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ABSTRACT

We consider gauge antisymmetric tensor field (which
is equivalent to a massless scalar field on-mass-shell).
We demonstrate that the total chiral current which
accounts for the chirality of the vector ghost fields
does not possess anomaly. We also dwell on the rela-
tion between the number of zero modes of the anti-
symmetric tensor field and the anomaly in the chiral
current of the vector field.
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I. Chiral anomalies for bosonic fields have been discussed in a
number of  papers [l —7]. In'particular, papers [1, 3, 4, 6, 7]
address themselves to the problem ol constructing chiral currents of
bosonic fields and evaluating anomalous terms in their divergences.
In this note we will consider chiral currents and their divergences
in the case of antisymmetric tensor field ¢.. and vector field A,
interacting with external gravitational field.

The chiral current j, in the case of antisymmetric tensor ¢, was
introduced first in Ref. [!] in the Feynman gauge and it looks as

j;}l o= e Ditpﬁ'}.vq}uv b EﬁgivDJ.quv+ { 1 }

The anomalous divergence of this current is given by the following
equation:
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where D, is the covariant derivative, ¢"' = g P b R s I

1
0—g

the Riemann tensor, R"*f= E““F"‘an““, and the brackets (...}
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imply averaging over external gravitational field. Upon integrating
over the Euclidean space the right-hand-side of eq. (la) gives the
difference in the number of the left and right zero modes of the
antisymmetric tensor field in the external field considered.

The very existence of the anomaly (1) looks puzzling, however.

3




Indeed, the classical theory of the antisymmetric tensor field is
known [8] (see also [9]) to be equivalent to that of a massless
scalar field and the very notion of chirality is foreign to the scalar
field. Moreover, one can seemingly evaluate the anomalous triangle
graphs via the unitarity condition. The imaginary part is determined
then by the Born graphs which are to be the same for classically
equivalent theories. Basing on this kind of argument one would not
expect any anomaly at all.

As for the chiral anomaly for the vector field it has been found
most recently [4, 6, 7] and reads as
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where

K= — —L gmveP4 5 A, (2a)
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What is unusual about this anomaly is that it is not related to zero
modes of the vector field (moreover, the latter do not exist at all,
see Rel. [10]). The integral over the right-hand-side of eq. (2) does
count however number of zero modes of the antisymmetric tensor
field, but not vector field.

Our observation is that there exist a close connection between
the two anomalies discussed which resolves the both puzzles.

2. The relation between the anomalies arises in the most natural
way if one pursues the unitarity argument mentioned above. Indeed,
it is perfectly clear that chirality of the antisymmetric field refers
only to the unphysical degrees of freedom which are introduced via
the quantization procedure upon fixing the gauge of antisymmetric
field guv. As usual, one introduces at this point ghost fields which in
the case considered include vector field n,. One can therefore intro-
duce the corresponding chiral current K,(n, 1),

" 9 e
Kﬂ(n.‘ﬂ-jz—_\l——/= E.“ ﬁn\'aanﬂl (3)
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which is normalized by the condition that the chiral charge is equal
to (+1) and (—1) for the left- and right-handed particles respecti-
vely. Moreover, the total chiral current in the theory of the anti-
symmetric tensor is the sum j,+ Ku(n, 7). One can readily verify
then that the anomalies cancel each other so that the total chiral
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current is divergenceless. Indeed, the anomaly in current K, for the
non-Hermitian ghost fields is twice as that of the real vector field
A, (see eq. (2)). Moreover, an extra minus sign arises there be-
cause of the wrong statistics of the ghost fields.

On the other hand, the absence of the anomaly in the total cur-
rent could be inferred from the unitarity condition. Then it becomes
much more natural that the anomaly (2) for the vector field is rela-
ted to the number of the zero modes of the antisymmetric tensor
which controls the coefficient in anomaly (1).

3. The argument above is clearly of heuristic nature. A more
systematic consideration reveals at least two problems which call
for further investigation. First, the current j, introduced above is
not gauge invariant and the classical equations of motion are self-
contradictory once the interaction with this current is accounted for
even to first order. Second, any explicit evaluation of the anomalies
assumes introduction of some ultraviolet or infrared cutoff. One
possibility is to ascribe a nonvanishing mass to the fields. The
advantage of such a regularization procedure is its simplicity and
covariance. However, upon introducing a nonvanishing mass for the
antisymmetric tensor field we change the number of degrees of free-
dom and it is far from being evident that the limit of a small but
finite mass is the massless case indeed.

Our purpose is to learn to perform loop calculations for the cur-
rent j, under the condition that the contribution of only the physical
degrees of freedom in the intermediate state is kept. Usually, the
explicit Lorentz invariance in gauge theories is ensured via the
introduction of extra ghost fields while the unitarity is substituted
for by the requirement of the BRST invariance. In the case conside-
red this strategy fails because of the gauge noninvariance of the
current j,. Nevertheless we shall be able to perform the loop calcu-
lations in a consistent way.

To this end let us start with a massive field @,,, the Lagran-
gian being of the form:

P EL 3,®;., 0pDp, — %m"’flﬁ, + 1 K (@) . (4)

Here h, is some external field interacting with chiral current
Ku!(D):
Ky(®) = — U Dy . (9)
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For sake of simplicity we write down all the equations in Min-
kowski space keeping in mind that the generalization to the case of
a nonvanishing external gravitational field is straightiorward.

[t is well known [8] that field ®d,, is equivalent classically to
the massive vector field 6, described by the following Lagrangian:

L(bY = = 62, 4+ 22 b2 K, (B). (6)

The correspondence between the fields is given by

bp; ﬁ a}.{f}}qi § bva{aubv"_ 5~.~bu]‘ o o S mf[}w "
In terms of field &, chiral current (5) looks as (see eq. (2a)):
Kfl(b) P bvgpw= _Em'te.ﬂbvﬁabli . [:3}

Classically the divergence of chiral current K, is equal to

1 i
0uKy= — 9 buvbpy= — Dy Dy . (9)

It is worth noting that the divergence of the chiral current, if
expressed in terms of field ®,,, is proportional to m®. Thus, there
exists an analogy to the case of the chiral current of a spinor Tlield.
It is clear, however, that the propagator of @, corresponding to
Lagrangian (4) is singular in m® so that this vanishing of the
divergence of the current in the limit of m*=0 is only formal.

To trace these singularities it is convenient to abandon the
Proca formalism for the vector field and use some other gauge like
the Feynman one. To this end let us use the following substitution
for the original field M,:

|
Dy = Qv+ o Ay
ﬂ-uﬂzaualp"""ﬁuau. (]D)

Since we have enlarged the number of the fields the equations of
motion become invariant under the gauge transformations:

S‘PM = 08— 0.8y,

da,= —mé,. (11)

To fix the gauge we add the following term to the Lagrangian:
6
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The terms proportional to f, here are arranged in such a way as to
produce its interaction with the chiral currents of the fields ¢,, and
a, (see egs (1) and (2a)).

As usual along with Ly one has to add the Lagrangian of the
chost fields, Lgnos. The Torm of Lgyues is determined by the variation
ol Lgauge under gauge transformation (11). Explicitly,

!
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where n, and n, are vector (Grassmanian) fields, n,. is equal to
0une—0m, and N,y is given by ﬁ.m-::—é— E vy Ny

The total Lagrangian can be rewritten as
| I . I
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[t one is interested in evaluating the loop graphs in the presence of
external gravitational field to first order in A, the term in round
brackets in the right-hand-side of eq. (14) can be dropped al-
together. Indeed, we have fixed the gauge just in such a way that
there is no Wick contraction between ¢, and a,. On the other hand,
Lagrangian (14) is equivalent to Lagrangian (6) describing mas-
sive vector flield. Thus we come to the following relation between
the terms linear in A,:

CKWb) > = (ulg) + Kila) + Kum, 1) )
where j.(¢) is given by eq. (1) while K.(n, 1) can be read off

eq. (3). Moreover, since it is obvious that (K.(a) )= (K.(b)) we
come to the conclusion that

() + Ku(n, m) ) =0, ' (16)

(15)




i. e. the contributions of tensor field ¢, and that of the ghost fields

cancel each other, as is expected.
Since

(Ku(n, M) ) = —2(Kya))
(see above), eq. (16) can be finally rewritten as

Cinlg) ) =2( Ku(a) ). (17)

This is the relation we looked for.

One more test is provided by considering directly not the cur-
rents but the divergences. Namely, substituting expression (10) into
eq. (9) and averaging over an external gravitational field we find

{OuKy(b) )= ‘("‘ PuvPuv '|' a!wam + Mm@ ) . (18)

Note that to consider the matrix elements of the current divergences
one has to take proper care of the regulator fields (as far as matrix
elements of the currents are concerned, it is mostly the problem of
infrared regularization). Accountmg for the regulator field g,
gives an extra term (I /2)<MR{prchm) where M, is the regulator
mass. It is just this term which results in the anomaly. As for the
other terms in eq. (18) the piece (1/2)(aua.) is identically equal
to — (d,K") while the last term, {¢.a. ), can again be omitted.
Thus, in the limit of vanishing mass m, m—0, we come again to the
relation

(Oufulp) ) =2(d,K"a)) .

4. Hopefully, this somewhat lengthy though routine derivation
does not conceal the simplicity of the result obtained. What we have
proved is in fact the equivalence of Lagrangians (14) and (6) as
far as loop calculations are concerned. On the other hand, that part
Lagrangian (14) which contains field a, generates identically the
same loops as propagation of massive field b, (see eq. (6)). This
observation implies in turn that, upon subtracting the terms contai-
ning a,, Lagrangian (14) is equivalent to zero. Thus we come to a
specific analogue of the BRST invariance. Relation (16) is just one
particular manifestation of this triviality of the Lagrangian (14)
(once a, is put to zero).

Once terms containing a, are subtracted, Lagrangian (14)
allows for taking the limit of the vanishing mass m=0. To be more
exact, one has to proceed first from the Proca formalism for the
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ghost fields n, to the Feynman gauge using to this end the substi-
tution similar to (10), n,~>n.4—a,n. As a result each Proca field
i

(3 degrees of freedom) is replaced by a Feynman field (4 degrees
of freedom) plus a ghost scalar field of the opposite statistics.

Let us compare now Lagrangian (l14) with a,=0 and that of
the quantized massless tensor field. The quantization of the tensor
tield has been considered in a number of papers (see
Refs [11—14]). In the Feynman gauge the full Lagrangian descri-
bes two ghost vector fields (also in the Feynman gauge) as well as
three scalar fields of ordinary statistics. Thus, as compared to the
massless limit of Lagrangian (14) there appears one extra scalar

field. As a result once the interaction with the chiral current is

introduced in the massless case just in the same way as specified
by eq. (14) for the massive fields the equivalence of massless
antisymmetric tensor and scalar fields appears apparent even
ofi-mass-shell. The vanishing of the matrix element of the total chi-
ral current, {j.(¢) 4 K.(m, 1) > =0, may be considered as manifes-
tation of this general equivalence.

The authors are grateful to R.E. Kallosh, I.V. Kolokolov,
V.A. Novikov, A.S. Schwartz and M.A. Shifman for useful discus-
sions.
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