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ABSTRACT

Inelastic gluon-gluon scattering amplitudes in the
Born approximation for the quasi-multi-Regge kinema-
tics are calculated, starting with the Veneziano-type
expression for the inelastic amplitude of the
gluon-tachyon scattering with its subsequent simplifi-
cation in the region of large energies and the Regge
slope a’—0. Results obtained allow one to determine
the high order corrections to the gluon Regge trajec-
tory, the reggeon-particle vertices and to the integral
kernel of the Bethe — Salpeter equation for the vacuum
t-channel partial waves.
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1. INTRODUCTION

Due to the asymptotic freedom in QCD the glueball Regge tra-
jectories j(g?) can be calculated at large momentum transfers
|7] > Aqcp ~ 100 MeV [1]. In particular, in the leading logarithmic
approximation (LLA) the pomeron having vacuum quantum num-
bers turns out to be a compound state of two reggeized gluons [2]
and the odderon, which is a reggeon with the negative charge parity
and signature, consists of three gluons [3]. These Regge poles are
important for the high energy phenomenology [4]. In LLA the
t-channel partial waves f[;(¢°) for colourless particle scattering
amplitudes are expressed in terms of the off-mass shell gluon-gluon
scattering amplitudes satisfying an integral equation of the
Bethe — Salpeter type [2, 5]. This equation is explicitly solved due
to its conformal invariance in the two dimensional impact parameter
space [1]. Taking into consideration the running of the QCD coup-
ling constant one can compute the bare pomeron trajectories at
large G and find the lower bounds for their intercepts [1]. To deter-
mine the region of applicability of these results one needs to find
the QCD radiative corrections to LLA. In this paper we calculate
inelastic gluon-gluon scattering amplitudes in the Born approximati-
on for a quasi-multi-Regge kinematics (QMRK) of produced gluons.
We call QMRK the momentum configuration of the final state par-
ticles in which all of them excepting one pair have large relative

energies \/s;; and fixed transverse momenta k. The invariant mass
of the above pair supposes to be of the same order of value as
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|k, |. Below it is shown that these results allow one to determine
the high order corrections to the gluon Regge trajectory, the reg-
geon-particle vertices and to the integral kernel of the Bethe—
Salpeter equation for the vacuum ¢-channel partial waves.

In the next section we consider the simplest process in QMRK,
namely —the production of an extra gluon in the fragmentation
region of the initial gluon. It is convenient to start from the well
known Veneziano-type expression [6] for the inelastic amplitude of
the gluon-tachyon scattering with its subsequent simplification in
the region of large energies /s and the small Regge slope o’
(cf. [7]). The third section is devoted to certain transformations of
obtained expressions. In the fourth section we calculate the inelastic
amplitude for the two gluon production in QMRK starting from the
corresponding dual amplitude. The final formula is studied in the
fifth section. In the conclusion we discuss obtained results and list
out unsolved problems.

2, GLUON PRODUCTION IN THE FRAGMENTATION REGION

It is known that in the Regge asymptotics (s—-oco, [ fixed) the
scattering amplitudes are factorized in the ¢{-channel. In particular,
the Born amplitude for production of a gluon in the fragmentation
region of the incident gluon at high energies depends only on the
colour spin of the target. Therefore in the case of the string theory
it is sufficient to consider as a target the spinless tachyon with its

kﬂ. k\,

Fig. 1.

squared mass m*= —1/a’ where a’ is the slope of the Regge tra-
jectory (the gluon production in the tachyon-tachyon scattering was
studied earlier in Ref. [8]). -

Let the initial gluon and tachyon momenta are ps= — ko, pp=p
and momenta of two gluons and one tachyon in the final state are
ki, ke, p’ correspondingly (see, Fig. 1). Then the kinematics in the
fragmentation region is characterized by the relations:

s =1 Lt 2k p i et 2kap Pl
S—-_—--—2kgp:§?(ﬁ} . 51— — Dkop 1 ]32 —2kep
1 =2kok | ~ls= Qkokg ~t= —Qpp"—!—Engm? ; (1)
se=2k koSlfa’; m=—lje'.

Here p; and o are Feynman’'s parameters of the final state gluons,
{,. 1o, 12 are the invariants of the gluonic subprocess. We have also
the following relations among the various invariants:

BitBi=1+— =1, sp=i—t—b,
Qkop’ =s+latt, 2kp=spit+lr—t, 2kp'=shathi—t. (2)

In the tree approximation the scattering amplitude for this reac-
tion is given by the functional integral [6]

2
- L ~S Dx exp [alm—xg d*z Z (%)2] X
i=1

2
X [ V*(k:) V(p) V(") (3)
r=0

where po, Wi, Ip‘g are the Lorentz indices of external gluons and
V*(k) and V(p) are the string vertices for the gluon and tachyon
emission:

dx*a,)

r

Vip) =\ doe™ "™, V(p")={ do’ gl (4)

Vi) =\ do, T exp (ikex(00))

After integrating (3) over x we obtain
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=0
le&r

Expression (5) respects the Boze symmetry r<>r’ and the
on-mass shell gauge invariance e—ei+ck; for the gluon polariza-
tion vectors ¢; due to the identities of the type

8" Cpans XD 6= o= | =(20)7Cy, Cus + 228 lexp G, (8)
dag (o) —02)

Pofi g

where exp G is the integrand in eq. (5) without the factor e

Furthermore, for physical polarizations (ke;=0) eq. (5) is inva-
riant under the Md&bious transformations of the integration vari-
ables:

ac,+ b
_.}- 4
co,+d

(9)

¥

where a, b, ¢, d are real parameters. This symmetry allows us to
fix values of three variables:

f

ﬂ'=l, g = o0 | I.']-'[]=U {1[}]

ommiting in eq. (5) an infinite volume of the space of the Mobious
parameters. Instead of o), 0, we introduce the other variables y, z:

y=03—01, 2=—2—, dojdoy=I|yldzdy. (11)

Ja — 0y

Then in the asymptotic region (1) one has
1y1~-l;—c-§:1. |2 ~1 (12)
o 5

and eq. (5) can be rewritten as follows

A Hﬂ}lmzNS dzdy
22y |yl

X 12| ~*"|yl —{ (20/)? Bl CF 1 —(2a/)2X

exp| —a’szy —a’tyIn(l 42) —a’Pesy] X

x(gﬂlhzéﬁn_i__guﬂwﬁ;!_}f {! :z)ﬂg}‘ul‘i E-ill)} : {13}
where
C'uzzyp—kl— ]izkz, (j't=zyp+ku—ék2,
k
Co=yp+ 175 +hi. (14)

To introduce in eq. (13) the colour indices i, i’, io, i1, iz for

external tachyons and gluons we use the following comibination of
the Chan— Paton factors [6]:

£ i e Bt Lo ok Eiad's

Lrbrglrbr by !J‘|If;1:!1!h!ri b bpglpyte ?

Chigi;],i'is:?‘gp[ t‘:l fi? ffﬂ 'tfl tiﬁ] '

Sp[f;f;]=%6.—,—, [15}

for each region of integration in eq. (5) restricted by the inequali-
ties o, < 0, <0, <0, <0, where i, can take five values: i,=i, i/, i,
i1, iz. In the kinematics (1) the main contribution arises from those
integration regions where the relations (12) hold. There are six
such regions. In each of them the values of s, Ba, (1 —f2) have to
be chosen positive or negative in such a way that the integrals con-
verge. The integration result has to be analytically continued into
the kinematics region considered. Thus, eq. (13) can be written as
follows (see (10) —(12)):

A ~{ [ = Chiwl—o's) T+ Clnr ('8} T X



a0

XS %{ Sdzx””‘“'“"(L 2, ko, ki1, k2, p, p’) +
0 i

oo 0
_|_ f:fIﬂ-ﬂf" {QIS} el g % S dz 1“0'”!"2(}{1 <y kﬂ: kli k?i p! pr) } —I_
0 —1

18 Ry 8171
+{ klﬂkz} ,  x=alsy, (16)
[y+>io

where
xmuluz(x' 2, k{l,kh kﬂ,ﬂ,pf} =Ev-.rlz+ﬂﬂ-|x! —ur.-l'|z| =a'fi] | +2E A Inx

x{ @y’ct et et —@ay e+ S o+ i ct]} an

gﬂ'gﬂf_-_ﬂ_ - Cl:fg’_+ﬂ_k2, CE:E;+_‘Ei_+k1. (18)
s a's z a's |42

To obtain eq. (16) the following easily verified identity was used:
IPﬂUtI‘E(x‘ 2y kﬂt k];kﬂg .U'r p!} == _IMFEM(“x: _(1 +z)'r kﬂ: kﬂt k!.—.P1 pf) . (19}

This identity helps one to express one term in eq. (16) as a linear
combination of others in the local limit a’—0:

Sd_
xﬂ

In the o’'—0 limit one can put (—1)*"=1 (=11, 15), i. e. consider
« ™" as analytic function of x, z. After using of the identity (19)
and integration over x the last term in (20) is represented by the
integral over z from — oo to — 1, therefore, eq. (20) is a conse-
quence of the analyticity of x""* and the integral convergence. The
following equality between the Chan— Paton factors and the colour
generators Tj;, in the gluon representation

Ciiir + Cinviaiit — Ciiteioitr — Cioiir = e s B (21)

=
e =
=W
g
=
£
i
5

e

is also helpful.
Integration over x and 2z in eq. (16) ‘can be performed in the
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‘r’angFMiiis limit o/—~0 with the use of eqs (20) and formulas of
Appendix 1. Finally we obtain for the gluon production amplitude in
QCD the following expression

AP o =8g7s T Teig, Tiy @™ (k1. k2, ko, p. P7) +
2] e 1
+( i ) : (22)
kl"i—"’k:}

where we used eq. (21) and introduced a"""* by definition
o _ B[P0 PRkt K

a
5 f.'ng SQ 512§ ﬁszl
ky' ki ( 1 1_)__ k3" kg . k#'ka"] pl [p"'p“’ i
+ t t + 5o 512t + tt + ; ﬂgSEfj
=gty (L4 L) 2] [PrALA
+ st t ;2 S0 st J; Sy 5t +
kﬂ*“p“*] g [(rﬁ:—'rz}p B2 ( g o 1 ) & ﬁ-kz] o
+ st t 2 5128t T i\ g5 Si2 : 512t
Pk 1 I k B2
e e i s
2 f]f.lg i st i .h Si12 !
o g!‘lﬂuﬂl:__ _ﬂ_ &5 ﬁzkﬂ kﬂn .]FI 23
2 st t\f +s,2: . (23)

The common numerical factor in eq. (22) was fixed ifrom the
requirement of coincidence with the QCD perturbation theory result.
For example, the Feynman diagrams with all external gluon lines
attached to the tachyon line Llgiw& in the asymptotic region (1) the
following contribution to A™ " la—o

M |~|-1I!5I.I~'«2 i ‘_ga (gp}l M{Ep:} Pl(?p} Bz [TfrT!'ITIG + TfuThTE: +

s Po f2
T:‘.Te}-r:'u TinTt'uTi'. T!’gTJ'aTh e TE:TEUTI':] e
5 B T f Bipe Biffe: 120
y o B, B2
~ 8g% Tii Tee, Tid, %&5_ +(1+2) (24)

which agrees with the corresponding terms in.eqs (22), (23). In the
next section the factorization properties of expression (22) are veri-
fied and it is rewritten in a more symmetrical form.
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3. {~CHANNEL FACTORIZATION
OF THE GLUON BREMSSTRAHLUNG AMPLITUDE

Formula (22) can be reproduced by using the {-channel disper-
sion relations. To begin with let us write down the Born amplitude
for the elastic gluon-gluon scattering in the helicity basis:

A= —2g° [Pamtidusie (fok) Tl Thi,+(koks) X
UL

XI5 T+ %;?-—L}“;ﬁ ((koki) Tiy, Tri,+ (koks) TS, T +
g

t Scaducis (kgks) T, T8+ (kokr) T, T | (25)

(Roks)

where A;= =41 are helicities of the outgoing gluons (see Fig. 2),

Y | Ka\s

Kole Kals

Fig. 2.

Apgirghy = Aw'"m”ﬂ(kﬂ)”'(kl}e “(kg) En2(ks) ,

lkn o —irhZ( nmif) Ra (il —R1) s+
Eu( ) 'mﬂkl} ko) (eake) [ (Rmylkj !
 Ripllim— i)+ Rl — o)) b ki 67 B2 (26)

netmeklA], ei:('k}=3:a(—~k>=fz‘;"w)=e;'(—f=)-

Here m, j, | are indices of gluons complementary to n, Z(nmjl) is

(0123

the parity of the permutation ) Polarization vectors eji(ka)

can differ from those presented in formula (26) by gauge-dependent
terms containing Ra..
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The colour structures used above are linear dependent due to
the equality

i

T!fis ﬂflif-:;_ Tfiz Tf‘li!'rl s Tf:fl Tfaf'Q . {ET}

Expression (25) can be transformed into a Lorentz covariant
form A" using the following substitutions (cf. [2])
[ A Z By ik 3"”9[: =
Ay Ko

(ki) {ksJ Ry (R
(ki km) (kikuk 7

g gflm’lﬂ

where the equality sign stands for the gauge independent part, i. e.
for the terms without (An),., (Ra)y.-

To calculate the inelastic amplitude of the gluon production in
the high energy gluon collisions we use the following asymptotic
relation

gt pll{fcuj .
SR (pko)

for the tensor structure of the virtual gluon propagator in the
{-channel (see Fig. 1) in combination with the substitution (28) Dl‘
n=23 in eq. (25). It allows us to find the pole singularity of ot

at -0 (ci. (25)):

; 2 i
AR o= — 28T 25 [ 81,1, 8 (k) BEX
><( o 8 i g i 20 ) 48, 1 Ehe,) BEX

i ; s
X(Tffe: Ti, 1‘_: + T, Th MJ) B0 *; %

xaﬁ( ST 4 +m. 3 "‘)] (29)
S12
where
Bn—P-I-—k +ﬁ”k=, Bl-p+f’ﬂ‘fzﬂ—q—feg?
12
By=p+ 2= Syt (30)

12
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To reconstruct the total amplitude A from the calculated
t-channel pole singularity we add to eq. (29) some terms regular at
{0 which are necessary for analyticity requirement in other in-
variants:

ey C 4 % L] ™ d -y
ABr = — T5 [ 8100 B (k) (T Tie X

¢ D*(ko, k1, ka) + T2 Téi, DY(ky, ko, k2))] +

kﬂ—*kg kn-l-"*kgr
+[ hye=>hy ] —!—[ hgerha ] } ; {Jl}
[ +>ig fpe>iz

where the gauge invariant vertices D* are built from B! (30) by
adding the terms proportional to £

— B, 32 _f..(f.‘L L
Diko, k1, k)= By 22 + - (ELp — ko)

= L[(sret ) ot s ko

koD(ko, kiks) =0. (32)

Note that D (32) does not have simultaneous poles in ¢, and f»
in accordance with analytic properties of the Born amplitude be-
cause of the equality

S12—f=—f|~—fg. {33}

Furthermore, for fixed k. and large ky; >~ —p’. one obtains

AS . Sl0 (—'-—) (34a)

A1
due to the relations
1By &
(S::H- ﬁg)||sz_=l#'~.f'I—-!_I}Iku|Nku‘ kol , (34b)

sia~|f2l ~1 21 .

[t guarantees the logarithmic-like behaviour of n’m:=5%—dt with
energy in accordance with the renormalizability property of the
Yang — Mills theory (cf. [2]).

To make the Bose symmetry of expression (31) especially ob-
12

vious we pass to the tensor representation
AL =EiRer) &1 (ko) 8y (o) A™, (35)

3
AVt — T }f—{ [ A" (ko, k1, p) (Tiiy X

X T D"(ko, k1, ka) + Tix Ty D™(k1, ko, R2) )] +

Ry«>Ro kg*—hkg
+] e | 4+ oo | } , (36)
Lyj+*ig ig<+ig
where instead of eq. (28) for ek in the light-cone gauge (ep) =0 we

have (see [2]):
Bpa(kos k1, p) = — ¥ ey (ko) € (k1) =
A

= (k) Py Pulke)y boki) —Puslu 17
Bpom = 3 (Rip) (kop) i) (kop) (k1p) o

[t can be verified that formulas (36), (37), (27) give the ampli-
tude which coincides with that obtained above from the string
theory (see (22), (23)).

In the infrared limit of small momentum transier we obtain
from eq. (31)

"4 fr-hl;ug | p"is =0 r {38 )
lp’, |
due to the formulas:
Du{kﬂ,k.,kg}npl__,ﬂ=k5_:_, koeMks) =0. (39)
L
Further, in the multi-Regge limit (see Fig. 1)
1= —2koky SEZ, . s2=2pks> k3, sie=kaLs, (40)

we have from eq. (31) the following factorized result (see [2]):

y ¢ 1 ®ma, e ikt ol
Aaﬂa?@=2£‘355;ﬂm. Liy —I—gp, (k2) 2*(q1.9) Tdc'"f_ Tei,

ha=—ho, q=p—p, qi=kotki, (41)
where the effective emission vertex 2" equals

P(q1.9) = 2L D(ko, by, ko) s, g0 — Ra=—(q1+0) L +

£
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b2 2) (84 ). (2)

51 5 g

and the identity (27) was used.

4. GLUON PAIR PRODUCTION
IN THE TACHYON-TACHYON COLLISIONS

Let us consider now a more complicated process of two gluon
production in QMRK when the pair of produced gluons has a fixed
invariant mass /x at high energies (see Fig. 3)

%d. "(‘LL‘ k [ Fi' %

Fig. 3.

s=2p \pa~s' =2pypy ~u\ =2p py ~ua=2pypa> 1 [a’,

1
SiI=2Z2pki> — 5252;}9!32:‘}29;1;, 352k1k2~?1

1
-’

1
ty= —2pipy+2mi ~t=1t,+2p k1 —2p ki ~ty= —2pspy +2m’ ~ pe s,

AL AU TR S el (43)

e
The scalar products of all external particle momenta can be expres-
sed in terms of the above invariants. In particular, we have
Sip=2pRe=s+H—u1—s, 2pki=s5-+1r—Uly—S2=25y,
200k =s,—t,+1t, 2prho=s—s;—x—u+H+H—I,
2ppky=59—1ta+1t, 2pyki=5—ss—n—us+l+1t—1t. (44)

Using these relations one can obtain for the dual amplitudes of

14

the gluon pair production in the tachyon-tachyon scattering the fol-
lowing expression in the Koba — Nielsen variables (cf. (5) — (7))

2
pLEEN. | * % fa]
AT ~e, (k1) ey (k2) S R X
0y Oag

7o) i [-‘Evl _QJS| 0y F'l2l T |Gzrpm' par| T H'X

Og1- P21 Oy o Oy P12 Por
x |”1;*P2= TENY prapay | o Ea, | 212 0g) | _E”x

P Py P P22 Pz Py

o —_—'t —a'l

% | Oy Pz Pzr‘ O gor Pzi*| Rl I TR X

Tap- Py P21 Oz Pay Pyor Pog

< 1 Ii2
x[q 2&*)2{ Z (&"ﬁ)_ﬂ} { Z (_f:a__f._)_ﬂ} i
t P Py 212 : Pa; Pop Z21
= =
Bip
2’8 _|. (45)
2 1
Z1a
0 =0;—0j, pe'j“_—"zr'—ﬂf, 2ip=— 2o =21 — 2.

This expression is invariant under the gauge transformation

e (k;)—e (ki) 4+ck; and under the Mdbious group, which allows one
to fix the values of three variables

g =(), g =g Oy = 00 , (46)
Instead of the other variables we use new ones

=2t yp=2y, 2=2 (47)
2] Z3

Then in the asymptotic regime (43) we have

|
. T e et B (48)
5] o 52

o

and therefore expression (45) can be simplified in such a way:

- dzdiy, dys —a't —a'ly —a't
AP, ) B ) | L2dsdn :
ulfr) &) § SEL 1] T Ll T 121 X

X |1 —2z] T exp (@] Y1225 — 4125112 — Ya2S221 — (1l — 2) $1 — Yol —2) s2]} X
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JLida
x[Dy Dp 4 £ 2| 01,4 2) (49)
%’ (1—2)
where
Diz—“t?l+ﬂlyl—ﬂiyﬂz+kzliz, gr=pPr—pP1;
DE=—¢?2—|—P99’2——F1H12+#11—§—2, ga=pPy —P2,

SJIEEEP![kl'{‘kE}=5‘|_fl—“ul"“"51g

S;::Q[Egpg{k|+kg}:S—I—fz—ELzNSQ, [5{]}
In the integrand of eq. (49) we introduced the additional multiplier
@ (yi, ys, z) which takes into account that for each ordering of

values of initial variables o;, o, z there should be corresponding
Chan — Paton factors (cf. (16))

DYy, y2, 2) ={0(2) B(1 —2) [ 6(y2) O(1 —ya) X
X{(O(g1) 6(1 — 1) C:;tuf.fgbb“"’_e{_y!} Caz*f.:‘gmf} % 2
4-8(—y2) (0(y1) 6(1 —y1) Ciffaarer +
+6(— 1) O(1 —y1922) Cigrwrave’)] +
+6(—2) O(y1) 8(1 — 1) [ B(y) 6(1 —y2) Crtarier +

+6(— y2) (1 — 2y2) Coaraiprr] ) +

z—1/z
+{ Ve } , (51)

[ ++ig

where a, a’, b, V', iy, i, are colour indices of scattered tachyons and
produced gluons with their momenta equal to pi, prr p2, pr, R, R
correspondingly and

Cihistiints = Chstias+ Cpistaredals - (52)
In the sum (51) we took into account only those kinematical
regions in which y, and y, are near zero in accordance with (48).

The other integration limits in these variables can be put to = oco.

It is convenient to introduce the new variables (see (48)):
xi=a'sjpyi~1; xe=a'sm ya~1. (53)

As it is seen from eqs (49) — (51) one needs to consider the integ-
rals

16

s

: |
5 deT"2) . (54)

.

| aa
S dz TP %e) S dz T >z},
0 - ]

where 5

)
[+ 4] o

THM(z) = — S = S Mo sr=rag T Ml < rasa K

BT T xi X3
0
Xexp{ —xi(ri+2(1 —r)) —Xa(rz+2(1 —Tg)}—‘—){ﬂ(gl—-r—"—} ;S
o512 Sg21
g BT F ] A b =1 55
X[Dr DE + O’ {1_"_2}2 ’ rl—'slmt Fa 322|- I: }

They must be calculated for the values of invariants lying in the
region of their convergency with the subsequent analytic continuati-
on of the result to other kinematical regions. It can be verified by

using the new integration variables i, 2:

Pl RS % ) (56)
2
that
d Ti*lllﬂ o d Tllll‘h I 2 : 57
| dzT"@) ={ d2T*"(2) fgpeed (57)

Further, as in the case of A>"® we have the relation (cf. (20))

0

1
(| deTM(2) lwmo={ d2 T lamo+[ 27 (58)
0 L2

—_— O

which allows' us to restrict ourself in the field limit a’—0 to the cal-
culation of the integrals of the type

1 fs. 1]

MRt dz d.m
e e |
z2"l—2)™ X

.Ii
0

I

L n)
dxy —a'ty —a'ts —a't —a'x
}(S 2y g T2 T (1=2) o
3 |

Xexp{—x.{r;—1—z{l—r1])—xg(rg+z{l—r2)]—|—x|.t:gz - - } (59)

@i 528221
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An exampie of the recurrence formulae for the functions J and
their values at several n; are given in Appendix 2. Using the table
of Appendix 2 we can find the inelastic amplitude > g (see
(49) — (51)) in the form

— £ I I. ﬂ:ﬁlg 1
A4 4=25§2Tmarﬁ’m (g1, g2) Eﬂﬁm (60)
where
Vel (91,92 = g°Tl Ths 8" (k1) 8k Ayt (1077 (61)
|+ia

The tensor A™" equals

s bl-llbl'l: 515
¥ i AR B | L Jg (1 1 2)
; i —l__sr A

5

T bi'ey” ( 138 .. S|S|2) 5. ci' by’ ( fis 3252‘) EL

5 Sa2%a29 st 5 18112 5t
e EIFI’EZM ( ]+ T ol 5|252|) 5 z(gp,p?_ gfiél'ktl“) %
5 i st "
X(l+ i -3 5189 = S189—S12501 f181a e fgSg;) . [62]
“ st ®S RS 12 S22

where
ii f; 5 t
i [‘?f—i—(ff— it —) pi— - pi— — k|,
5 g H

5y
b,-=2(p;—%kf), ﬁi=2(pf—%kj): {ﬁd}
A S 1

The common numerical factor in eq. (60) was fixed as in
eq. (22) from the requirement of its coincidence with the QCD per-
turbation theory result. For example, using eq. (24) one easily
obtains, that the Feynman diagrams with external gluon lines
attached to the first tachyon line give in the asymptotic region (43)
the following contribution to A%

: P>
AR = — £ 7h, 0p) Btk Eulha) aAv | Do | 4

BES—*S 12
[(—=a

(5 =2s0Ti 1T T Tih X
I

4—
L=in ,['2
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E L] e
X &y () &y ) 2LEEE 4 (Bree) (64)

515112 fe>ig

which agrees with the corresponding term in eqs (60) — (63), conta-
ining ;8112 in denominator.

The simple colour structure of eqs (60), (61) appears due to the
relations (58) and (27).

5. SOME PROPERTIES OF A*™*

Here we investigate the above obtained formulas for A% ket
us begin with the factorization property of the residue of A i
f{i=0 or f3=0 (cf. (29)). This property follows from the verified
identities (see (22), (23)): :

Buln) &) AMM1 o= 00 (), B, (k) Elk) X
X a"""(ky, ke, g1, 2. p2)

Bule) B la) AP g = Z12 () B, (k) 8, (ko) X

X a' ™ (ko k1, Go, p1 PV) . (65)

Furthemore, A" for g1 —0 proportional to the tensor which vanis-
hes when it is multiplied by the physical polarization vectors 3,.,(&',-}:

i 4.8 s t o
Mg (St S 1)U

L j=1,2, 'iskj (66)
and therefore we have
1

: AE#I&' q; J_—r-[]% ’ {6?}
lg,

which can lead only to a moderate logarithmic divergency of the
total cross-section U=S dh% in the infrared region #—0.

In the region of large |f| the total cross-section can have only
logarithmic contributions o~In"s in accordance with the renormali-
zability of QCD. This property follows in our case from the relation
(cf. (34a))
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AE_FﬂIIfI—__--m%D (‘_l""") : [6‘8]

Vial

Let us consider, for example, the kinematical situation in which

|21 |, lker | and S—?— are fixed and |g, .| grows:

8180

Byl ~lgio 1> gar | ~lkayl, —S-ﬁ-'!f?sgﬂif‘-'lkzj_iﬂ- (69)

In this kinematical region the Lorentz scalars f,, s21, S221, ® grow:

118 512 821
b —lgial? S21 R San R — ——, I B bt (70)
55

as well as the Lorentz vectors ¢, & components
kiﬁ—qiﬁfh(;{}-) s i 0 D (Tl}
. $1

The terms in eqs (61), (62) growing as @?L either cancel due to
eqs (70), (71), or vanish due to &.(k\)kY=0, and, hence, the rela-
tion (68) is fulfilled.

It is evident from eqs (60) — (63) that the amplitude A" i
invariant under the gauge transformation of one of polarization vec-
tors e(k;)—e (ki) +ck: independently from the another vector value.
Let us stressed that at the same time the amplitude A*™" does not
have simultaneous poles in overlapping channels.

Further, in the multi-Regge limit

5:233’513?“3!5_12, 3213‘-’323?153:1_!2; = 31-:591 :’3"|ki.1.i21
sasi= R L |23, S1252%= ”32_1_[25, (72)

we have from eqs (61) — (63) the folluwin.g factorized result (see
[2]): |
vai(g1, g2) =g, 9) %v{é{q, —q3), (73)
where : o
Vi1, ) = —gTeedk) (1. 49) ,

t
241, 9) ~a—Rki~—q1—q§—2p (i“l_}- fi) +p2(.5_' 4 _,) 2
S 51 5 Sa1

g=k-+q:. (74)
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6. CONCLUSION

In this paper we obtained the inelastic amplitudes for gluon pro-
duction in QMRK for high energy collisions. The formulas derived
irom string amplitudes for processes with tachyons can be used for
interactions of gluons or quarks due to the conservation of s-chan-
nel helicities for each scattered particle in the Born approximation.

It should be noted that the gluon amplitudes up to six external
particles have recently been calculated in helicity basis [9, 10]. In
principle, it is possible to obtain our formulas starting with these
amplitudes. But this task is rather complicated because of the tran-
sformation from helicity basis to tensor form as well as because the
full expressions for gluon amplitudes are rather involved.

The knowledge of the amplitudes obtained is necessary for cal-
culation of QCD radiative corrections to the scatiering amplitudes
in LLA (see [2]). Indeed, to find the three-particle contribution to
the imaginary part of the gluon Regge trajectory we need to know
A”* in QMRK (see Fig. 4) The corresponding two-particle contri-
bution can be found by using the ¢-channel unitarity conditions by
iterating the Born amplitude for the gluon-gluon scattering (see
Fig. 5,a,b). Further, the radiative corrections to the eifective vertex
for the gluon emission from the corresponding reggeon can be
determined from f,- and f;-channel unitarity conditions by using
again the inelastic amplitude A*® (see Fig. 6,a,b). At last, the
radiative corrections to the Bethe — Salpeter equation for the scatte-
ring amplitude in LLA contain besides the above contributions also
the product of the tensors A™ in terms of which the amplitude
A*™" is expressed (see Fig. 7). We hope to publish the results of
calculations of these radiative corrections in the nearest future.

The authors are indebted to E.A. Kuraev, A.N. Miieller,
S.J. Parke and A.R. White for helpfull discussions.
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Fig. 5.
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Appendix 1

Here we list out some integrals of the form

ik fiie S doe "t o —atyy 4 )=t (A1.1)
! '_S x™ 3 2zq1+2)" bei
0

0
in the limit a’—0:

I‘lmzL, Jo—10o fa R (L PO

ﬁ? 'Sz

1

ﬂ-’Sm

FOT0 T 1 79— (1) 7100 — ta+ Bt
a'Paty ; o tsie

jﬂi’ﬂlﬁ 1 "rtlﬂﬁ#( 1 _l_L)‘

a®f Xk 80

je2i _q2o0_ g2l - (1—B)
m"if.f ‘

g g - b
H-!?I]f

Sig= — 1 —1tz2+41. (Al1.2)

Appendix 2

For calculations J™™™" (59) it is helpfull to use the recurrence
relations of the type:

g = (fl li—l-c.f,’i'} I:{ﬂq +C£"K} f”lw’rnad i
g =

“—{] _rljl jl:l'h—‘l::lﬂg{ﬂg—]}ﬁ.l_{I en rﬂ::l fnll:'rfg—].}{f‘i:]-.-- L} (1] +
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+__l_jmr4ﬁh—nmr—nm]; K o S8 ERL (A2.1)

a’'A ' 5
We obtain for a’—0:
fE]llmﬁ*— I : Illﬂﬂg_mftlrr, _,'?”ﬂﬁ_rl_r';
Ct'rs.l!']fzf! ;
1210 1120 ’ L 1 tiis .
J208 _pg. ma1F+4+nf——4 Y e e :
r ra riraiA &
2120 Iy 1220 ] ) -
~—J1— ice 4 B ~—J |l —re4 —1:
Jr (l rl_+_ .F'gg"'l.)! Jr ( E—I_ F';."ii.
72010 i.gj(rl+ L) 1 jﬂﬂlﬁﬁﬂj(r?—F i) , ¥ V.S. Fadin, L.N. Lipatov
ra A i A High Energy Production of
12220 i Oy g2203 2l g Gluons in a Quasi_—MuIti-Regge
A Tt A R Kinematics
g o 7t (l—{—t—;) M e o (l—l— -ff— : B.C. ®adun, J1.H. Jlunaros
M . H
i f i : ¢ £ BoicokosHepreTHueckoe pOXKAEHHE TJIKOHOB
JA —J(r,—k? (1 + -{)) o IR e —-I(rz-i— =y (l+ -;\—)) : B KBA3HMYJAbTHPEIKEBCKONH KHHEMATHKE
F“Em[n@— —i-(l e i{x—l—f—-rl{l'——n} — (1 —rg})]mg.sz}
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