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Abstract

In nonrelativistic pair production, the matrix element of
the radiation is represented as a product of the matrix element
of pair production and the nonrelativistic radiation amplitude,
with taking a Coulomb type interaction into account. The inter-
action is shown to exert considerable effect onm the integral and
spectral characteristics of the radiation. The cases of photon.
and gluon emission in lepton and quark pair production are con-

gidered in detail.

1. Introduction

One of the basic purposes of modern accelerator physics is
to discover and study new particles, Besides the t-quark, which
was predicted long before its observation, the discovery of other
heavy quarks and leptons is also posaible.

In the process of heavy pair production, the range of ener-
gies at which the heavy particles are produced as nonrelativistic
ones enlarges with increasing their masses. Both in Quantum Elec-
trodynamics (QED) and in Quantum Chromodynamics (QCD), it is con-
venient to aplit tﬁe photons and gluons in this range into 'Cou~-
lomb' and transverse ones (i.e. to use Coulomb gauge) since their
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interaction with nonrelativistic particles is different: the effec-
tive cuupling ia,{;(f .) in the case of Coulomb photons (gluons)
ando(ﬂ'ﬁ(‘g?f }in the case of transverse omes ( 27 is the rela-
tive velocity of the particles).

At rather low U , the Coulomb-like interaction should be
taken into account in all the orders of perturbation theory. In
QED, this problem was considered as long ago as the 19308 /1/.

Our approach is close to that reported in /2/, where allowance
was made for the Guuldmb-lika final-state interaction for the case
of e'e” pair production. The results of Ref./2/ are easily appli-
cable to the case of @& pair production (see Ref./3/).

The present work deals with the influence of the Coulomb-like
interaction on the emission of a transverse gluon (photon) during
the nonrelativistic quark (lepton) pair production. For known fla-
vours of leptons and quarks, this problem is of rather theoretic-
al than practical interest. For leptons, this is the case since
either the ragion where the effects of Coulomb interaction are

significant ( &= rmal) is too narrow or the lifetime of 1aptons

is too short H:J;hﬂt the radiation their decay products rather
than the radiation of their own is observable. For quarks, simi-
lar circumstances are of minor importance; the nonperturbative and
large-distance contributions (wheregle is not amall) gain importance
here, However, as the quark masses increase, these contributions
lose their influence, and the Coulomb-like interaction becomes
determining /3-5/.

Gluon emission is the basic mechanism responsible for energy
losses of quarks and multiple hadron production in hard processes
(see, e.g., Ref./6/) end the problem in question therefore acquires
great practical interest.

In section 2 the matrix element (ME) of the process under
consideration is shown to be represented as a §rnduct of the hard-
-process ME M, an& the nonrelativistic radiation amplitude, with
the Coulomb-like interaction taken into account. In section 3 we
calculate the nonrelativistic radiation emplitude, and the spec-
trum end the energy losses caused by photon emission are analy-
sed in section 4. At last, section 5 is concerned with gluon emi-

gsion. The results obtained are discussed in the Conclusion.

2. Pactorization of the interaction and radiation by
nonrelativistic final-state pair,

As shown in /2/ (see also Ref./7/), the production amplitude
for a pair of charged particles with low relative velocities is
as follows if we take into consideration the Coulomb final-state
interaction:

(=) } *

/\'7:/\’7&/%5*(0)/ : ()
Here fﬁfé is the corresponding amplitude without regard for the
Coulomb interaction, ;;; - the particle momentum in the c.m.s.,
'{j;rj(f) :(’?fﬁgu'f)the wave function of the 'out'=strte of relative
palr motion, i.e. the solution of the Schrodinger cquation for a
particle with the mass g-? ( . is the mass of the particle he-
ing produced) in Coulomb field which contains incoming spherical
weves and outgoins planar waves with momentum F (normalized to
((2?}‘) J{P P’r) )« For further generalization let us represent
the factor in (1) which incorporates the final-state interasction

as follows: »
(”UE)/‘?))*: </5/ Z[(m!a)/0> (2)
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Here I;} is the state with momentum F <P\FL},>’E » and
L{(t f Jia the time translation operator in the Dirac represen-

-—ef.

tation for a particle in the field with potential energy Vf‘!'- >

sz;;ff):Taprf V(’Z;'jt}afzf)
z

7 (3)

7 fiih e e i
ViZt)=e "t yz)e e
/7:, = —f;: A _ (5)

The meaning of formulae (1) and (2) is evident. Pair production
lasts éﬂi ; the distance is not larger than % either. For
the Coulomb interaction, essential are much longer distances,
fmfia/ ?ﬂl'lf»i. and time spans, 7"~ £ 77i « In view
of this, the pair may be assumed to pru&una at the point ".?,’ =0
for i‘ = 0 with the probability amplitude Mﬂ « After that, the
interaction starts to influence which determines the amplitude
of the probability to detect the pair in the state / /5" 6

It is clear that together with the Coulomb interaction, the
interaction with transverse photons, which leads to their emission,
may h? considered as well. For the latter, also significant are
large (as compared to 1/m) distances and timze spans ‘Zéwﬁ-‘} )};-h—:,
famr'zr»,;‘f » 8t frequencies Z0$ £ = == . Therefore, the
amplitudes of the processes followed by photon emigsion by a pair

of produced particles are of the form

<7£/u£(‘x’;0) /e>M, (6)
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where [ £ ” 1is the product of the vector of the state /(P> ot
the produced pair and the vectors of the states of emitted pho-

tons, whereas the time translation operator Zéf is given by
formulae (3)=(5) with the substitutions V@)"' ]é(('?;fj, where

Ve (22) = V(7)- & /?(f;/o,r- 8% gk

._y
In the above formula, f:v =i «4 {f) is the double-quantized

© e e

transverse vector—pu‘l:antial of an electromagnetic field in the
interaction representation. We have neglected its dependence 6n
:E because the photon wavelength is large as compared to the
sizes of the emitting system (dipole nature of radiation).
In the zero order with respect to the interaction involving
transverse photons, formule (6) is transformed intec (1). In the
first order, we get the radiation amplitude for a photen with

-

mnmentml K  and helicity }* hy the produced pair:

M ("‘r)_ “(p,ad/e R)B (H-E,-i0 ) M i

Here £, = ,."‘E 74 is the energy of the pair before emission
and H is the Hamiltonian incorporating the Coulomb interac-

tion,

.= My wlpie) o, 9
Formula (8) can be derived by & direct summation of the main
contributions given by the diagrams of perturbation theorx,l as
it was done in Ref./7/. This formula reduces the problem to a

quantum-mechanical one,

Using formula (8) and the relations

}g: {-—E"—n[;"/-f ‘Z] 7 o> = O A - (0)



we may represent the matrix element M ( ;k J a8 follows:

A_p—'b A -
Fdiier="4 /ﬁf)/"/‘, g (11)

where

A — 2
A@E’):-E@é{ﬁﬂuz‘{gﬁm @/H-—Eﬂ--iﬁ) f/o), tios

Besides, 1t is convenient to decompose the state /&ﬂjﬂuf?(} into
states fE-; Ll) [,3> with definite values of the angular momentum [,
of the pair and its projection onte the direction of photon es-
cape Lz « Since the pair produces at % = 0, the final states
with /. = 1 and Lz 2—)\ are only possible. Therefore, we ob=-
tain from (12)

Wppz)=-mo % ), %)
<E, 1,4/ EXR)e 7 [H- E-io] 1 fo>

(13)

where 84 .18 the scattering phase in the state with A

We use a conventional normalization of states:

E L, bz [EjL, Ly > =275 p—p)
. whara/::r"m .

Por the cross section of the photon emission with momentum
4 | ]

K and helicity X we obtain from (11) and (1)

A | Ass > 42 3
d6 = 4% ’i{f} ) [*p d

J "/Jp; (o) Pe (P ) 28 7
where d!EF

w:l.th invariant mass 2/ *E s With the final-state interaction

(14)

(15)

is the cross section of the production of the pair

8

taken into account; the factor 19;:)9 appears in (15) since the
crose section 36:, is taken at the invariant mass of the radia-
tionless process. :
Formulae (11)-(15) sdmit a simple generalization to the case
of gluon emigsion at QEQ_ pair production. In this case, the ope-
g

rator of electric dipole moment € C ghould be replaced by the

operator of colour dipole moment: :
& T a
g —> 9T
€8 d z g

&5 :
where 7 ot )E.I‘E the generators of coolour group SU(3) for

(16)

quarks (antiquarks) and "a" is the colour index of the emitted
gluon. Now the Hamiltonian H is the matrix in colour space:
H = - £+ Zs 441

Z 3 e ko
2

where of 5= %F is the coupling constent in QCD. The colour states
of the QQ peir is convenient to choose as the eigenstates of
the operator (‘t’:q""gq)e. In the basis of these states, the // is
disgonalized; note that

e e
5 e g 7 4 2 < (18)
where / is the eigenvalues of ft‘.’ ququ, which may be equal
to O or 3. The zero value of / corresponds to the singlet repre-
gsentation, while 7_ = 3 fo the octet one. Within the representa~-
tion, the states are distinguished by a colour index "a". The co~
lour wave functions }//( 7. & )are of the form

7( (50)- (3 a): /—/f/-— (19)

JE.
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where vf{a?) are the \:c:oluu.'r: indices of & quark (antiquark).

With the said above taken into consideration, for gluon emis-

sion at Q(ii production the elementary algebra yields, instead
FTE L) A '

A
MTG" €)= 4, /"E)M g2

’
% a Ara; 4 (20)

e 7

where ?: / I , Az ) are the colour quantum numbers of the £/ 47
e TC
pair before (after) the emission, C are the group

q"cﬂtﬂ
coefficients,
o reen ¢ = ma
- o e /
o B PN 7 ﬂqc'ﬁ- |||f &

C B S; = C 33 ; io/ (513
a e - Tg a, a
Loa Ve 7 ﬂ{ -ﬂi G = o8
and the nonrelativistic amplitude A is equal to

(r) Lt

)‘ f.-
AI‘;,?:@ ?’FQ . )/ ) /E}( 7 —,\/ffx)gt/f/ Q/a)(zz)

For the croas aactiona. aummed over the colour states of gluon
and quarks, we abtain from (20) and (21) (cf.(15)), using the
relation o, g; “: - FJ‘

< (a} ? {3)
/ d’6_ "43 / -f-a/ / ?Jr-‘.f()

’ (o)

(23)

/5‘”" (o) jpo (er Zw 2

r)
where ::7’6; is the cross section of the QGZ pair production
in singlet (7 = 0) or octet (7 = 3) state with invariant mass
m+E, , with the final state interaction taken into account,
and t/)_(::' [ FE"" j is the corresponding wave function.

10

e ——_ o

3, Calculation of the nonrelativistic amplitude
Using the expansion in terms of the complete set of states
f'z, > , we may rewrite formula (22) as follows:

j{f" ;_-..-r___fc_’._j___ .:.5 “}Y (_&).

.":
7%

e i) o> @‘;‘a?):_ﬂ(w),@ )2

rl

i)
where /Q p4 ( ¢/ is the radial wave function for the Hamiltonian
(18). With the polarization vectors E I'k "““A (exn}\ Ey)
Y, =i si 607 S 21
and spherical functions 5},\- o " chosen in a

eonvantiuna.l way and a.i’ter the iutﬂgra.tian over the anglea we get

ﬂ f;;f)’ i_’i_—‘g#i JA{k}ﬁﬁaf’z@/ﬁf“E 19)/)'?'(""{25}

For the Green function in (25), we use the integral repre-
gentation in the Meixner form {E} (see also REIJM)

WU Eio) ly=-pe ﬂf/ s

here

(77
ﬁz:mé , o S (3-1-27-— ; (27)

For the radisl part of the wave function we take the lmown

representation (Ref./9/) ﬁ-; ime” 7)
b1 (2p'z ) § 2ipre-, i B2, g2
... .i 2p

where integration accurs in the positive direction slong the

contour enclosing the points 21/2,

o r’r) Yrpm o’ /%% ma(,”" |
zf'mo.c'm' / (29)
Vo *?’—ex/o/ / .




When substituting (28) and (26) into (25), the integral over %

is teken in a simple way, and after that the integral over 7~

is reduced to the residue at the point z7— -/ ﬁ"*‘:?ly. As a
> .

result, we obtein é_{?_) i)
A L g fi . Q{G)E
A r@w:-i e " C epbsl b
o M Y 7 (30)
£ P
wh -
-2 p- LYZ
i A e e ’

(31)

](ija- ﬁf ﬂzyi%’l?ﬂ@ //”*Zf /f? /Jaz)

For a.z-hitrary values of the parameters, the integral 7 G’:rg

caunot be expressed via elementary fu.nctmna. Let us consider
some limiting cases when the expression for IQ‘EQ‘

is simpli-
fied.
1) Low emission frequency limit, X ~> 0
Q, R, X )@y z:f?)/_'/z—a/&-é?))

L (x) 5o /"/Z_ﬁgp) wk3d)
2) /Qt /{'{'f. In this case, &Q,c,
-Z—G?F@t i ff"— f"f—.x P’?-_,i:

e T+ 1—-X (34)

Regions 1) and 2) overlap each another. It is easy to see that
(34)'coincides with (33) for this case.

3) IQ; I)‘)_f « Here the asymptotic behaviour greatly depends on

X . Bince for small X there is the expression (33) true

at my&%, Q‘F » let us consider the case when X ~o 1« With this
constraint, still two substantially different ceses

At %i@; we have

are pogsible.
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e Qi@ . g%,
)~ 2(Q *(;Q_g_.)f (35)
whereas at Q}E Q = & ;

/3
_Z_G?, By = I 1}3/_7/3'2_) /3%1) (36)

At small X , the applicability region of the equalities (35)

and (36) is limited by the largeness condition for the r.h.
gides of these equalities as compared with the r.h. side of

eq(33), i.e. at Q. £ Q;
(a4 /5-"/@;-& 7 E0a.1- 18,404
X >>5 fo ) .l /&F/Z? (?T]

7
while for @) SR =R

3 '
s 32 (38)
C2er(2)
When the opposite inequalities hold the expression (33) is
applicable.

4. I’h.ut.on emission

With the use of formula (30), the amplitude of photon emism-
sion during the heavy pair production is representable, if the
Coulomb interaction between heavy particles is taken into a ac-

cou.nt in the following form

) — -
/4/ E) ”Z(X‘,-Q)"AB //:’;K) P (39)
where ./{3 is the emission amplitude in Borm approximation,

) ee) B
/4?/—'};;):*26 2 ’ (40)
A

/e
I3




end the coefficient

tixi s e 73 (x)

)6 < P (41)
; _ &) G
charascterizes the influence of the intersction. Here L x)

and C‘P.f (R) are defined in (32) and (29) respectively; note
that

[ o (7)
gl S R Y, oL o
& E. £ (42)

Formulae (40) and (42) are writtenm for lepton production
taking the QED interaction between them into account. I seems
that even of greater interest is photon emission in the case
of QG_Er pair production. For this case the substitution E'-?EQ
( &g ia the charge of a quark) should be made in (40). The oC
in (42) should be taken equal to gis in the ainglet state
and tu("- ;5) in the octet state. (Mention should be mede that
the factor 4/3 is omitted in formulee (46) and (48) of Ref./10/.)

Now we would like to consider the properties of the coeffi-
cientT(x,®) in (41). At X>O , using eq.(33) and the rela-

tions

y 7 .
gf'é; -_C_\f.f g fﬁﬁ/f+7_ U:?)

—

2p 74 (43)
- ~) *_ ::‘I'JI—;“_:Eé3 /-7/ 'f:?
(V’JB: i/n)) e 2 ) ) (44)
we obtain
— =) i
£ Q)x .’ (%: /o)) (45)
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f=7 >

Since !fg* (o) is the factor incorporating the interaction

between the pair components in the emlssionless process (1),

formmla (45) proves the applicability of the general assertion
on the infrared radiation factorization for our caase J11/ .

Another illustration can be seen at the opposite end of
the spectrum. If the fraction of the energy carried away by a
photon is rather large, the velocity of the charged final-astate
particles can become S0 small that EJ‘;}-} at Q{{ 1. We
here obtain from (41) and (34)

i3, CpalR)

txe)-c =gty : (46)

This factor corresponds to making allowance for the interaction

. -
only after photon emission and is an analog of the :ta.ctnr( ‘,;ffa} )=

- e‘gﬂ -C—EF—EL@’, in (1). The difference is due to the fact that
after emigsion the angular momentum of & peir equals 1. As =Been

from (43),
CPf (/Q) - \/11,__ G:)Z
Cpo (R) g 7 (47)

j.e., taking the interaction into account results in a relative .
increase of the process probebility for Z_\ = 1 as compared to
i '

Within ¥ = 1, simple expressions for T(X, @) are derived
only in the asymptotic region of large ]Q } +« Using formulae
(36), (29) and (41) we get for the case of attraction

2 ﬂzﬁ'Q 2&)‘. -“3
f'f("‘;m’: F('S_)(.f-x)'”‘f/ 3 ) v e

at (3> 1, whereas for the case of repulsion the result is.

different from (48) by the factor ExP (-' %—L‘%) .

I5



As we should expect, attraction contributes to increasing
the prac:eﬂa probability as compared with the Borm\one, while
repulsion reduces it expomentially.

Pigures 1 and 2 show/'::(xj.{?)}z va. X at O] = 1.0
and Q = 3.0, caﬁeapandingly. So0lid lines stand for the result
of the numerical integration, dotted lines mean the calculation
according to formule (45) and the dash-dot lines imply the cal=-
culation according to formula (48). It is seen that the inter-
val of the X at which formmla (45) works well diminishes
with increasing & . Formula (48) at (! = 3.0 gives satisfac-
tory agreement with numerical calculation.

We have omitted the plots for the case of repulsion (Q<0 )
since fﬁr}'t{'x’ 6?){2 the substituttion (‘G""F ) has influence only
on a readily-ca.lculahle tunction Cp, (@) (29), while the quan-
tity /I rx)/ (32), which requires for numerical integration,
remains unchanged.

As seen from (15), the quantit:r

v 2 P A’ 2
dwR)= 7 = //, )/(_,2”) Yazs. @9
A

may be called the photon emission probability. After summation

with respect to photon polarization coupled with integration
over the a.nglea of emission we obtain using (39) and (40)

X / (X, Q) A : :

PJ""'J/ﬂ qf X A (50)
where B is the corraapondmg probabilit:,r in Born approxima-
tion: 2

adWpn
X B = / i
e ( } (51)
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An important integral characteristic is the energy fraction

carried away by a photon: 4 a,-
x’ — X .E:‘_U‘*V- e ’Z (X Q } CJW-& d./x
< )/}—_- g %}H/D} a{x (52)
4]
Let us introduce Z}{E <x%;a, , where
e\ Eo
>B 7 '_( m (53)

is the kmown Born expression for ()(da> . To calculate {XJ>
within large Q | R 1, we make advantage of the asymptotics
(48) since X =~3 { gives the main contribution. In this case,

= 272 2Q i )
23/ = [_’ ( ( ) 2 (54)

For repulsion at Q(O? IQ ]‘}‘} 1, the )f“-‘ﬁ‘_ié region proves
to be significant in the calculation of <x6'> which is a tran-
sient one from the asymptotics (33) to the (36). A rough apppo-
zimetion can be obtained under sssumption that 7T > 1. Witl;.

the use of eqs.(33) and (29) we obtain
5

'Z'(y - 2r/Q/ (55)

Figure 3 shows ?a’ V8. Q - The G?;’O and Qﬂ."ﬂ regions

correspond to attraction and repulsion, respectively. The solid

lines are the result of the numerical integration, and the dotted
ones are the calculation according to formulae (54) and (55). It
is seen that the asymptotical formulae begin yield satisfactory
egreement with the numerical integration at |Q , ol
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5. Gluon emission

By analogy with (39), we introduce the quantity tﬂ\j @'Jaﬁ"]’
characterizing the influence of the interaction if the Qa pair
is created in colour state T: and transforms into T‘F after
emigsion:

- A -
— feas 7 i
Jq (;K)— Z(X;Q;;Q;)/fs //D)k)
'F! i : {
Here f? is given by formula (40) with a substituttion e"*g

and the quantity T(X}ﬁf}@f) equals, as it follows from (30)

(56)

and (4D)! ff?;ﬂ) .."'?;.:_J
¢d¢ Cpy R &,
P00 O)s By o (2, L
f’f;c Rr&y

Fote that C is given by farmula (29), and 4 f,x) is given
by formula (32} When the R &R pair is produced in the octet
state and remeins here after emission, gluon emigsion has no,
in essence, distinction from photon emission at 6?4': 0 treated
in the foregoing section.

A distinctive feature of the processes with & change of the
colour spin in the emission process is the absence of ifrared

radiation factorization. At X—2 0 we derive from (29) and (33),
instead of (45),

T, &, ) /5’4:?: (o)) g 3
where/‘(/_ /p})

for (2= Q
infinitely large radius of the Coulomb interaction. In this res-

(B E: )
(L/ /7(?-;:/:?1?}(58)

is given by the r.h. side of formula (44)

« The lack of factorization is evidently due to an

pect, one can draw on & certain analogy with the absence of fac=

torization at high energies /12,13/.

18

Let us dwell on the strong interaction region: f@l [>>1,
The behaviour of Z(x,&; &) depends considerably on the signs
o
&
= :_:'(5) and passes to the singlet one as a result of radiation

(e = J'/BQ), we obtain from (57) with the help of formulae (35)
and (29)

of Qc' and G)!: . If a pair is produced in the octet state (4’,'-"

r,) 7 ’ffz
o () /2 Xﬂ, Zf‘ _
Z{-";‘é‘;_g qu f = (',f X)Erfq 4} Q A (593

Emphasize that /’Z/ reduces with X , although in the final
state there exists the attraction. Repulsion in the intermediate
state proves to be more significant. Formula (59) fails in the
X —» 0 region, where, according to (58) we have at B>

3?6‘31 SR
@)/ e

12t% - z : o

6?3

Increaging the lifetime in the intermediate state (at g*ﬂ )

: ; : o
results in an exponential suppression of the probability as compa-
red to the Born (60). The applicability of formula (59) for smell

X is bounded by the inequality (37):
3 3 f.;/,z S/ - ’:?—‘—Q
X > /:"3-)

il et

For the range where the inaquality; inverse to (61), holds formula
(60) is applicable. For large GP

(61)

this is an exponentially nar-
row range. Of most interest is the case when a pair is producad
in colour-singlet state. Such a case is realized during the {9.‘_’3

production in e'e” annihilation. After the gluon radiation the

= A 5.
Q@‘%Q;QF* el

This case is analysed in what follows. At Q}} 1 we get
[ 3

pair is in the octet state, i.e.

I9



. 3,«
il T 2aN TS +/£- )/ e~
Z()?JCP) 6}-—'2 (3)@# 3/f~xé 6V7-X ; "‘?E- :52)

Repulsion in the finel sta;te leads to an exponential small-
ness of /¢ | for large (3 . The radiation spectrum is substan-
tially distorted and the region of high frequencies turns out to
be suppressed. Pay our attention te the fact that in cases when
the quarks in the final state are attracted, ¥ grows with in-
creasing X (see formulae (48) and (59)).

At low frequencies, formulae (62) is applicable for

15/ sl o 4 <
x> B /‘_23) /7Q° € =

With the opposite inequality fulfilled, i.e. within a narrow,

(63)

close-to-zero range we obtain from (58) for (RX>> 1:

_ e S
/“t(m%'%“"f)ﬁ“fm&e T (64)

Figures 4-6 illulﬂtra.te the dependence of /‘t (xj 335;!} —f)/ 2 on X
for Q = 140, 3.0 and 4.0 respectively. Solid lines stand for
the result of the numerical integration, the dotted ones denote
the calculation according to formula (58), and the dot-dash lines
denote  the calculation according to formuls (62), As in the case
of photon radiation, it is seen that the intervel within which
the infrared approximation (58) works well, narrows with increas-
iﬁg Q « The strong-interaction approximation (62) worke well
with Q2 4.0.
Similarly to (49), the quantity

) Tk e o o
-, 4y ID ja}a/_:k') tj = :
st ;«Z E/ 2 (o) ‘/ o)’z =
Ase

<0

may be called the probability of the gluon emission in case when
e pair is produced in a colour-singlet state. The coefficient

4/3 in (65) is of the group origin (see eq.(23)). After summation
over gluon polarizations and after integration over the emission

angles we have

. . o W DN 7
::JW?'— Z'(X)aﬁ?; E—)/)( ﬂﬂﬁ
et U e =)
= X ¢ o (o) o iied 7 (66)
# a J : i
where xf;-"ﬁ is given by the r.h. side of the e&ualit}r (51)

with the substitution € >£g°

In ref./14/ the average fraction of the energy for a heavy
quark produced in e*e”™ collisions has been calculated in Born
approximation.(zﬁ>:<—v§— o « If we define <x3‘> gimi-
larly to (52), then we obtain, only taking the gluon emission in-

to account,

L E. <X E. <Xg >
S livaae i el R e
d (67)
where the factor “E*;;" is accounted for by the fact we have de-

termined X = f’..“_.i + The coefficient ?
E e 3

rather then =
_ P
incorporates the effect of the QQ interaction, and the <X

3\’5
is a mown Born expression for <Ka‘7 :
v 2
Oy 2 (3) A,
3>E> 45 \W/ m (68)

It is worth emphasizing the lack of the facter, 8/15 in formula

(9) of ref./14/ end the factor (1/7~ ) in formula (44) of ref.
S0

To calculate (x’g> at large Q
of the asymptotics (62) since the main contribution is given by

» one can take advantage

e
X ™% lying within the applicability range (63) of formule

(62). As a result, we have
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2 2 e 3 -
Zj* & \3r/l oY 2 ~ - (69)
As one could expect, repulsion in a final state give rise to a
gsharp reduction of the energy losses of a nonrelativistic pair
of quarks. ;

Numerical integration turns out to be necessary at moderate
Q . We present the results of such integration on Fig. T by
solid line, while the dotted curve corresponds to formula (69).
As the diagrams show, the asymptotic formula (69) fails to work
well at moderate G\) . This is due to the approximations used
to integrate the spectrum (62).

Mich more efficient is farmula
6'.?
g 3 3'62 (7~ x,}ffz( )
where X, is the solution of the equation
. 2 2
_ [7Z&. o
er=ay 2y x) (71)

which 1lies within ©0<£ X, < 1.

Formula (70) has been derived by the steep descent method
when calculating {X > (see eq«(52)). To locate the saddle point,
we have beared in mind that a strong dependence of X  is of the

(70)

" AT i N
form X E""P(.‘_‘,ﬁ) (see eqa.(5?), (62) and (51)).
The function (70) is plotted on Fig. 7 as a dot-dash line.

This formule worke well with Q 3 O.

6. Conclusion
The results obtained show that a Coulomb-like interaction
changes both its integral characteristics (such as the energy

22

logses) and the radiation spectrum during the production of a

nonrelativistic pair of heavy particles, as compared with the re=-
levant Born wvalues. In the ﬁost interesting case of gluon emisg-
sion during the Cgfi‘ pair production in e¥e™ collisions the fi-
nal-state repulsion results in radiation suppression and to a re-
duction of energy losses., The radiation specirum is distorted:
tha radiation is stronger suppressed the higher the frequency is.
For photon rediation under these conditions the situation becomes
different: the interaction enhances radiation, especially its
hard part. .

Mention should be made of the applicability of the above
consideration, in perticular for quark pairs production. On the
one hand, the applicabilifty region is restricted by the nonrela-
tivism conditions (g ) 2«'1. On the other hand, the characteris-
tic momenta should be sufficiently large to avoid unperturbative
effects and to make use of pertfurbation theory with respect to
oCoe

In addition to the € (‘P /»1 condition ( /1l gqep is a mass
parameter in QCD), this impnsan the limitations of the type
E »,(;(%-{-EG) (see refs./4,5,10/). A comprehensive analysis
of the corrections is out of the scope of the present paper. With
the indicated conditions fulfilled, uﬁe can use the above formulae

where the coupling constant cf"s must be taken at distances rough-
ly equal to L .

/D

The authors are indebted to V,N.Baier, A.I.Milstein and
V.A:Khoze for interest to the paper and for helpful discussions.
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