moreover, eq. (2) expressing A} through A, can be satis-
fied only on mass shell (i. e. for A, satisiying the Maxwell equa-
tions). For orbitrary A, eq. (2) is not valid.

Our purpose is to introduce chirality as a consequence of
U(l)-symmetry of the action for arbitrary functions A,. It proves to
be possible in the light-cone formalism. As we shall see, the chiral
transformation of the vector potential leads in this case to duality
rotation for the field strength (2) only on mass shell.

Light-cone gauge was discussed in the literature in great detail.
We present here necessary formulae using spinor notations. In these
notations for each vector index two spinor indices are substituted
through the relation

bﬂ-d."__lzﬁp)mi bl-l-a UF‘-:{I,[_T.}.

Indices are raised by antisymmetric tensors &* and e In particu-
4 fa #
lar, four-vector x* is replaced by x**. Let us choose as usually as a
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new time variable the quantity x' =(x"—x%/+/2. The equation of
motion for vector potential A.,.

340" A,— 0,04y =0 (7)

rewritten in terms of spinor indices looks as follows
O3 0™ Ay — 8,00 Ay =0. (8)

One can easily check that these equations do not contain time deri-

vative of Ay, i. e. d,;4,;. Hence, in the canonical quantization for-

malism this LUmPUﬂEﬂt 15 not a dynamical variable but a Lagrange

multiplier. So it can be expressed through other components of A,,.
We impose the following gauge condition

Ags =0. (9)

Thus only components A,y and A,; are nonvanishing. The 29-compo-
nent of eq. (8) gives

0030 Ay = O (0p A1 — Oy Ars — 013 Agg) =0. (10)
Assuming that the inverse operator dy; exists we obtain
6" Agg =0,
Aii=05" (0s1Ais+ 013As1) . (11)
The equations for A5 and A,; are
O04,35=0, OA4;=0, (12)

The action S can be written as

S=— [ d'xF. =
4

— — (@[ A0 4 +(0,4" = — [d' 4130 Ay ki

Introducing the notation

Ajr=\2 A (14)

we get r
S=Sd4IADA, (15}

where A is the complex conjugate of A. This expression evidently
possesses U(l)-symmetry. The corresponding global transforma-
tions are

A-sAe®,  A->Ae—', (16)

In gauge (9) the field strength tensor F,. is expressed through
A and A as

iy o -+ ; - 7
Faapp =(0")aa (0 ) Fuvs  Faops =6apfap, Faaps =%aplag .

fap= -é_{‘a{xdfqﬂd +aﬁdfjlmd}+ f:lzéai_fﬁz‘q_ﬂi_l 04, (17)

fao=0;A/2, fio=[u=04/2,

where the following natation are used
0=\2 Gy F=\P 01y, O=~\2 O,

0, =~\2 0ip, O=0d,0"= L (6,6, —d3). (18)

I
95
Quantities fﬂ; can be obtained from eqs (17) by complex conjuga-
tion. Using these expressions one can readily see that the chiral ro-
tations of F,, correspond to that of A only for lields A satisfying
the equations of motion.

Of course the presented here construction of the chirality for
ree photonic field is a rather commonplace exercise. Somewhat
more complicated technically is its generalization to the case of inte-
racting fields. A nontrivial example of such a generalization in the
case of photons interacting with gravity.

This theory is described by the action

(el f | d'x N BT ELE, | ' (19)

It is convenient to present symmetric matrix g in the form g=e"
where H is also a real symmetric matrix. Since /—g=

=exp(—é—Ti‘ H), action (19) depends only on the traceless part
of matrix H, i. e. on h=H—ITr H/4,

fraes % 5 d*x Tr (e"Fe"F) (20)
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(this is due to conformal invariance of the action). Here summation
is i made” "seith  the. “ilat spaee  melric tensorl e s
=diag (1, —1, —1, —1). We will use perturbation theory and so
expand S in powers of A: :

S=— | d*s Tr(F*+ 2hFF 4 h’F* - AFhF 4 ... (21)

.
4
Using spinor notations for the field strength oi definite chirality we
obtain for the terms of the zeroth, first and second order in A the
following expressions

A0

= V@ (el + lgT™)

{ d% n%* foefg, (22)

gt b
8 %

o 8 . S £ A
SP= — {d' [;;g (Tr 1) (Fupf™ 4+ TapT™*) +

I  capf,y & ¢ 1 ;adpf, ¥ 865, 7
‘i—ah h?ri :ef.;ﬂ-._r fﬁa|‘|‘ ﬁ-_ﬂlh hﬂ.‘}rx f:ﬁﬁ:.lfﬁ:u]-

The first term S looks as violating chirality. However S va-
nishes on mass shell, and off mass shell it actually conserves chira-
lity as follows from eq. (15) written in terms of the fields A and A.

~ In the first order in h one can substitute into S expressions
(17) for fop and [z In this order the terms proportional to O0A and
OA can be neglected. Thus f~A and f~A and chirallity is con-
served.

Term S explicitly violates chirality. But in the second order in
h there is some chirality violating piece in S'" because in this order
[JA does not vanish and f.; contains field A of the opposite chira-
lity.

To check the cancellation of the chirality violating terms .let us
consider S-matrix in the interaction representation. Zeroth order
term S determines propagator of field A and hence the Wick con-
traction for f.p and [;;. Despite the noncovariant formalism used,
one can check that as usually noncovariant terms in S-matrix are
cancelled out and the following covariant time-ordered products can
be used

L

Lt R d d 3 ;
(OI TFu(x) Fal)10) = — —= (01 TA(x} Aa(y) [0) +
(v, nerh) —(erv) — (e>h) . (23)

where the propagator of A, is of the standard form
(0] TA(x) Ay)10) =inw O ~'8(x—y).
Returning to f.3 and f,4 we get
(O] Tfup(x) fap(y) 10) =i (0na O + Oug Opa) O~ '8(x —y),
(Ol Tiaplx) Fya(y) 10 ) = — i (eayeps + Eastpy) DX —y) , (24)
(O Thag(%) Fis(y) [0) = — i (eayegs + easepy) S(x—y) .

Of course contractions ff and Jf do not describe particle propagation
and the corresponding graphs are point-like in fact. The nonvani-
shing of these contractions is a reflection of the «alien» chirality
terms OA in f.p. In the second order in £ these terms result in the
following contrii ution into the action

ASD= - { dtd'y 1 oy Fg() Fa@) o™ (> (25)

The substitution of c¢antact T-ordered products (24) gives
ASP= — 52 (26)

Thus all the chirality violating amplitudes are cancelled out in
this order. We have not found yet a simple proof of such a cancel-
lation in an arbitrary order but this seems to be only a technical
problem.

In this connection the construction ol graviton vertices with the
use of transversality condition [8] is ol interest. Let us consider for
example photon scattering in gravitational field in the second order
of parturbation theory. The scattering amplitude is given by the sum
of the pole diagrams and contact terms A°F? I the initial and final
photons have opposite chiralities, the diagram with the graviton pole
vanishes and the diagrams with the photon poles contract and beco-
me contact. But it is impossible to satisly transversality condition
without pole terms. Hence the amplitude must vanish.

Let us mention also Ref. [9] where the effective Lagrangian of
electromagnetic field with graviton exchange taken into account was

2



calculated. The authors of this paper noted that the Lagrangian did
not contain terms violating chirality.

3. THE CHIRAL CURRENT OF PHOTONS

We have demonstrated in the light-cone gauge that the chirality
of photons interacting with gravitons is conserved. One can easily
write down the chirality charge (Q= -1 for left-handed state and
Q@ = —1 for right-handed one):

X % [ d% A(x) BAW) (i

where d®x=d?x, df, 9=0— 0. Charge Q is the integral of {-compo-
nent of the conserved current
jw= - Al) BuAW). (28)

This current is not however a Lorentz-vector because fields A and A
are not scalars. Lorentz-covariant current which {-component coin-
cides with f is K, (eq. (3)). We have to pay for its covariance by
the loss of continuity equation, the current K, is not classically con-
served

VK= — — Fy P (29)

Nevertheless, matrix elements of V,K" in an external gravitational
field naively vanish. Indeed the operator

FusF" = — (o™ — Ty ™) (30)
changes the chirality by 42 and the gravitational interaction con-
serves chirality. So a nonzero expectation value of Vv, K" in an ex-
ternal gravitational field can be called chiral anomaly.

The calculation of this anomaly is presented in the next section
and now we make several comments of the chiral current. First,
current K" explicitly depends on vector potential A4, and thus is not
gauge invariant. The corresponding charge

G
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is known io be gauge independent however. Moreover, as we shall
see in ‘the next section, matrix elements of K" in a gravitatlional
field are ‘'ndependent of the photon gauge.

In Refs [10—12] the explicilly gauge invariant current

e,
SLL:EH\”( dszpFﬁip

was proposed. It is proportional to the number difference of
left-handed and right-handed photons. This current is conserved for
free fields. It has noncanonical dimension however and the corres-
ponding charge is determined not only by the photon chirality but
also by its energy.

Our last comment is about analogy between K" and the
Pauli— Lubansky vector [13]. This vector is generally defined in
terms of the generators of the Poincaré group

[h=e"" PM,, (31)

where P, and M,; are the generators of transiation and Lorentz-ro-
tations respectively. For massless one-particle states with spin s

Pulpu, M) =Apulpy, A ), (32)

where p, is the particle four-momentum, p>=0 and A= +|s]| is its
helicity.

Our purpose is to construct the current which integrated density
(its zeroth component) gives chirality generator Q.
Qlpy, MY =Alpy, A). It is natural to choose for such a current the
vector

e T (33)
where S, is the spin part of the total angular momenium density,
p b
B ) ! 33
S“.-t. k. ﬂ{:ﬂ?q:'ﬂ} [Ex "‘J' b P (33a)

and X, represents the Lorentz-rotation generators M,; for field g,.

For spinor field Eﬂ=%ﬁﬂ and for vector field A,

[Exl)abzf (ga8rb— 8, b Tin) -

The current j, can be considered as a one-particle analogue of the
11



Pauli— Lubansky vector. It is easy to see that definition (33), (33a)
gives j,=a,/2 for a Dirac field ¢ and j!,zgf{,l for a vector field

A,.. Using this definition one can construct chiral currents for any
other spin.

'l

4. TRIANGLE DIAGRAMS

The calculation of anomalies presented here is based on the dis-
persion relation approach of Ref. [14]. To demonstrate the simila-
rity of the bosonic and fermionic cases we consider them in parallel.

First, let us briefly discuss the general description of the triang-
le diagrams (Fig. 1). Note that because of the contact vertices the

'-'Hh-—J
\
F

Fig. 1. Fig

diagrams of Fig. 2 should be also taken into account. We consider
two photon and two graviton production by currents a, and K.
Each matrix element is determined by a single formfactor:

(0lau|2v) =fi(q?) quFaF

(01a,128) =F0) Gu Rapa R, (34)
< 0l K#' Qg ) :Id{‘?E) du R:-:lpcr EHLFHs

where ¢, is the four-momentum carried by the current. Such a
structure of each matrix element is a consequence of the gauge in-
variance with respect to external fields. Note that the external pho-
tons and gravitons are on mass shell.

We calculate f,5; using dispersion relations. The imaginary
parts of the amplitudes are given by the tree diagrams which at a
first glance satisfy all invariance properties of the classical theory.

12

One could see, however, that il it were the case then Imf ,;=0. In-
deed the longitudinal parts of the currents in the Born approxima
lion produce intermediate particles with the total chirality equal to
+2, and the subsequent annihilation into photons or gravitons is
possible only for zero-chirality states.

Anomalous properties ol the amplitudes arise in dispersion rela-
tion approach because ofl the necessity of infrared regularization. Ii
the masses of particles in the intermediate states are assumed fo be
zero from the very beginning, we encounter the problem of infrared
definition of the imaginary parts because the singularities connected
with the massless particle exchange are situated at the physical re-
gion boundary. To regularize the amplitude in this infrared region
we prescr he a small mass to the intermediate particles. Such a re-
gularizatio. does not violate gauge invariance, both for external
electromagnetic and gravitational fields, but breaks chirality conser-
vation. A manilestation of this anomaly in this language is the non-
vanishing imaginary part of [(g®). From the presented arguments it
follows that Im[(g®) can be nonzero only in the vanishing region
g*~m?.

The calculation of Im [ ,5; proceeds through the usual lines and
the final results looks as follows:

Im [i(g*) = lim (— m:)J (1—2%) In e
rit—e1} 4{;‘ | —v
SRR i R e e G e a5
i) =S ome i T e e e

ot g ) | T R,
Im falg j—!ﬂ_[ﬂ‘ 1287207 In |—p | -O6% 897

where v=1/1—4m?/q* is the c.m. velocity of particles in the inter-
mediate stafe.

Using dispers. n relations to calculate the real parts of Ji,; we
come to eqs (1) and (4). Thus technically the bosonic and fermionic
anomalies arise in the same way.

Now let us make some comments on the derivation of eqs (35).
It is more convenient to consider instead of the matrix elements of
the currents the matrix elements of their divergences. Since in each
case there exists only one formfactor, the relation between these
matrix elements is trivial.

13



Note also that contact diagram of Fig 2 gives a nonvanishing
contribution into formfiactor f..

Introduction of a nonzero photon mass deserves sonie di .cussion
too. Addition of the mass terms

Sn=" [ d'x =g g"4,4, (36)

to action (19) corresponds to the Proca formalism ior massive vec-
tor field. Of course, in this approach an extra degree of freedom ap-
pears which describes zero chirality states of the vector field.

It is worth emphasizing however that Imf; defined by eq. (35)
is a gauge invariant quantity, i. e. the same result as in the Proca
formalism arises if we add to the action the term

AS=— —t [ d'x \—g (V,4"+ S0,

where S» is the mass term (36) and { is the gauge parameter. Note
that the same result for physical quantities is obtained also in non-
covariant with respect to external field gauges

iy
AS=— = § d'x(0,4") + — { d'v A4,A" e e

1
a9

Gauge invariance of the result shows that the mass term en-
sures an infrared regularization of the theory but does not give a
rise to the undesired extra degrees of freedom.

Our last comment refers to the derivation of the direct relation
between expressions (35) for fermionic current (Imf:) and bosonic
current (Imf3). To this end let us introduce fermionic current S,
corresponding to the Pauli— Lubansky vector.

1 i
S”: ErR E E“-.,k,:l.,'ll,'f aﬁ;ﬂx}tw . (38)

Using equation of motion one can write this current in the form

Sw=Fravat + 5= Aurs). (39)

First let us show that the matrix elements (0|S,[2g) and
(0l K.|2g) differ only by sign. Using perturbation theory we pre-
sume that the gravitons have the same, say, left-handed helicity.

14

Hence, the Riemann tensor for each graviton is antiselfdual® and
right-handed connections «,%; are equal to zero. (Here ¢ and f are
tetrade indices.) Let us describe photon by the field A,, =(c“),, €' 4,
where e is a tetrade. Since w,%;=0, the dotted indices are sterile
with respect to left-handed gravitons.

Thus the expression for (K,) which describes the propagation
of fields A,; and A, in the loop is absolutely the same as in the
case of two Weyl fields. The latter case just corresponds to the cal-
culation of (S,). Consequently the matrix elements of K, and S,
differ only by sign because of the anticommutativity of fermionic
operators.

On the other hand a direct calculation of imaginary part of
(0,S") gives

Im {d'ee " (0,50)) =(1— 25) Tm [y~ (0,ax)) =

; Im [x(q%) . (40)

Using the explicit expression for Im (f2) and changing sign in ac-
cordance with the presented arguments we come to obtained above
result for Im s (see eqs (35)).

5. ELECTROMAGNETIC CORRECTIONS TO THE FERMIONIC
CHIRAL ANOMALY IN A GRAVITATIONAL FIELD

Eq. (4) allows to find easily electromagnetic correction to the
well-known triangle fermionic anomaly in an external gravitational
tield. To do that let us evaluate expectation value of eq. (1) in a
gravitational field. Using expression (4) for ( FF) we obtain

2 4
VAt 19]2::2 ( s Em:f ) RIJ-vm.'Rwﬂ- (41)

where Q is the electric charge of the fermion.

This result corresponds to a specific infrared regularization of
two-loop diagrams, namely to the case when infrared photon mass
m, is assumed to be much larger then fermion mass my

*) This procedure is equivalent to the choice of an antiselidual external field in the
Euclidean approach. This field, however, cannot be weak and the perturbation theory
is not applicable. For gravitons this limitation is absent.
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Ny >3 M. (42)

In this case only two-photon intermediate state (Fig. 3) contributes
into two-loop result for Im fs.

Indeed let us consider three-particle intermediate state (Fig. 4).
The corresponding imaginary part is unambiguously defined for

— — e —
- —
- —

— —
-
-
-
- —

Fig. 3. Fig. 4. Fig. 5.

mi=~0 and m;—0 and is equal to zero because a finite photon mass
does not break conservation of a, when m;=0. This argument is an
evident analogue of the Adler — Bardeen theorem [15].

Thus only two-particle intermediate states should be considered.
As for fermionic intermediate state (Fig. 5) its mntnbutmn 15 equal
to zero. Indeed the dispersion integral is dominated by g” N?’I’?Jf “‘::’”r
So for the determination of the imaginary part cne has in fact to
calculate the renormalization of the chiral current vertex at g=0
(up to terms wqg/mf}. Within our regularization scheme when
m;=0 and m,==0 this renormalization coincides with the renormali-
zation of the vector current vertex and is cancelled out by Z-factors
of external lines.

At last let us consider the two-photon intermediate state
(Fig. 3). It is essential that the first loop gives a polinomial contri-
aQ?

T
actually reduces to one-loop one.

bution into 0,a", d.,a"= FF, and hence the two-loop calculation

6. CONCLUSION

Although the existence of bosonic chiral anomaly seems to be
firmly established, some questions need further clarification.

16

First of all the definition of bosenic chiral current does not look
as satisfactory as in fermionic case. The problem is that no
field-theoretical formalism has been constructed which respects both
Lorentz-covariance and the chiral invariance of the action. In the
light-cone approach a conserved chiral current exists but there is no
explicit Lorentz-invariance. On the opposite in the usual covariant
framework current K, is not conserved.

The way out might be an introduction of auxiliary fields. Let us
recall that for instance in supersymmetry the introduction of auxili-
ary fields via superfields makes the symmetry manifest.

The naturalness of such a reformulation of the theory is sugges-
ted by the interpretation [16] of anomaly (4) in terms ol zero mo-
des. In Euclidean space with mnontrivial topology, such that
\d'x {RR is nonzero, the coefficient in anomaly (4) is expressed
thlough the difference of left-handed and right-handed zero modes
of antisymmetric tensor field ¢u.. Recall that vector field A, does
not have zero modes [17]. '

Note an interesting observation due to M. Duff. For massless
Weyl fermions with spin s chiral anomaly is given by [18]

[d g Vi'=(25"—s) %' _ {dx o RR. (43)
— )

Photonic anomaly (4) haEIJem to satisly this formula, multiplied by
the natural factor (— 1)

Let us mention in canclumml some other works about chiral ano-
malies for bosons. The f{irst example of this kind refers to an anti-
symmetric tensor field [19].

Another example is given by a nonabelian vector field. Generali-
zation of the expression (3) for K, is well known

K _EW(A:? 3,A¢ + %J“*":A,:‘Af,q;f) :

As it was noted in Ref. [20] the expectation value of K| in an ex-
ternal nonabelian vector field, found by the calculation of the tri-
angle diagrams, coincides (up to factor (—2)) with the correspon-
ding fermionic diagrams for current a, in the same background
field. Thus the calculation shows that an anomaly exists for ¢, K". It
is noteworthy that in the field of instantons this anomaly counts the
number of bosonic zero modes in analogy with 8.a". The status of
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this anomaly is not quite clear however because the corresponding
«naive» Ward identities are not yet found.

The anomaly of nonabelian vector field is of interest also be-
cause the aralogous anomaly for graviton chiral current should
exist. This one has not yet been calculated.

We are gratefu] to I.V. Kolokolov and V.A. Novikov for helpful
discussions.

A.D. Dolgov, I.B. Khriplovich,
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