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ABSTRACT

Dynamics of nonlinear wave field having stable localiz-
ed states (solitons) is essentially dependent on spectra
ol such states’ elementary excitations. The spectra is
found below for solitons of two-dimensional Schrédin-
ger equation with focusing cubic nonlinearity. The
equation describes a number of physical phenomena,
in particular, the self-focusing of radiation in a
medium.
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1. INTRODUCTION

The field described by the equation
. a .
(i +a+191") v=0, (1.1)

where A is a two-dimensional Laplace operator, has localized statio-
nary states of the form:

Y (7, £) =%R(xr) exp(in’t +ig) . (1.2)
The parameter »* may be called «the energy for a quantum drop

out of the soliton». The designation R(r) is used below for the
monotone solution of equation

e L4 4 | p\p
( 1+rdrrdr+R)R 0. (1.3)

The graph of this solution, calculated in paper [l], is reproduced
for readers convenience in Fig. 1. The Eq. (1.3) has also oscillating
over r localized solutions (see [2—4]), but those are exponentially
unstable with respect to small perturbations. As for the Townes
soliton [1], its perturbation can grow no faster than the time squared
(see [6—7]). With the inclusion of small defocusing nonlinearity,
proportional to the {ifth order of |¢|, to Eq. (1.1), the squared-
time-unstable mode turns into the stable low-frequency mode minor
change in form (as well as the soliton itself).
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Fig. 1. The Townes soliton R(r).

The dynamics of stabilized so soliton with strongly excited low-fre-
quency mode is of essential interest and depends on the spectrum of
other eigenmodes (see [8]). The determination of this spectrum is
the purpose of the present paper.

Prior to proceed to the solution of the above problem it is useful
to remind the main symmetries of the Eq. (1.1).

2. SYMMETRIES

For the class of functions axisymmetric with respect to the ori-
gin in the plane of variables x=rcos®, y=rsin® the Eq. (1.1)
allows three parameter group of transformations. It consists of the
gauge, scale and Talanov transformations. (The latter were given
explicitly in [9] though had been contained actually in the earlier
paper [10] of the same author.) Application of the above transfor-
mations to the soliton of unit size (x=1) and zero phase (¢=0)

yields the three parameter family of exact solutions of the
Eq. (1.1):

o= R (2 oo (2~ +o)] @

The two parameter family of stationary solitons (1.2) is obtainable
from (2.1) as a particular case corresponding to the infinite time of
the singularity formation ({.=o00). At t.—>o0 the solution (2.1) dif-
fer from (1.2) by small (proportional to t7'—>0) term growing as
a time squared. As it was mentioned in the Introduction, this
unstable mode is stabilized by the inclusion of small defocusing
nonlinearity to Eq. (1.1). The relation between eigenmode conside-
red and infinitesimal Talanov transformation was pointed out in
[7]. The infinitesimal gauge and scale transformations generates
constant and linearly growing with time eigenmodes correspon-
dingly.. An increase of the latter mode is caused by a storage of the
phase difference solely and does not imply instability of the soliton.

Besides the three parameter group described, the Eq. (1.1) is
also invariant with respect to the five parameter group of Galilei
transformations, including space translations, rotations and move-
ments with a constant velocity in the plane x, y. The rotational
symmetry of the Eq. (1.1) and Townes soliton enables one to intro-
duce an azimuth quantum number m=0, +1, +2, ... and to treat
small perturbations with different meaning of m independently. Infi-
nitesimal translations and velocity variations of the soliton generate
correspondingly two constant and two linearly growing with time
dipole eigenmodes (|m|=1). The behaviour of the latter pair of
modes is explained by a growing shift of the soliton as a whole and
does not imply instability of its form.

3. BASIC EQUATIONS

In order to simplify furthers formulae, it is conveniently to take
the soliton of unit size x~'=1. (This does not lead to any loss of
generality due to the scale invariance of the Eq. (1.1)). For. such a

soliton the elementary excitation of irequency ®

Sl ) =[ A7) e '+ BL(F) €] & (3.1)
fits the equations
wA,= EﬂAm—Rz{AW+B“‘} ¥ {32J
_(K)Bm= EOBm_"R2(Am+Bm) 3
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where

Lo=1—A—R". (3.3)

At combined replacements w——w’, A,=B’, the perturbation
(3.1) does not change. Furthermore, Eqs (3.2) are invariant. with
respect to combined complex conjugation and replacements o® —w,
A)—A,, B,—B,. Consequently, if o is eigenvalue, then —o",
—w, @ are also eigenvalues. Thus the investigation of spectrum
reduces to the first quadrant of the complex plane w:

Rew>=0, ImwZ=0.

In the invariant subspace &, of functions with azimuth quan-
tum number m a regular solution of Eqs (3.2) looks at r—0 as

ASF)=A" - o(r™t?y

3.4
BJ7)=By" r"+0(r"*?). P
All possible asymptoticses of functions A,(7) and B,(F) at r—oo
are given by the formulae

AF) o r~'Pexp[ (1 —w)'?r], (3.5)
By(F) co r'2exp[ +=(14w)'?r] .

A regular in the point r=0 solution of Eqs (3.3) depends, besides
® and m, on two additional parameters A™ and B!™. After identifi-
cation of solutions proportional to each other only one additional
parameter remains. It can be chosen so that one of the asymptotics-
es (3.5) is excluded. For real @> 1 only one of four asymptoticses
" (3.5) does not tend to zero at r—oo. This asymptotics can be exclud-
ed by a proper choice of the additional parameter in regular at r=0
solution. Consequently, the real ray > 1 belongs to continuous
spectrum. For others values of ® (in semiplane Re w>=0) two of
asymptoticses (3.5) do not tend to zero at r—oo. Therefore all the
rest eigenvalues w belong to the point spectrum.
For arbitrary value of o from the semiplane Rew>=0 (the ray
®>> 1 is excised) the solution of Eq. (3.2) regular at r=0 increases
exponentially at r—o0:

AdF) =[ €13 (@) A" +CIF (@) B r=' 7 exp| (1—0) /] ,
BdF) ~[ C53 (@)AS” +C5 (@) B r='Pexpl(1+0)' 7] . (3.6)

6

The increase is preventable by a nontrivial choice of parameters
A™ B™ only if the determinant

Da(w)=C3 (0) CHY (0) —C4E (0) Ci3 (w) . (3.7)

is equal to zero. Thus, isolated eigenvalues o are roots of equations
Dm0)=0, m=0, +£1, +2, ... (3.8)

The linear combinations of functions A..,(F).and Bo(r):

t#o=Au+Bs, Ve=Au—Bu (3.9)
fitted equations
bJUm-_—"[:]Hm s (310)
mum=£ovm »
where
Li=L,—2R". (3.11)

The pair of Egs (3.10) is conveniently to present as a one matrix
equation for two-component function y.:

fx..,:mxm : (3.12)
o ) BN e o

Reductions of operators f: (i=0; 1) and [ for their invariant sub-

'spaces Zm and PrL=Z.Q Zn are designated below by the same

symbols as complete operators. In the subspace Z'm the Laplacian
looks as

Ao -y 2 Lo B (3.14)

and Lo, L, are reduced to ordinary differential operators.

4. POINT SPECTRUM

For the class of isotropic perturbations; i. e. in subspace Z4%, the
operator L is digenerate. The zero eigenvalue corresponds to the
eigenfunction y":
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Ly=0," @V=0," s"=R, (4.1)
generated by the infinitesimal gauge transformation. Besides "

the root eigenfunction % of height 2:

3

u=_14,.p

[y® =y, o

¥ =0, (4.2)

generated by the infinitesimal scale transformation, and the root
eigenfunction x® of height 3:

E®=y®, u®=0, t,ca):_é,,zR, (4.3)

generated by the infinitesimal Talanov transiormation, are corres-
pond to the zero eigenvalue of operator [

The adjoint to £ operator ﬁ+=(g %) also has in Z§ the root
0 .

subspace {i(_n' i=1, 2, 3] corresponding to the zero eigenvalue.
Functions % (i=1, 2, 3) are obtainable irom x® by a simple re-
arrangement of the components:

=09, FO=y® (i=1,2,3).

Each eigenfunction yx. of the operator L corresponding to the non-
zero eigenvalue o is orthogonal to ¥ (i=1, 2, 3) at natural defini-
tion of scalar product:

(i) ={ 7@ u+3"0).

In the terms of single-component functions’ scalar product—

(u,v) = d*Fu’v

—the orthogonality conditions imply the following:
(19 v)=0, i=2; (4.4)
(9, u,) =0, i=1,3.
Let P be the operator of projection on the subspace of functions
ortogonal to v!""=R. Action of the operator P on Eqs (3.10) yields
wPvo=~PLliu,, Pus=PLov.. (4.5)

R — ]

R 3

Taking into account that Plo=Lo=LoP and Pu,=u,, one can re-
write Eqs (4.5) as €
©0,=Lits,

(o=Pua,

wtto=Los (4.6)
LBl .

All functions in Eqs (4.6) belong to subspace Pz, already. In this
subspace the operator Lo is positively definded (which follows from
the monotonicity of the function R corresponding to zero eigenvalue
of the operator Lo in the space Z,). The operator L is degenerate.
Its zero eigenvalue corresponds to the eigenfunction u® (As easily
seen from the explicit formula (4.2), u® is orthogonal to R, so that
Pu®=u?). The function u® has only one zero. Functions without
zeros do not orthogonal to R and do not belong to subspace Pz,
Therefore it is clear that the function u® corresponds to smallest

eigenvalue of the operator f,h i. e. L, is nonnegatively definded. By
the formula

w =—(I—H1—r)— ’ (47)

following from Eqs (4.6), the above properties of operators Lo and
L guarantee that all eigenvalues ® of the operator L in sub-
space Z§ are real.

For the class of dipole perturbations, i. e. in subspaces Yi,, the
operator [ is also degenerate. Zeros eigenvalues correspond to
eigenfunctions xy

ﬁx‘f:O, ui’:i—Reim.
r

v =0, (4.8)
generated by infinitesimal translations in the plane x, y. Correspon-
ding root eigenfunctions 72
Lnxi’—_-x(:lk), u@:(}, Uf:-—%—rReim (4.9)
are generated by infinitesimal Galilei transformations.
The radial part dR/dr of functions «'!, corresponding to zero

eigenvalue of the operator Ly in subspaces & ., has no zeros in the
range 0<<r<Coo. This guarantee nonnegative definiteness of the ope-
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Fig. 2. Graphs for functions Duw(w)=D_n(w) in the interval (0, 1) numbered by
meaning of m.
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Fig. 3. Two-component «wave function» for quanta in excited state of the soliton.

rator £, in subspaces & . and positive definiteness of the operator
Lo there. It is clear as well that at |m|=>2 both of operators L,
and L, are positively definded in subspaces &Z,. By the relation
(4.7), taking place in all subspaces #,, it follows that all eigenva-
lues @ of the operator [ are real. This allows one to restrict the
numerical study of the point spectrum by the interval 0 <w<1.

Due to the mirror symmetry of the soliton, functions Dn,(®) (as
well as sets of the [-operator’s eigenvalues in subspaces #%) do not
depend on the sign of m. At m>>1 functions D.(®») are calculated
analytically. Picking out the analytical dependence one can get on
from Dn(0) to functions

(S

4L

= _ 2n(l—o?)? *

Dm(m) T 22m{m!)2 Dm(w) ’ (41.0)
tending to unit at m—oo. Numerically constructed graphs for fun-
ctions Dm(w) at small values of m are shown in Fig. 2. As it is
seen from the figure, there is only one eigenvalue

©~0.321 (4.11)

inside the interval (0.1). Compoﬁents u., and v, of corresponding
eigenfunction y. normalized by the condition v.(0) =1 (which is
possible since m=0) are shown in Fig. 3.
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5. CONCLUSION

The main conclusion from the above analysis of elementary exci-
tation for solitons of the nonlinear Schrédinger Eq. (1.1) consists in
that, beside continuous spectrum and modes generated. by
well-known symmetries of the problem, there exists an excited state
of the Townes soliton with «excitation energy» nearly equal to 1/3
of the «energy» for a quantum drop out from the ground state of
the soliton. The existence of such an excited state plays significant
role in adiabatic dynamics of the soliton describing the seli-focusing
of radiation in a medium (see [8]).

Noteworthy that solitons of one-dimensional Schrodinger equa-
tion with focusing cubic nonlinearity do not have localized excited
states. In fact, from the very scheme of finding solutions by the
inverse scattering method (see, for instance, [11]) it follows that
the excited state, if one exists, can be treated as bound state of two
solitons moving with equal velocities. An arbitrarily small perturba-
tion, destroyed the velocities equality, leads to diverging of the soli-
tons. In contrast to that, a small perturbation can not cause the
decay of the soliton for two others solitons, since such a decay is
forbidden with excess by conservation lows for Hamiltonian and
number of quanta.
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