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ABSTRACT

The statistical properties of quasi-energy spectrum in
a simple quantum model are investigated ior the case
when the correspondent classical system is fully
chaotic meanwhile quantum chaos is restricted by the
localization effects. It is shown that the level spacing.
distribution depends effectively on some parameter
which is the ratio of the dimension of eigenfunctions
(mean localization length) to the total number of the
quasi-energy levels. Numerical data in a wide range
of parameters of the system are given.
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1. INTRODUCTION

The problem of the properties of quantum systems whose clas-
sical counterparts reveal the chaotic motion is still attractive for
many scientists. One of the most important results in this field is
close relation between the spectral properties of quantum chaos and
those of random matrices of certain 'symmetry [I —5]. This relation
is far from being trivial if only for one reason: The quantum
systems under consideration have no random parameters. Neverthe-
less, numerical experiments have shown that random matrix theory
(RMT) can be well applied to describe the statistical properties of
energy [4] (or quasi-energy [5]) spectrum as well as chaotic
structure of eigenfunctions [6]. Specifically, the spacing distribution
P(s) of nearest-neighbour levels for such systems is described with
a high accuracy by simple Wigner — Dyson surmise [7—9]:

P(s) = As exp (— Bs?) , (1)

where A and B are normalizing constants, and p is a parameter
depending on the symmetry of the system and characterizing the
repulsion between neighbour levels.

On the other hand, it was discovered the so-called quantum
localization which can strongly suppress chaos in quantum system
compared w'th classical one [10, 11]. Such a localization is ana-
logous to the Anderson localization in solid state physics but, in
principle, is different because of strongly deterministic nature of the
system. As a result, it turns out that maximal quantum chaos
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appears under certain conditions when all eigenfunctions (EF) are
random and fully extended (delocalized) in the restricted phase
space of the system [5, 6]. It is clear that such situation corres-
ponds to the case ol strongly enough perturbation which covers all
unperturbed states. Nevertheless, another case of so-called «inter-
mediates» quantum chaos is possible which is characterized by loca-
lized chaotic states of the system [12]. ‘

In this paper we study the spacing distribution P(s) el
nearest-neighbour levels taking into account the finite length of
localization of chaotic EF. To this time much attention has been
paid to the properties of quantum chaos. Nevertheless, correlation
between the rate ol quantum localization and the statistical pro-
perties of spectrum (see also [13, 14] is nol enough investigated.

It should be noted that Berry— Robnik approach [I5—17] to
describe spacing distribution P(s) concerns completely different
situation. for which corresponding classical system is not fully cha-
otic and deviation P(s) from Wigner — Dyson dependence (1) is
caused by the existing of the stable regions in the phase space. It is
known that in other limit case of completely integrable classical
systems the level spacing distribution of quantum systems is very
close to Poissonian P(s)~exp (—s) (for generic systems, see,
[18 —20]). For this reason the intermediate statistics in [I15—17] is
considered as a sum of two types of distribution (Poisson and
Wigner — Dyson ones) depending on how phase space of classical
systems is divided by the regions with stable and chaotic motion.

2. THE MODEL OF KICKED ROTATOR ON THE TORUS

Let us consider the well known kicked rotator (see e. g.,
0, 11

ﬁ:—%%{-smsﬂﬁr[f}; Sr(t) = Z 6t —mT) . (2)

It is convenient to describe the motion of such system by the map-

ping for W-function after one period T of perturbation

WO, t+T)=exp (E% %5) exp( —E% cos B) exp(i% ;—;2) ‘If(l]-) ) O

It is written in a symmetric form where W-function is determined
just in the middle of free rotation, between two successive kicks. It
is clear from (3) that the bevaviour of the system depends only on
two parameters: t=AhT/l and k=¢/h. It is known [21] that the
corresponding classical system (the so-called «standard mapping»)
has strongly chaotic motion under the condition FH=ki>I.

According to numerical data (see e. g., [10, 11]) the quantum
model (2), (3) imitates (under additional condition £>1 which
means a large number of unperturbed levels covered by one kick)
such a rough statistical property as diffusion of energy in time and
relaxation of the distribution function in momentum space. But it
occurs only for some time ¢<t" after which the quantum inter-
ference effects start to influence more and more. As a result, for
{1t classical diffusion is suppressing and after all stopping itself
(for generic irrational values t/4m). It was established [I1, 12]
that this time ¢ of correspondence to the classical diffusion
(Eci=Dt/2) is determined by the rate of diffusion: £~ D~k2 The
mechanism of this interesting effect is caused by the localization of
all eigenfunctions in unrestricted - (infinite) momentum space of the
system. The mean localization length of EF, as it was shown in
[11, 12, 22], is related to the classical diffusion coeflicient D:

D

kﬂ
7 s (4)

byie=
For model (2), (3) the level spacing distribution P(s) must be
Poissonian as far as localization length remains finite for any finite
value of k and therefore, relative number of overlapped EF in in-
finite momentum space is vanishing. Nevertheless, if we are interes-
ted in level statistics of those EF which are overlapped if only by
part then we can found some repulsion of nearest levels (see also
[13]). It is naturally to expect the rate of repulsion to be dependent
on the rate of overlapping of EF choosen from the total (infinite)
number of states.
For our purpose to investigate the influence of localization on
statistical properties of quasi-energy spectra it is convenient to pass
to a model with finite number N of levels

N
W (t+T)= Z[ Ul T) Wil o ' o, =12, 4\ N (5)

Here the finite unitary matrix U.. determines evolution of any
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N-dimensional vector (Fourier transform of W-function) oi the
system. It has symmetric form:

Uﬂm: Gnrz’ Bn'rn’ Gm“m 3 {6)

where diagonal matrix G, corresponds to free rotation during a

half period T/2:
GH’_—"EXP(E%F) Oy (7)

and matrix B,,. describes the result of one kick:

2N+ 1 9l Fa2nl ]
| !
st § fem’ - —cos(n'4+m X
TN+ A [mS(” ™) oNFI ( T
2nl
_ ik cos _ (8)
Xexp( Hesgs EN—I—I)

This model (5) — (8) with finite number of states can be regar-
ded as quantum analog of classical standard mapping on the torus
with closed momentum p and phase 8. The difference of (5) — (8)
from those investigated in ‘[5, 6] is that matrix U.. describes only
odd states of the system (¥ (8)=—%¥(—0)). |

Such a model can be deduced from the model (2), (3) in a fol-
lowing wéy [5, 12]. Let us first consider (2), (3) for rational
values of t/4n=r/qg (with r, ¢—integers). It currespor}ds to the
so-called quantum resonance [23, 24] for which all EE in momen-
tum representation are analogous to the Bloch states in a perlcfdlc
crystal. Therefore, each EF is multiplied by phase Ea_{:to_r exp (:qu]
under the shift in period g. By selection of only periodic EF _w1tl"3
0o=0 in the model (2), (3) we can construct the finite matrix of
size ¢ which describes evolution of periodic (in mc.-me.nium space_]
states [5, 6]. The phase space of corresponding classical model is
closed in momentum p with the size 2mm, where m;;.ZIQrIcornes
from the periodicity in p. Then, selecting only odd states it is easy
to pass to the matrix U.m with the reduced size N=(g—1)/2 (here
g is odd number).

Our model (5), (6) can be, in principle, interpreted also as a
model of some conservative system with finite number of levels on
the closed energy surface. Therefore, statistical properties of quan-
tum chaos investigated here are typical also for a_utunqu::us
svstems with chaotic counterpart in the rclassical limit. Similar
models have been also considered in [14, 25].
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3. DIMENSION OF CHAOTIC EIGENSTATES: DEFINITION

Recently it was shown [5, 6] that under the conditions & > |
(strong classical chaos) and A=/{,/N>1 (delocalization of all EF
of the system) the quantum chaos in model (5) — (8) is maximal. It
means that statistical properties of quasi-energy spectrum and chao-
tic structure of EF are maximal. Specifically, the level spacing dis-
tribution P(s) for quasi-energies w of Unn is in excellent agreement
with the dependence (1) for B=1. Moreover, distribution of the
components of EF in unperturbed basis with a high accuracy corres-
vonds to microcanonical distribution of eigenvector components of
linite random matrices [9]:

T ( N—3
W) = — (1)_1 (1—gs) * NZqu:l- ©)
Vn F( . ) n=1

As long as matrix U,. is unitary and symmetric the real and
imaginary parts of its EF are equal to each other and equal to EF
of the real and imaginary part of U,u. Therefore, the quantity ¢, in
(9) is either real or imaginary part of EF of matrix U,.. Let us
note that for N—oco microcanonical distribution (9) goes to Gaus-
sian one. It means that in the semiclassical region all EF of the
system with a maximal quantum chaos are Gaussian random func-
tions. At the same time, distribution P(s) for A< 1 turns out to be
intermediate between Wigner— Dyson (1) and Poissonian ones
[5, 12] and eigenvectors of U.. are random only on some localiza-
tion scale in the momentum space.

. In what follows we shall introduce a new definition of localiza-
tion length of EF as far as relation (4) has sense only for the
model (2), (3) with infinite momentum space (or, just the same,
lor the model (5)— (8) with /, < N). Unlike the traditional defini-
tion of localization length as inverse rate of amplitude decreasing of
EF for n—-4 o (n is the number of unperturbed state) we deter-

mine / through the «entropy» # of EF (not confuse with thermody-
mamical entropy):

-

il

Weym In Wam ; wnmE[P:?m . : (lﬂ)

Ipg=

Here m stands for the individual eigenvector of matrix U,
(== L V).



In the limit case of microcanonical distribution of ¢, (see (9))
the entropy ﬁ't‘f,f‘} can be easily found from (10):

@ N LR v o8 1
# (2 oc)—I— bl o (11)
where a — some constant:
ot AT TR o9 (12)
exp(2—vy)

with y being the Euler constant (y=~0.577). Now it can be seen
that the quantity L,

La=-exp (20" (13)

has the meaning of effective number of components @,» with not too
small values. As an example let us take steady-state distribution
Wam=1/N. Then the number L, is equal to the maximal dimension
of EF (Ln=N). In comparison, for microcanonical distribution (9)
we can get from (10), (11):

N
e (14)

Lh~o

[t means that in spite of ergodicity of EF (({gfm}zlfh') the
fluctuations are resulting in very small values w.»n~<0 approxima-
tely for a half of components of ... This fact is related to the par-
ticular form of distribution of w,., which is y¢*-distribution with the
divergence for w.»—0. As a result, the probability density of EF
turns out to be full of «holes» both in momentum p and in «coordi-
nate» O space.

Numerical data show that for # =const>>1 the scale on which
EF can be considered as random is less than maximal dimension N
and is decreasing with the decrease of quantum parameter k. There-
fore, in accordance with (9) — (13) the mean localization length can
be associated with the average dimension d of EF and determined

by the «entropy»

e =d=(dny == (Ln) m2(exp(#") y;  d>1, (15)

where d is averaged over all eigenvectors of matrix Unm.

In essence, relation (15) is a definition both the mean lucalizs{-
tion length and the dimension of chaotic EF. In the limit of maxi-
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mal quantum chaos it gives d=N but for d< N numerical data
show a good agreement with the usual definition of localization
length using the decay of EF on the «tailes» (see further).

It should be pointed out that for d= N our matrix, in principle,
is not random one (it depends only on two dynamical parameters,
7 and k). Nevertheless, in this limit case all statistical properties
are very well described by random matrix theory (RMT). For d< N
the situation is mmh more difficult because RMT is not already
applicable. It seems that eigenvectors of U,, with chaotic localized
structure are isotropic only in some part of N-dimensional Hilbert
space. It is interesting whether it is possible to develop mathemati-
cal theory for such type of matrices.

4. THE MAIN PROPERTIES OF LOCALIZED CHAOTIC STATES:
NUMERICAL DATA

Now we investigate the dependence ol dimension d on quantum
parameter %k in our model (5)—(8), when classical pqrameter
e Iarge enough to provide strong classical chaos [21].
semiclassical conditions are supposed to be fulfilled: N> 1: :‘eﬁ“l.
T=4nr/q<L1; (¢q=2N+41). The result for N=398 appears in
Fig. 1 where dimension d have been computed according to
(10) — (15) with ¢, being the real part of all EF of matrix U,.. So
far there is no analytical description of dependence d (k). Neverthe-
less, it is reasonable to compare d(k) with the known relation
[11, 12, 22] between localization length [ (see (4)) and % for small
values d< N (or kR°< N). As it was mentioned above, numerical
data for iree rotator model (2), (3) show [12, 26] that localization
length measured by the decay rate of EF is equal [~k*/4 (ior
F ~95). As a rough estimate, let us suppose EF to be of the form
@u={"""?exp (— |n—ngl /{) without taking into account fluctuations
of its amplitude. Here ny is a center of «gravity» of EF. Substitu-
ting this expression into (10), (15) we have, for |ng| < N:

d~2el~54[~1.25k* G
while the f[itting line in Fig. | (see, insertion) corresponds to
d=~0.87k* 1t is quite good correspondence of dimension d< N to

the common definition of localization length. Nevertheless, further
numerical experiments should be carried out not only in the region
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Fig. I. The mean localization length (dimension d) versus quantum parameter & for
the fixed value of classical parameter # =5.

k>1, l<«d< N (see also [26]) but also for =1 (d=1), which is
slightly above the quantum stability border.

Remarkable property of localized chaotic states is large fluctua-
tions of localization length d.. of the individual EF. As an example,
Fig. 2 represents localization length distribution for three values of
k=~3.3; 21.1; 317 (respectively, r=95; 15; | for t=4nr/(2N4 1)),
with the horizontal scale being the ratio of dimension d, (localiza-
tion length L,) to the total number of levels N. It is seen that the
most large fluctuations correspond to the value d/N=~0.5. In this
case there are both strong localized states (d.< N) and completely
extended states (dn.= N). Nevertheless, inspite of these fluctuations,
the average dimension d can be described by «good» smooth depen-
dence d(k) (see Fig. 1).

Our approach to determine localization length using «entropy»
of EF is well associated with the simple idea of localization length
as an effective size on which the main probability of EF is concent-
rated. This is conlirmed by the data on Fig. 3 where «entropy»
localization length d versus «probability» localization length [, is
shown. The latter have been computed as a number of unperturbed

10
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Fig. 2. Three examples of the distribu- 1207
tion of localization length d. for indivi-
dual EF with the different values of & 80
and fixed (& =5):
a) r=1; k=317; p~=0.95; 40+
b) r=15; k=~21.1; B=0.50:
¢) r=95; k~3.3; B 0.05. 0 025 050
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Fig. 3. Relation between «entropy» localization length (dimension d) and «pro-
bability» localization length /.
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states occupied by the «main» part (95% in probability) of EF.
There is a good correspondence between these two approaches in
_determining localization length, especially, il taking inlo account
large [luctuations of individual EF.

5. REPULSION PARAMETER B AND ANALYTICAL DESCRIPTION
OF LEVEL SPACING DISTRIBUTION

Thus, we can see that in the case of strong classical chaos the
most essential parameter of quantum localization is the average
dimension of EF. Therefore, it is naturally to expect that statistical
properties of quasi-energy spectrum also eifectively depend on the
parameter p=d/N. In the limit d—>N we have f—1 which corres-
ponds to the Wigner— Dyson distribution for P(s) with linear
repulsion of neighbouring levels (it was confirmed numerically in
[5]). In other limiting case of integrable systems, for p—0, repul-
sion is vanishing.

It is our conjecture that this parameter p=d/N is repulsion
parameter even in intermediate case of 0<<B<C1. Then the problem
of analytical description of distribution P(s) arises for the situation
where all eigenstates are chaotic but not full extended in available
phase space of the system. As far as we know, there is no good
candidate for the analytical formula to describe this situation. For
example, the above mentioned Berry— Robnik dependence [15] have
been derived for completely different case of divided phase space of
classical system. The fitting parameter in this dependence has the
meaning of the measure of chaotic regions compared with stable
ones and can not be used for our case. Another type ol distribution
(Brody distribution [27]) is also unsuitable because it has no
physical support. In addition, even as the litting of our numerical
data, without any explanation, these both formulae give completely
wrong result for other cases when p= 1 (see further). |

To get proper analytical dependence of P(s) we pass to RMT
[7—9]. Our matrix Unw, which has random properties in the limit
case [,> N (see, [, 6]), is an unitary matrix. Therefore, it is natu-
ral to consider the variant of RMT lor unitary random matrices,
thoroughly developed by Dyson (see, [7]). In his theory all statisti-
cal properties of spectra are determined by the joint distribution

Q[:(L"Ill, Gt (;IJN} = QU H 1@:’1.:,. —E‘Emm | ﬁdﬂ]L d(!)lﬁ.-' { 1?:!
== m
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of eigenangles o; which are related with eigenvalues hj=exp (iw;)
of random unitary matrix of size N> 1. Here parameter p has the
meaning only for three cases: f=- stands for the ensemble ol
symmetric matrices, p=2—for nonsymmetric matrices, and
p=4—Ilor symplectic matrices.

Starting from (17), Dyson’s approach gives the possibility to
derive, in principle, distribution for the spacing s between the neigh-
bouring values w; located on the unit circle. This approach is based
on the correspondence between the distribution ol eigenangles w; ol
random unitary matrices and steady-state distribution of two-dimen-
sional Coulomb particles located on a ring (see, [7]). In such
model B is an inverse temperature of Coulomb gas in the thermody-
namic equilibrium. Therefore, in this physical analogy p changes
from zero to infinity, but only for three values p=1;2;4 there is
rigorous mathematical correspondence to random matrices. For
other values of B, this correspondence fails and the question arises
whether it is possible to find out the real physical situation where
statistical properties of spectra are described by (17) with other
(noninteger) values of B.

Our main conjecture is that distribution (17) for noninteger f
corresponds to the quantum systems with the linite number of
quasi-energy states under the condition that all eigeniunctions are
chaotic and localized in the unperturbed basis. In our case we
expect that 0<<B<C1 because both the system (2) and the model
(5) — (8) are time-reversal invariant. Unfortunately, the question of
deriving dependence P(s) from (17) is far from being trivial. It
should be noted that even in the case of p=1;2;4 there is no cor-
rect analytical formula for P(s). It is known that the commonly
used expression (1) is not related with RMT. Nevertheless in the
main region 0< s<C2, this approximate dependence turns out to be
very close to exact one which stems from (17) (the latter have been
obtained numerically with the use of Mehta’s method (see, [7, 8])).
So far the total number of level does not exceed several thousands,
the Wigner — Dyson surmise (1) is a quite good approximation.

Here as .an approximate expression for P(s) in the region
0<<p=<<2 the dependence

P{s):Asﬁ‘exp{ __Ef,:isﬂ_(cﬂ_ ﬁ)%é} (18)

is suggested. Two normalized parameters 4 and Co, in (15) are
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determined by usual relations:

Dci Bisyds=1; ¢=§ SP&) ds=1_
0 0

where s=1 is the mean distance between neighbouring levels. The
dependence (18), written in the form which approximately takes
into account the asymptotic expression of P(s) for s— oo, have been
obtained by Dyson [7]. On the other hand, it is quite close to (1)
when B=1;2. In addition, for =0 the dependence (18) is Poisso-
nian one with the correct values of 4 and Cy. In Fig. 4 the expres-
sions (18) and (1) together with the numerical data of RMT [1-&8
are shown. It is seen that the deviation of (18) does not exceed 5%
tor the most essential (from practical point of view) region
s~ 1=-2. It means that the dependence (18) can be regarded as a
good approximation of (1) if the total number N of levels does not
exceed N~ 10*. Much better correspondence occurs for =2 (see,
Fig. 5). Thus, our formula (18) is expected to be close to exact
(but unknown!) one, which stems from (17) with arbitrary values
Osp<2.

6. NUMERICAL DATA
FOR INTERMEDIATE STATISTICS (0<<p<1)

Now we come back to our question of intermediate statistics
P(s) for the model (5)— (8) in dependence on the localization of
quantum chaos. Let us compare numerical data for P(s) with the
expression (18) where parameter g is determined by the localization
length of chaotic localized EF through the expressions (10), (15).

For this, the dimension d of EF of matrix U, and spacing distribu- |

tion P(s) for quasi-energies w have been computed independently in
a wide range of quantum parameter k. In all cases the classical
parameter % was fixed (# =35). To improve the statistics, the
summing of P(s) for four matrices U,, of size N=2398 have been
performed, with slightly different values of & (Ak< k). Quasi-ener-
gies w; have been found from the eigenvalues A;=exp (iw;) of mat-
rix Unm. To compute dimension d we use one of four matrices U,n
with the averaging over all its EF.

The typical examples of P(s) for three values £~39,8: 21.1: 9.1
(respectively for r=8; 15; 35) are given in Fig. 6. We can see good

14

PRSI i il S —

P(s)

Fig. 4. Distribution of the spacing between the

1.0+ neighbouring quasi-energy levels for B=1;
| —approximate Wigner— Dyson law (1);
) Il — dependence (18); circles—numerical data
0.8 + for the «trues» dependence P(s) in random
: matrix theory.
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A
10 + P(S) Fig. 5. Analytical dependence P(s) for p=2.

Both approximate curve (1) and (18) practi-
cally coincide (the discrepancy for s=a1 does

not exceed 0.7%).




correspondence between numerical data and the dependence (18)
with p=d/N. The ys-value, for Fig. 6a,b,c is equal to 15.6; 27.2;
28.5 for 23 degree of I[reedom with confidence levels 909%, 309%,
359, respectively. More data are presented in Fig. 7 where it can
be seen that confidence level for all values of =d/N (circles) is
not less than 5%. For the comparison, the y*-values are also given
in Fig. 7 for two diiferent relations between parameter B in (18)
and parameter d/N. It was done as an additional control of our
conjecture about linear dependence between the repulsion parameter
B and the dimension d ol chaotic EF. It is seen from Fig. 7 that
linear dependence can be easily distinguished by the ¥*-approach.

- More accurate comparison ol numerical data with the dependen-
ce (18) was carried out with f being now a litting parameter. For
this, the most suitable values of f (circles in Fig. 8) have been
computed, which correspond to the minimum of y*-value, together
with the deviations in B corresponding to the 5% confidence level.
As a result, we can see that all the data are well described by (18)
with linear dependence between f and d/N. It is clear from Fig. 8
that the spread in f is decreasing with the decrease of value B. It
means that when the distribution P(s) is approaching Poissonian it
is getting more sensitive to the analytical fTorm ol P(s).

7. LEVEL SPACING DISTRIBUTION WITHOUT TIME-REVERSAL
SYMMETRY: DISCUSSION

Thus, the intermediate statistics P(s) for classically chaotic
systems with quantum localization of EF can be well approximated
by the distribution (18) where p is the ratio of EF-dimension to the
total number N of states. Our numerical data are given for not too
small value of =0.2. As for p< I, computer experiments are much
more difficult because in this case it is necessary to increase the
size of matrix U,.. It'is related not only with the fact that quantum
parameter k& must exceed Shuryak border [28] (k. =~1) but also
with the condition d~#&”> 1. The latter means that dimension of EF
should be large enough for EF to be regarded as chaotic on locali-
zation scale.

[t is important to note that the meaning of parameter p can be
generalized on the values = |. Indeed, for the unitary ensemble ol
random matrices (p=2 in (1)) the maximal dimension of chaotic
states is equal to 2N. It is related to the fact that each EF has now
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Fig. 6. Three examples of intermediate statistics for P(s), with the parameters

H =5, N=398, and four matrices (6) with slightly different values of k- Ak

(Ak< k) are given. The total number of quasi-energy levels is equal to

M=4N=1592. The broken line is numerical data, the smooth line is the dependence
(18) with B=d/N.

a) ka~39.8; B~0.76; v ~15.6:
b) k=21.1; B 048; s A~ 27.2;
c) ha 9.1; Ba=0.22; 1y = 28.5.

not N but 2N independent components because real and imagine
parts of EF are independent in this case. Analogous, we have
p=d/N=4 Tor the symplectic (see. [7—9]) ensemble as far as
each eigenvector is determined by 4N independent random compo-
nents.

In particular, it can be concluded from above that for systems
which are not time-reversal invariant, the value B is not restricted
by p=1. For such systems the limiting quantum chaos corresponds
to =2 and statistical properties ol spectra are described by RMT
lor unitary ensemble (see examples in [5, 25]). Then according to
our approach, the spacing distribution P(s) in the case of inter-
mediate statistics will be described by the same dependence (18)
with p=d/N.
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Fig. 8. The fitting parameter f in dependence (18) as a function of relative dimen-

! ALk g
sion d/N of EF. Circles are values of B corresponding to the minimum value of yas;
the bars indicate the 5% confidence level.
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For the preliminary testing of this statement our model
(9) — (8) was modified in such a way that the time-reversal invari-
ance is to be broken (see, for details, [5] ). As a result, new matrix
Unn turns out to be nonsymmetrical. Therefore, real and imaginary
parts of EF in the unperturbed (£=0) basis are to be independent.
[t was shown in [5] that it can be done by choosing (instead of
cos B) the perturbation with a broken symmetry (under transforma-
tion 8—>—8) and by adding to the unperturbed spectrum the linear
dependence in momentum n. The latter modification is analogous, in
essence, to the switching on the magnetic field,

As a result, new matrix (., takes the form:

I 1—:”:(#?-{—&} ¢ ikcos(2ap/N+n) E%p{n—m] %i’r{m“—i—imj

ffm——-ﬁe Z e e e {ig}

]
p=—N

where N=2N,+1; n, m=— N, ... N;. In the numerical simulation
the values of parameters are equal to t=4nm-16/N: N=199:

A

50T P(s)

100—5.:-

Al R
AMaanancen ;i;;;:,m:,:.i“ ...... s ;

Puec. 9. The intermediate statistics of P(s) for the model (19) which is not time-re-
verse invariant. The size of matrix ., is equal to N=199, quantum parameter & for
8 matrices Unn changes in the interval £=13.0-=13.9 which corresponds, approxima-
tely to d=~ N for the average dimension of EF. The smooth curve is analytical depen-

dence (18) with p=1. y*approach gives x5 231 with 10% confidence level

20

¢~ 1.88; n1x0.81. The strength of perturbation £ was cheosen in
such a way that dimension d is to be equal to d~ N. The quantity d
was numerically found according to the formulae (10), (15) with
the only exception that summing in (10) is running both over real
parts of EF and over imaginary parts. Therefore, the total number
ol components in the sum (10) is cqual to 2N with the usual
normalization:

! YT T
Z T m',z={ (Rethn_}. r-l— LB . (20)

It is clear that our new matrix U,, describes the evolution of
any state of the system, unlike matrix U, which have been ob-
tained for odd states (W (0) = —YW(—6)) of the model (5)— (8).

The result of this simuldtion is presented in Fig. 9. Here the
numerical data are the sum over the distributions P(s) for 8 mat-
rices Uum with slightly different values of & in the interval
13.0<< k< 13.9. The matrix size is equal to N=199, thereiore, the
total number of quasi-energy levels is equal to M=8- N=1592. It
is seen from Fig. 9 that the correspondence between the numerical
data and the dependence (18) is good. It should be pointed out that
for the model (19) distribution P(s) in Fig. 9 is intermediate bet-
ween Poissonian and Wigner — Dyson (1) with B=2. In the limit
case of large [, > N the distribution P(s) was shown numerically in
[5] to be in a very good correspondence with the prediction of RMT
for Gaussian unitary ensemble (B==2 in (1)).

The author is greatly indebted to B.V. Chirikov for sugge tions
and encouragement at all stages of this work and to V.G. Zele-
vinsky, V.V. Sokolov, D.L. Shepelyansky for fruitful discussions.
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