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KoneGaHHA 3ZOMAX MNPEBOOAT K CHeNeHEAM KEajgpynoneif B HakKoOmE-
TenbHbIX KOJkUAX, 4YTO B cnywvae GOoNAbmWMX NPOTOH~ (AHTH)NIPOTOHHLX
KonnafilepoR CYMECTBEHHO BJIKAET Ha TMNYyYKH K3-3a HCKAXEHHA
JaMKHYTHX OPOET X pocTa I[ONepevYHOro SMETTAHCa. B pabdote
NpencTaelleHul AHAINHTHY@CKKES H YHCIIEeHHbl& PGCHMEeTHl STHX
abdeKTOB. [INA NoAaBleHHA POCTa DMETTAHCA TpPeOYeTCH aKTHBHAA
CHCTEMAa HOPPeKTHPOBKE TMNOJIOK@HHA CIryYCTKOB, 30deKTEBHOCTL
xoTopol orpaHWuwBaeTcA 3(pdexTaMKk BCTDe4YM, BHOCAmEME paszbpoc
yacTor GeTarpoHmux kxonebauxié. PaccMoTpeHHas B CTaThe npocTad
aHAJIMTHYECKAA MOoOelis XOpOmO COrjlacyeTcA C pe3yibTaTaKk
KONMLOTEPHOIO MONeNMPOBAaHRA., PeayaLTaTw pacYyeToB OpPKHeHTH-
poBaHe Ha NMpEMeHeHKe K Konnakpepy SSC.
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INTRODUCTION

The noise fluctuations of currents and transverse
positions of the E*;torage ring magnetic elements can lead to
a luminosity reduction which value depends on the an
amplitude of the fluctuations and their spectrum. There can
be distinguished two classes of frequencies.

To the first class belong all frequencies close to the

, where n=0, %I,

betatron resonance frequencies f = = | kQ-n
et SR S PR S e S fu is the revolution frequency and
Q is the betatron tune. These frequencies lead to a con-
tinuous emittance growth being linear in time. Most dan-
gerous is the dipole mode with k = 1 which determines, as a
rule, the emittance growth rate.

To the second «class belong all non resonance
frequencies. We can distinguish here a small frequency range
(f « fu), which produces a closed orbit distortion equal for
all bunches, and a high frequency range, which produces a

closed orbit . distortion different for different bunches. It



looks similar to the excitement of coherent betatron
oscillations. In reality the spectral power of fluctuations
grows fast with a frequency decrease and therefore the main
influence of non resonance frequencies occurs due to the

contribution of small frequencies. In the first

approximation the non resonance frequencies do not any

contribution to the emittance growth rate. Nevertheless, if
the value of the beam separation at interaction points is
comparable with beam sizes the influence of beam-beam
effects is considerably increased due to the appearance of
odd resonances.

As a result of a émall revolution frequency in the SSC
these noises have a great influence on the beam dynamics and
can lead to a drastic decrease in luminosity. In the absence
of a strong damping of the coherent betatron oscillation the
emittance will be doubled in few minutes after injection. If
the feedback system damps this coherent oscillation faster
than the time of decoherention the emittance growth can be
strongly suppressed. In this case the beam-beam effects
determine the main limitation on the achievable suppression
of the emittance growth. As our study shows, to reach the
design luminosity in the SSC a feedback system with ultimate
decrements should be used. |

It seems reasonable that it should be the same system
which damps the beam coherent instabilities due to the beam

interaction with the vacuum chamber walls. The feedback

system consists of a beam position monitor (BPM) which
measures bunch position and a kicker which corrects the

bunch transverse velocity. The betatron phase advance

‘between the BPM and the kicker should be approximately

(n+0.5)r and the time delay for a signal should be equal to
the time delay for a bunch. The frequency band of this
system' should be large enough to damp the movements of :
separated bunches.

To simplif y the requirements to the . fast feedback
system it’s frequency band should be limited from below
therefore the correction system for the closed orbit control
should be fast enough. This system should consist of a large
quantity of beam position monitors and correctors
distributed along the ring.

In this paper we study the influence of the ground
motion on the beam dynamics in a collider. In our
investigation we consider principal limitations on the
suppression of the emittance growth therefore we take into
account only the fast feedback system and neglect .by an
influence of the correction system. In ‘the numerical
simulations the spectral power of fluctuations does not
depend upon frequency ("white noise"). The calculations and
the analysis in application to the ground motion presented
here can be easily adapted to any other external noises
(fluctuation of current in dipoles, kickers etc.).

The present study is rather attempt to peep into a very



forward
design of the SSC

optimistic

complicated problem. It’s results set strong
confinements on the
nevertheless give rather an glance on the
problem. To ensure a successful operation of the collider

the problem should be further studied and developed.

1. CLOSED ORBIT DISTORTION (COD)

At the beginning an influence of slow earth movements

on the beam behavior is considered. In this case the
particle motions are adiabatic with respect to the external
excitements and one can consider a slow change in the closed

orbit corresponding to a slow earth movement.
The transverse shifts of quadrupoles

orbit. The
displacement ‘at the point A produced by the angular kick ﬁi

produce a

displacement of the closed value of this

at the point i is given by a well known formula [1]:

Y Bi*B +cos(¢i - mv) o (1)

2+*sin(nv) 1

AX =
A

where v is the collider tune, ¢l = p- M is the betatron

phase advance between the points a and i, ﬁl and B are beta

functions at points 1 and A. The displacement S, of a
quadrupole with a focusing length F1 produces the kick:
61
0 = '_F; (2)
Summing the contributions of different quadrupoles we

collider but

finally have:

v Bi-B *cns[cﬁl - mv) Si

i e Z: 2esin(my) s

(3)

We should note that in general experimentally observed
spectra of power of seismic noises increase with decreasing
the frequency [2]. It means that the main contribution in
COD is determined by low frequency ground motion.

transverse beam

To estimate the resulting r.m.s.
displacement in time one should take into account that for
two points spaced at 1 =2 90 m (SSC FODO lattice half cell
length) a practically zero correlation takes place for the
periods over 10 s and their relative movement dispersion

during an interval T is equal to [3]:
(s, - asz> = Belet (4)

where constant B = 107" pmzf(m-s]. This formula is valid for

all low frequency movements ( when C+t/4 >> |, C is a

seismic wave velocity) which- is usually of diffusive"

character.

To simplify the estimations one can consider that the

movements of the quadrupoles are independent with the r.m.s.

value of relative displacements ﬂi =3 -ai:

i+1

<aiz> = = Belet (5)

W

where 1 is the distance between neighboring quadrupoles. The



coefficient 1/2 in (5) is taken such as to obtain a result
coinciding with the result of accurate calculations. After
these remarks one can obtain the following expressions for a

closed orbit displacement after an interval T:

v BB,

R
s

<ﬂ}{2> = B z
A o
4 sin " (wv) 1, j

X cos{¢1 - nv)cus{:iij - n:v}«:alaj:- ay

B
w2 B i cosz(t;b - nv}<62> 8 ET el ;
4511‘12(1:1?) i F? = : 4 sin (mv) <B>
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(6)

where € = N+l is the storage ring circumference and N is the
total number of quadrupoles. One should also take into
account that for the FODO lattice <g>~2+F and stzigﬁl- )
~ N)Z. The COD was also studied numerically with a more
accurate displacement distribution (4). Results of these
calculations are in a good coincidence with (6). In these
estimations we neglect the final focus quadrupoles, as
simple estimations for SSC show that their contribution to
the COD is about 15 % for each high luminosity IP.

In general, there are two aspects of COD significance
for the collider run: beam-beam separation at IPs and
dynamic aperture limitations. As a rule the first one is
essentially rigid because the beam-beam separation at IP
only by about 0.1-0.2 ¢ [3] increases the beam-beam effects

and decreases the collider luminosity. From this point of
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view the beam-beam separation at IP has to be smaller than
(0.5-1) pum. The dynamic aperture Ilimitations give an
acceptable COD of about 4 mm in a regular lattice. Note,
that for the SSC beam the r.m.s. normalized emittance is
equal to en ® 10" cm-rad (emittance € = en/(By) = 5.3:10"°
cm-rad), r.m.s. beam sizes are equal to 5 um at IP and =100
pm in a regulaf lattice. Using (6) with parameters v=123.78,
B*=O.5 m, <3>=170 m and €=87120 m one can calculate the
values of COD at IP ﬁIF and in a regular lattice ﬁRL for
different time intervals T ( see Taple 1 ). One can see that
in the absence of the feedback syétein of the closed orbit
control a significant displacement will occur a few minutes
after the beam in:jection in the ring. Long time CODs in

Table 1 determine minimal requirements to the correction

system.
Table 1
T 1 s 1 min|l hour |l day |1 week|l month|l year
.L‘-.IF D.IIZ um 1 pum .?'5 pm {37 pm (100 pm|0.2 mm |0.72 mm.
4, | 2.3 um| 18 um(138 pm|680 pm(i.8 mm|3.8 mm | 13 mm
ﬂbh 0.03 ym|0.3 uym|{2.0 pmjll pm |30 pm [0.06 mm| 0.2 mm

Nevertheless, a relative beam-beam displacement in the
collider can be considerably smaller, because both the beams
move together. Really, in the SSC both the storage rings
have equal tunes and similar lattices in arcs (equal

B-functions and betatron phase advances). As the quadrupoles

11



of both the rings move practically together (especially at
low frequencies) they produce the same kicks and beam
displacements at the IP (as can be seen from (3)). It does
not hold true for the quadrupoles of the interaction region
(IR) straight line where the focusing structure is different
for different rings. Therefore, beam separations at the IP

ﬂ'bb will be produced mainly by this quadrupoles and for the

estimation we can suppose ﬂbb = v Net 7 N- A where Nsi
is the number of quadrupoles with different gradients in the
IR straight line (N = 968, Ns1 = 40). Taking into account of
higher value of PB-functions at the final focus quadrupoles
this value should be increased by 50%.

Note, that besides usual movements of lens assembles
when both Ilenses of different storage rings are moved
together there also exist | tilts of these assemblies
producing independent movements of the lenses in the
horizontal plane, Which, in its turn, will increase the beam
separation at IPs in the horizontal plane. Here we do not
take into account this process because of the lack of
experimental information on probable tilt values. The
estimations show that the wvalue of this additional
separation will not be much higher than the given above.

All the previous estimations set a lower limit for CGOD
due to a general diffusive character of the ground motion.
But there are some factors that have a controllable

character and can also lead to COD. One of the most

12

significant factors is the influence of atmosphere on the
ground motion as it was shown in [3]. There was suggested a
simple estimation of the spectral power of the atmosphere
pressure P:

2 .16/3
<6P2>f 4 PM‘;' T3 (7)
4 L f

where p is the émir‘ density, U is the average velocity of
wind and L is the atmosphere thickness (L = 5 km). The
frequency of  oscillation f and 'size 1 of pressure
inhomogeneity have the following relationship: o= Ul
Hence, the movements of quadrupoles spaced at 1 are
independent for frequencies higher than U/l. In this case

their relative displacement is about
<6i2> ~ [ 1 ]2<6P2>f f = [ p U” 1 “ik E ]2{3 ]2. (8)

E 2K

where E is Young’s modulus. Then COD is about:

<6X2> mz B Bl <3 Zsn B LI [p Uz (1)233]2
 F8F sin(m) | 2 <p sin‘lm) 2 E :

(9)

Let’s take a usual value E~I0°N/m’ (the same as in [3]) and

using fu_::rrmul'a (9) calculate the COD for different weather

conditions:

13



Table 2
characteristic COD at
Wem o frequency of COD e lattice
=no wind (U=l m/s) 0.01 Hz 0.08 um 1.6 um
light wind (3 m/s)| 0.03 Hz 0.7 pum |15 um
wind (10 m/s) 0.1 Hz 8 pm 160 gm
storm (30 m/s) 0.3 Hz 74 um (1.5 mm

Table 2 clearly points at the importance of the
atmosphere influence on the SSC operation. Of course, more

detailed measurements at the SSC site are required.

2. EMITTANCE GROWTH DUE TO LENSES MOTION

To understand the influence of lens motions on the beam

behavior we start with the simplest task when only one

particle is moving in the storage ring. It is convenient to

change in the equation of betatron movement
a*x
dé

+gd) (X-X(9) =0 . (10)

the variables x = X/f(8), ¥ = vo + £(9). Here g(#) = eGR7Pc,

R is the average storage ring radius, G = dB/dX is the lens
gradient, P is the particle momentum, X (®) is a lens
displacement, f(®#), &(8) are the Floquet function amplitude
and phase. As a result, one obtains a linear oscillator

equation:

14

dzx

2

dys
where a right-hand part F(¥) = g(9):X (9)-f(8). While the
length of

+ x = 5y (11)

lenses is much smaller than the betatron
oscillation period one can consider quadrupoles as thin
lenses with focusing distances Fln PcKeGlli, where G‘ri,lI are

the gradient and length of lens with index i. Now one can

write
N _ VB R
) =lzlam{w - w3 W), § ) = o E (12)

where émv{a,b ~ ,ul} is the &8-function of a period 2mv, Ko Bi

are the betatron phase and the B-function at lens i1 and X

o}

is the displacement of lens 1. The solution of equation (i1)
with initial condition x(0)=dx/dy(0)=0 is:
Y
() = I () sinly - ©) dr , (13)
and mean squared value:
<x2(g{r]} = JT ; S ()Flr ) s (t -plx
Dt..!=lil e 2Ry 1.1

X8, T, 1) Sln[l,!l—’rl] sin(y-t ) dr dt =

N
1
= L
j=

(wa]z 1,

o0 I'I.U.i"mﬂ
?ij[W} dw Z Exp['i “T—!]x
1

8 %— 8

n,m=-=0m
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: WU+n : . Wy+m ' <X?(t)> = c’t E‘ E P (v (v-n))
XIEiH{TI‘w]EXP(iTl + )drl-Jsin[rz—wlexp(-lrz- = Jd‘rz (14) 3 dnp? s o, e X
0 0
Here . i‘ . /31 .'3'j cﬂs{n !-li‘.U-J] o
F. F

oo
K, (@t = <F (0 )05 (x)> = f P, (w) expliw(z -7 )] dw

s Here w_is the revolution frequency, R is the average

(15) storage ring radius
| is the correlation function and we use S e ? G e i
. - = . = w) e :
| Lf -t -0 Tow B L sl
0
va[r - Tn] - Z%F ‘2 exp(-in 1;—10 . (16) is the intercorrelation function for movements of lenses 1
e and j.

After integration in (14) one can obtain: =
One can see from (19) that only resonant harmonics

;- Tsin[.r_mexp(ﬁ. e )._-11- : influence the amplitude of the particle betatron oscillation

n - v (in fact, the spectral power ?’ij{m} is averaged over a small
exp(ii,(: wv:n) —cos{w)vi[wv;n)sin[w} frequency 1nterva-d Aw = 1/T). For the SSC the first
| G ‘ (17) dangerous harmonics are (1-0.78)-f = 0.75 kHz, 0.78-f = 2.6
( wv:n )2 £ kHz. Due to the beam-beam effects particles in the storage

! 2 -4 .
For a large enough time (¥ - ) the main contribution to sum ring have a large enough tune spread A&v°>~4-10"" and dif-

(14) is made by addends with n=m for which the next asymp- ferent particles interact with different noise  harmonics.

totic can be used: While harmonics of the random process are independent,

movements of the particles during time interval At »

2 <> 0 T wr+n =
|3n| y }gw (Sle-D+8(c+)), « = v )- (18) | {fgﬁv)l are also independent and after a large enough time

the particles will be smoothly distributed over betatron

After a simple calculation and a transfer to usual variables
phase. In this case the r.m.s. beam emittance growth is

one finally has (close results were obtained in [10]): -
given in (19) (e(t)= €(0)+ <X“(t)>/B).

16 17
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It should be noted it is suggested here that Xo(@) is
the stationary function, i.e. JP(w)dw has a finite value and

does not depend on the value of the time interval T. It is

not true for the earth motions which amplitude grows with

time according to expression (4) and the spectral power at

low frequencies grows with the time interval as:

Plw) o sin”“(wT/2)/w° .
Nevertheless, these low frequencies do not produce an
emittance growth because of the adiabaticity of motion. They
produce, as discussed above, the closed orbit distortion

which can be easily compensated by the correction system.

The experiments described in [3] showed that for high

frequencies and large distances between lenses the lens
movements are independent. This allows to simplify further
estimations. Olné can also consider that all lenses have the
same amplitudes of oscillations fPij(m)- = .‘sr’J‘[a:«:]*S1 (here 61 -
Cronecker’s symbol) and take into account the relation

justified for the FODO structure:

(21)

n =
B |
Il
3
o
NIE=

Here 1 is the distance between neighboring lenses, N is the
full number of lenses in the standard cells and p is the

phase advance per cell. As a result one has

18

e e T

t [ 4N o
e(t)=e(0)+ [ tg(¥) + T --] L Plow-m) . (22)
2 [+
4nR n=-0
Here the sum over 1 includes only the lenses of the
nonstandard cells. For the SSC parameters (2rR = 87.12 km, N
= 968, 1 = 90 m, tg(w/2)=1, €(0) = 5.3-10 ’cm) the main
contribution is made by standard cells and for the time of
the emittance doubling about 10 h ( =cooling time due to SR
of protons in the SSC) one has a limitation on the

acceptable spectral power:

> P(w_(v-n)) = 0.92:10"'% ym®/Hz

n=-0
It is a very small value which is by two orders of magnitude
smaller than the best experimentally observed value in [3].
For comparison note that for the "white" noise (Plw) =
const) the r.m.s. displacement of lenses should be as small
as Yo P =~ 1.4-10" *um.

As was mentioned above, the emittance growth occurs due
to a betatron frequency spread in the bunch. It is necessary
to add that even in the assumption of a =zero betatron
frequency spread the correlations in the movement of
separate bunches drop fast with the increase. in bunch
spacing. To investigate the movement correlation of two
bunches spaced in the betatron phase by ¥_ let’s write their

movement equations (following from (11) and (12)):

19




£ 2

d x1 d XZ
txX=38 W ., + x = 3§ (v), (23)
dwz I 1 dwz 2 2
and subtract one from the other:
dz
;E(xl- xz] + {xl- x.)= (3{:;:1) - Z'rzrwJ}, (24)

where

N
5 @) = lzlaznv(w - n) F W,
N
5, = izlazww -y F W) . (25)

Comparing (11) and (24) one can see that it is necessary to

replace the correlation function <5j:i(*cl} 5}1(1:2)3- in (14) by
<[£’yl(rl} - §i{r2)]-{ﬁj{tz—wq] - a}j('rz-r,ﬁab =
= 2 fpu{w] [exp[iw[tl—'cz]] - exp[iw[rl-rz-wo}]] dw . (26)
-0

After simple calculations and a transfer to usual variables

one finally has:

: <(X1-X2)%> . c®t : E s
R 41'IR2 1,J=1 n=-o
w {(v-n)é -l
: o vV BiBj oy
X 4 sin [ > o ] ?n(wo(v_n])_FT ccrs[n - ] . (27)

where £ is the distance between bunches. Comparing (17) and

(27) one can see that in the case when the spectral power is

20
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decreasing quickly with frequency there is a good
correlation in the movement of closely spaced bunches and
the correlation goes down if #~C/2.

It also means that for its effective operation ‘the

feedback correction system should have rather wide f requency

band.

3. ACTIVE SUPPRESSION OF THE EMITTANCE GROWTH

The use of the feedback system for damping the coherent
dipole oscillation allows to suppress the beam deviations
from the closed orbit and, consequently, strongly suppress
the emittance growth. In this case, the emittance growth
occurs only due to the betatron tune spread.

Let's consider the divergence of two particles with
different betatron tunes 2 (v = P~ ulJ after they
have passed the phase @®. The particle coordinates are
related to the beam center which is shifted in the phase
space at xc(ﬁJ, dxcfds[ﬁ}.

1

2 : iv ¢ WO s3i -
<[X1~X2)>-§< (fZl+ Zc}e 1 -{Zz+ Zc)e 2 ) > =

Il
|
!

2 % 2
<|Z,|+|Z}] +2|Z” | [1-cos(s(v_-v )I>
= 2(<X%+<x5(1-cos(sv9)]), (28)

where Z=X+8-dX/ds, <Z Z >=0, <Z ,Z>=0, <zf>=<z§>=z<x2>,

21




2> 2 :
<Z>=2<x.>. For 8v9 « 1 one can write down the value of the
c L
emittance increase:

1

5 < xi >-(6v1‘}]2 Aol (29)

s = 8( 5 <(X -X )>/ B) = 5

The main source of the beam tune spread are the
beam-beam effects at the IP which determine the dependence
of the tune on the betatron oscillation amplitude a. The
beam-beam tune shift can be easily calculated by means the
perturbation theory for the round beam and the Gaussian

density distribution with the r.m.s. size o¢. In the first

approximation:
£ 2n
dvla) = ——=—— [ fla-cos yYl-cos Yy dy =
A
(2r)” a o
2 2 2
i _[1 L )] , (30)
2 0 2 2
a 4 o 4 o
where
8 no rz
fir)= [ 1 - exp(— ' )] (31)
r 2
. 2 C
is a dimensionless interaction force,
2 » 2
o e'Ng & N (32)

4nPco’ 4mPce
is the parameter of the interaction (the linear beam-beam
tune shift) and Iﬂ(x) is the modified Bessel function. An
averaging of (30) with 2D Gaussian distribution was made

numerically and gave the next result:

22

<3v’> = (0.1974 £)° . 3

Note that the interaction at parasitic interaction = points
produces mostly a linear tune shift with a negligible
dependence on the amplitude and therefore one should take
into account only the interaction at the main IPs. As can be
seen from (32) for a round beam both IPs make the equal

contributions and for the SSC parameters one has

2 i
V<8v™> = 2:0.1974 € » 2:0.1974-0.0009 » 3.6+10™".

It means a full beam decoherence in SSC .af'ter about 1

second.

Other excitement factors, such as the tune spread due
to the final value of chromaticity, produce an essentially
smaller tune spread and their influence can be neglected.

As can be seen below, a successful SSC operation
requires ultimate parameters of the feedback system. We
consider here an idealized system with a high enough
frequency band such that the motions of different bunches
are independent. Let be for a transverse bunch displacement
equal x at the pick-up electrode point (point 1) the bunch

gets a kick in x direction:
g X,
ViR

&% =

(34)

at the point 2 located a quarter of betatron wave length

23
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1.00
later, Here g is the dimensionless amplifications of the T
feedback system, BI and Bz are B-functions at the pick-up Eum
and the kicker locations. Expressing x in terms of the =
bunch coordinates at point 2 gﬂ-ﬂﬂ
: ‘D
X =y B SR -5 «V B8 9 - c::E——l-dB/ds (35) G 0.40
1 2 1 22 15 o3 2 5
one can get the transition matrix at point 2: i -§ s
=
l 0 ] j 1.‘: r.-;-'
EM2| < - : ) (36) e ¥ S BARES R Casasatnr - AGSns BEER S SEatae 300
8o /B, =8 g
and the full transition matrix of the ring: Fig. 1. The dependence of module of the eigen number on the
- dimensionless gain of the feedback system g.
Crax S - BS r C+a_S(1-g) © (1-g)B_S
= : 2 2 2
|Mr_iMEI y

—a'ZS C-—u:ES| -*arES—gmz[C-rsz)/Bz(1~g}(C-erSJ

1.00

(37)

where y = {l+¢x2]/B, C = cos(2rnv), S = sin(2nmv). The solution o

of the characteristic equation:

.80

IM - AE| =0

determines eigen numbers of the matrix: P
St L3F -/ 2 2 2 : 0.20
!‘11 = Clt-g/2)2iv S (1-g) - g"C /4 . (38) 3/
For det = Sz[l—g} = g2C2/4 = 0 one can find their modules: | Y M e e S B ~ags s gt et
£ betatron tune
A = V1- ; (39
’ l.zl ;s . Fig. 2. Optimal values of g and A versus tune v.

The dependence of modules of the eigen number on g is shown

in Fig.l. One can see that the maximum of decrement (minimum
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of A) for the given tune v is reached at det=0. The optimal

value of g depends on the tune and is equal to:

_ | 2 sin(2nv)
opt— 1 + Sin'[z}l'[v)

| cos(2mv)
& : ]ﬂ[gop )!_ 1 + sin(2nv) |’ (40)

t

The plots of this functions are shown in Fig.2. If g > 2 the
motion looses stability. One sees that the maximum damping,
when the particle motion can be damped per one turn, is
achieved for betatron tunes Q=0.25+0.5'n. For the SSC
working  point g, <5 ~0.999 and

h{gupt )~#0.063. For

v=122.78 one gets
& « 1 one can define the damping

decrement to be equal to

3 o e g
?L—fn{l_hl sl o) (41)

M|t

where fu is the revolution frequency.

To estimate the emittance growth rate let us find the
r.m.s. displacement <x:> — ECH of the beam center from the
closed orbit. This value is determined by the equilibrium
between heating by the quadrupole jitter [de:/dt]u and by the
final accuracy of the damping system and cooling by the

damping system:

2
1 [[de] g 2 ]
c 2A dt 5 0 ZB p : f

1
0.k
Here (xp.‘-* i1s the r.m.s. accuracy of measurements of the beam

position and one takes into account that the error in the

position measurement produces an additional kick in the
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kicker:
2 23
<F8 > = g/ :
39, g<x (8182)
Now we can easily estimate the emittance growth. Let us
take into account in equation (29) that the correlation in
the bunch movement is conserved during the time =#1/A and

using (33) one can write down that the emittance increase

during the time 1/A is equal to:
E anﬂ 2 xz
e -(0.197€) [ —] £ = < B > (43)
c A B

And finally after substituting (41) and (42) in (43) one .can

0| —

5 =

estimate the emittance growth rate:

de i A Ejz
G gz{l + g/2)

2
[[dg] s & <x:>] A e
4]

dt 0 231

Here the constant A is equal to A4 = [211:-0.1974)2% 1.53. The

computer simulations (see below) gives a higher value A4~3.

4. BEAM BEAM EFFECTS
IN THE PRESENCE OF EXTERNAL NOISE

To test these estimations we have carried out numerical
simulations with the particle motion being influenced by the
external noise and the feedback system. Two models have been
used. In the first case we consider that every particle has

a linear motion, with the constant betatron tune determined

o7




Iﬁg____—

‘ by the initial particle amplitude (see (30)). This tune

. study the effects of the measurement errors of the feedback
spread produces the emittance smear and consequently the

. : system. In this case after the interaction the particles get
emittance growth. In the second case we use direct -

: _ : : ? random additions only in velocity. We used many particles
calculations of the nonlinear interaction with the counter

. : : , : (5000-15000) to prevent the stochastic cooling which
bunch field given in (31) (strong-weak approximation). From

_ . 2 ‘ “ decrement, in the case of a large enough betatron tune
the common point of view this case differs strongly from the

: ; spread, is equal to
previous one because the movement of particles becomes

; . : (" =
nonlinear and many nonlinear resonances influence the ?tstc g/ {ZNPHHMG}. (45)

particle motion, But in our simulations because of a small betatron frequency

In both the cases the movement was two dimensional and spread the real decrements of cooling tested nufnerically

the initial particle distribution in the phase space was were much smaller and, as a rule, it was possible to neglect

Gaussian. There was an assumption that counter beam has also the effects of cooling.

2D Gaussian density distribution and does not change its

size. All simulations have been performed for one IP and 3.50 0.755
v=u.
equals betatron tunes Q;Qz:{}. The synchrotron motion and
the finite bunch length were neglected. The noise was oo
modeled by random additions (equal for all particles) to the 2
: () 250
transverse particle velocities and their positions after & iR
= v=0.
passing each IP. This corresponds to many quadrupoles £ 2.00
| v : 4
| distributed along the circumference and moved independently. / R
' i ¥r=u,
| The r.m.s. value of this additions was equal to s
| 2 s} 3 : . = ¥=0.770
<3xX >=<89 >=§ A and all the sizes were measured in units of & : — :
L 48 g 100 e ool S 400

r.m.s. beam sizes at IP. The distribution of hit values was S iniher o by

Gaussian. The damping was modeled as described above in W : : ey ;
| _ ; : : Fig. 3. The dependence of emittance on time for different
| section 3 (see (34)). The kicker of the damping system was betatron tunes in the vicinity of a resonance 3/4 in

located just after the IP. There was also a possibility to the nonlinear model; £=0.03, 4=0.05, g=0.2.
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Fig. 4. The dependence of the emittance on time 'f'c:-r dif -
ferent betatron tunes in the vicinity of a resonance

5/6 in the nonlinear model; £=0.03, A=0.05, g=0.2.
Examples of the emittance growfh calculations in the
nonlinear model are shown in Fig.3 and Fig.4. The calculated
emittance growth rates for linear and nonlinear models are
presented in Fig.5. One can see that for £ <:003 both
models are in good agreement both with one another and with
the suggested estimations (44) for 4 = 3. The divergence
appears at a high enough £-value (£20.03), when the
nonlinearity strongly enforces the influence of the external
noise. The saturation of the emittance growth rate in the
linear model for £ = g is bound up with the achievement of
its maximum value equal to the growth rate without
suppression. For small enough values of kicks A the

emittance growth rate is proportional to A% but for their
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Fig. 5. The dependence of the emittance growth rate on the
beam-beam tune shift £ for different values of noise
A; g=0.2, v=0.78. The solid lines are plotted via
formula (44) with A=3:

1 - linear model, A=0.1; 2 - nonlinear model, A=0.1; 3- non-

linear model, A = 0.05; 4 - nonlinear model, A=0.025.

large values (A=0.1) the emittance growth rate increases

faster. It results from large amplitude of the coherent

motion /éax% = 0.1 which produces a larger tune spread and
consequently a large emittance growth rate. In Fig. 6 the
dependence of the emittance growth rate on the dimensionless
gain of the feedback system g is shown. Likewise in the

previous figure the dependence goes out on plato for g=&.

To understand why £=0.03 is limited by a nonlinear
interaction we scanned betatron tunes in the vicinity of the

suggested SSC working point. The results of this scanning
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Fig. 6. The dependence of the emittance growth rate on the
dimensionless gain g of the feedback system in
nonlinear model; A=0.05 ,£=0.01, v=0.78. The dashed
line is plotted with the help of formula (44) with
A=3.

are shown in Fig.7. One can 'see a drastic influence of
resonances 374 and 5/6 on the emittance growth rate. At
these tunes there was observed an appeafance of non-Gaussian
tails in the particle density distribution. The resonances
8/10 and 11/14 can hardly be seen. This figure clearly
demonstrates that the additional increase in the - emittance
growth rate for v=0.78 and £20.03 is bound up with the
influence of the powerful resonance 3/4. This shows that the
nonlinearity of movement (which is not in the f irst model)
strongly affects the particle motion only in case of a high

enough &-value. For small enbugh g-values one can neglect
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Fig. 7. The dependence of the emittance growth rate on the
tune v; g=0.2, A=0.05, £=0.03. The dashed line is
plotted with the help of .formula (44) with A4=3.

~ the influence of nonlinear resonances. In this case, as can

be seen from Fig.5, the dependence of the emittance growth
rate on &-value is: de/dt « 5_2 for g«g, de/dt « §_1 for
£x~g, de/dt « const for g€»g. The dependence of de/dt « i;-"l
The influence of the

feedback system was not taken into account which fact led to

was predicted in ref. [6] and [7].

incorrect conclusions.

The experimental study of the beam-beam effects at
proton-antiproton colliders has shown that the measured
&-values are much smaller than  these for . the
electron-positron colliders and do not surpass 0.005 for one

IP. The main difference between the proton-(anti)proton and
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electron-positron colliders is that for the first one there
is no damping of separate particle motion. In this case the
beam-beam effects can be very strongly affected by the
external noise which produces an additional emittance smear.
The above given results show that for small enough € and for
the working point located far enough from strong resonances

one can neglect a very complicated picture of the motion and

Table 3
Spps |Tevatron LEC SsC
5] {51 131 ti12l
Energy E (GeV]| 315 900 8000 20000
Circumference ¢ [(km] 6.93 6.29 26.66 | 87.12
Revolution frequency fo{kﬂz] 43.3 47.7 11.25 3.44
Betatron tunes Q= 26.685 19.405 71.28 (123.78
Qz 26.875 19.415 70.31 [1123.78B
Kumber of IPs N 3 12 3 -
Head=-on beam-beam tune shigs
per collisicon: (p/p)fx [10__] S.0/5.31 1.5/2.) 3 0.9
£ D10 A0 M LIS 3 0.9
Summed head-on beam-beam tune
shift € = NE:(p/P) €x [10°°] | 1s/16 18/25 10 1.8
£ f10°°1 | 13/ 18/25 10 1.8
Normalized emittance
€ = Brye: v/p [ um ) | 3/1.75 a/2 3.75 1
r.m.s. emittance p/p £ [nm] 8.9/5.2| 4.2/2.1] 0.46 0.047
The first rescnance SR 13.6 19.3 ik 0.76
frequencies
£=f_(Q-n), [KHz] 510 29.6 28.4 8.0 2.68
o 56.9 67.0 14.0 4.20
4 72.9 76,1 19.4 6.12
Ex
g-functions at the feedback
pick-up locations [m] =40 =50 =60 %110
Luminosity lifetime ([hours] 20 20 11 10
Acceptable values of ! i ad o =
emittance growth rate{um/s] 7-10 3-10 4+10 1.3-10
.'P'”-:LB”, for £»g, [um®-s] 4.7 2.7 2.3 8.0
F.”;gz-ln‘?'_for £«g, [um® 8] 4.6 1.1 3.9 610
r.m.s.coherent betatron
oscilations [um] | 0.24vg | 0.16vg | 0.23vg | 1.8vg
accuracy of BPM [um] 0.39 0.26 0.37 2.9
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consider the external noise as the main source of the
emittance growth. A strong influence of external noise on
the beam lifetime was demonstrated at the Tevatron [8].
Acceptable external noise values for different colliders are
shown in Table 3.

It is difficult to compare accurately these predictions
with the experimental data Because of lack of information

and large spread in experimental results in the available

Luminosity l1fetime vs N, /¢, (low 8]

DT e e e e
+
+ +*
20 e
1“.1
) 2,
i 1sf T
: A
&
T :
>
-
E 5
£
3 Gi.lll.l.ll.lllillllllll.'l_lj.jl.lllll

0 0.5 1 1.5 2 2.5 |

Ny/e, tiow 8), 10'°/n mm-mrad

Fig. 8. The luminosity lifetime on the beam-beam tune shift
received on .the Tevatron [5]. Solid lines are
plotted by using the dependence T o &_j'z;

E=(number of crossings)- rp- [NP/EP).
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publications. Nevertheless, we tried to estimate the
external noise value for the Tevatron using the results from
ref. [S5] presented in Fig.8. There are two curves plotted by
using the asymptotic de/dt « S;"z(see (44)): one for best
points and the other for the worst ones. One can see very
good agreement of theoretical dependence de/dt with all the
best points. We consider that these points correspond to
good conditions and a good installation tuning and
therefore, they are in a good agreemelnt with the theoretical
predictions. The known emittance growth rate allows to
calculate the value of the coherent transverse motion.
Combining (42) and (44) one has

{X} g fi

8 4&.2% dt

(46)

v
i

In the supposition that B=50 m and g=0.1 the parameters of
fhe upper and lower curves in Fig.2 allow to calculate the
value of r.m.s. coherent betatron oscillations (<x%>)!7? =«
0.05 - 0.07 um. Taking into account a bad knowledg; of some
values this is not in a too bad agreement with the
experimentally measured in ref. [8] value =0.3 um. Note that
in this work the movement of bunches is assumed to be
independent which is not exactly true and therefore a real
amplitude of oscillations should be smaller. The results of
work [13] performed later gave a smaller value after a

thorough experimental study of noise sources.
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A comparison of .main parameters for different storage
rings is given in Table 3. For simplicity the values of
B~-functions I at locations of the kicker and the beam position
monitor are taken to be equal a value of an average

B-function in the arcs.

5. COHERENT BEAM-BEAM EFFECTS
IN THE PRESENCE OF AN EXTERNAL NOISE

In addition to the kicks produced by the Ilens
displacements the beam is also kicked by counter beam fields
which leads to an additional emittance growth.

The calculations made in the hard bunch model with it's
bunch-dipole interaction and in the absence of damping do
not make significant contribution to the emittance growth
rate. In this case, as shown in the Appendix, the emittance

growth rate is equal to:

(47)

[41:65};?' ]

i s 1 +
dt dt/o [ 25{5 e 41{&3(} = (4“&5}2‘51

Here Es is the total linear tune shift with taking into
account an interaction in the parasitic IPs, s=sin(2nv),
c=cos(2nv). The second addend in brackets correspond to the
contribution of the coherent dipole interaction. The SSC has
two IPs. If tune advances between the-m are equal one can
simply substitute 2nv by mv in (47) and then for £«1 one

has:
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d d )
==, [1+ (4nEe) ] (48)

ZSinz[nv)

For the SSC parameters v=123.78 and &£ =0.01 there is a cor-
5
rection due to the coherent beam-beam interaction about
-2 ;
1.3:10 © which value is negligible.

To test this result we carried out direct numerical

simulations of the emittance growth rate in the "hard-soft"

de/dn] %
A - em——
10 % et e
o)) 1 e f,r
+ A=0.05 S
, -
| 24 !/ -
- o
_': /"" x ’f'
E 4 "} ":
- - L3
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i .-"” ,’,#,
: A
= t‘f tl‘I_.l-'
o -
e e /"
— -5 Fa e
THO N
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f’ /"" _1
o % _2
——r—rT T ¥ G Tt —
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linear tune shift ¢

Fig. 9. The dependence of the emittance growth rate on the
beam-beam tune shift € with (upper curve) and
without (lower curve) a coherent movement of the
hard bunch; g=0.2, A=0.05, v=0.78.
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bunches model. In this case one bunch was modeled by many

=15300) and the other one was hard but,

particle
unlike in the model described in the previous Section, it

particles (N

was provided a two beam betatron movement. Both the bunches
were influenced by an external noise and the damping system.
The results of these simulaﬁons are shown in Fig.9. One can
see that the dependence of the emittance growth rate on £ is
similar to the one described above but its value is almost
doubled. The r.m.s. coherent betatron amplitude didn’t
change becouse of the influence of a "hard" beam movement.
The coherent amplitudes of both the beams were equal. These
calculations redetermined the value of the constant A4 in
expression (44) to be equal to 5.8 in the presence of a
coherent beam-beam motion.

It seems plausible that this additional increase in the
emittance growth rate is bound up with the parametric
excitement of particle motion by fields of a hard counter
bunch. It results from the change of the counter bunch
focusing strength due to it’s transverse movement which is
of a random character. In this case the value of the angle
kick by the quadrupole fields is about:

szxc
89 = 4n€ : . (49)

where x, x are the particle and the bunch coordinates at

#* :
the IP, ¢ is the r.m.s. beam size at the IP. Taking into
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account that time of an interaction is an order of inverse
decrement 1"1, assuming <x2> ~ n:rz, using expression (42),
squaring and averaging (49) one obtains an additional
contribution to the emittance growth rate the similar to the

one estimated in (44).
6. ESTIMATIONS OF THE FEEDBACK SYSTEM

Common principles and requirements to the feedback
system are very close to the stochastic cooling ones. Here
we shortly consider the main limitations of this system
determined by the beam dynamics.

One can see from Table 3 that the accuracy of the beam
position monitor (BPM) should be better than 2.9 uym and also
the really attained accuracy at the SppS and the Tevatron is
much better. .But it is necessary to note that in the SSC
case the distance between bunches is much smaller therefore
the frequency band width of the feedback system should be
increased. This consequently determines a larger value of
noise. The principal limitation on the BPM resolution is

determined by the preamplifier’s thermal noise:
<U§> = 4KTZ -Af (50)
which in comparison with BPM signal

- 6xc1
input= ZIID _E (51)
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defines the ultimate accuracy of BPM

a JfAKT-Af 45
- ey s i =2)
BKBPM I Z1 g

0
Here a is the vacuum chamber aperture, Zl is the BPM
impedance, Af is the band width of the feedback system, In
ic the beam current and k,T are the Boltzman constant and
temperature. In the worst case when the system allows to
measure positions of separated buﬁches spaced at 1=5 m for
a=Z cm, 21=50 2, qu‘?ﬂ mA, T=300 K and Af=c/l = 70 MHz one
gets axEFMm 0.06 uym which is by an order magnitude better
the required value. Thus, one can see that there are no
principal limitations on the necessary BPM accuracy.
Another and more strict limitation is the limitation on
the output amplifier power. To estimate it let us consider a
simple model of the feedback system. Multiplying the voltage
excited by the beam on the pick-up electrodes (see (51)) by

the gain of amplifier K one obtains the value of the kick

produced by the feedback system:

EIkUcut elk 6xc
S =y s S el v, (53)

where Ik is the full length of kickers and P is the momentum
of particles. Comparing this equation with (34) one obtains

the dimensionless decrement:
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el ZKI1

2 i
Pca

and the total output power of amplifiers is equal to:

2 2
8] < >
p N out = N’ 5X [PC&]Z'E

out k Zz BIBZZZ el

(55)

where Z is the kicker impedance and N is the number of

kickers. Expressmg <5x > through the 5pectral power of lens

motions and using (22) and (42) we have

yoo T [Pca]zgz. R [de] i
out BIBZZZ elk gf |dt
K [Pr:a]2 2Nc g ©
g—tg(5) I Plw (v-n)) . (56)
ﬂ.z?z EIR Rl (2)n=-m ( s )

Even for the smallest experimentally observed spectral power
[3]: |

¥ ?(wﬁ[v—nl) = 3-10-qum2-s ~ 107° ;.r.mz/l-lz 1)_
N=-co
~and for 1=90 m, 2mrR=87.12 km, Pc=20 TeV, N=968, u=90°,
g=0.5, 1k=10 m, Nk=4, ,82=100 m, Zz=50- 2, a=2 cm and £=0.00i18

one has (de/dt}0=4.8*10-mcm/s, de/dt=1.8:10""*cm/s, P = 1

out

1)

This dimension is used for the next spectral power

normalization: e i }df:cxz>.
0

42

kW and the Iluminosity lifetime is =80 hours. It seems
reasonable that under real experimental conditions the
spectral power increases by an order of magnitude as
minimum. In this case the luminosity lifetime will be
approximately 10 hours and Pwtﬂlﬂ kW. As the preamplifier
noise can be made small enough we neglected it in these
estimations.. To decrease the power of the feedback system
its kickers can be located at the place with a large
B-function.

Since the emittance growth suppression by the feedback
system can be made very strong it is necessary to study
other heating mechanisms. We note here that the contri-
butions made by trembles of sextupoles

de . EE, _] ~ 10 [d‘"] (57)

dt 2 |dt dt
Y

and the particle energy spread

J 2
de AP {de de
e a"f] ~ 5:10° [dt] (559

are, as a rule, negligible. Here ¥ 1is the dispersion
function at the arcs, (AP/P)® is the relative r.m.s. energy

spread.
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CONCLUSION

The experimentally observed spectra of the ground
motion drop with frequency, thus, the main contribution to
the closed orbit distortion in a large collider is made by
low-frequency movements with large amplitudes. At the same
time the transverse emittance growth occurs only due to the
resonance frequencies. They are equal fractional parts of
the betatron tune f‘m=[0-111]'f‘£J (for the SSC: 760 Hz, 2.68 kHz,
4.2 kHz etc.) and are high enough. Estimations point out
that in the SSC in the absolute absence of an active
 feedback system or, which is the same, with a small
decrement of the feedback system (g<<€) the sum of the
spectral powers of vibrations at resonant frequencies (which
only determines the beam sizes blow up) should be less than
lo_lzumzs (3-10" " *um®/Hz). (Ut corresponds to r.m.s. ampli-
tude of a "white hnise" of about 0.13 nm at frequency band
Af =fﬂ =3.4 kHz). The lowest observed levels are three orders
of magnitude higher and in this case the emittance will be
doubled a few minutes after the injection.

A strong feedback system, with a damping time being
only few turns, allows one to decrease the emittance growth
over four orders of magnitude. In this case the main
obstacle to the full damping of the "beam heating" are the
beam-beam effects which lead to the betatron frequency

spread in the beam and consequently to the emittance smear.
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Obtaining of acceptable values of the emittance growth
depends both on the "vibroclimate" in the SSC tunnel and on
the mechanical properties of magnetic elements and their
supports which can considerably amplify vibrations in case
of poor design. It is also important to have a high
precision of the beam position monitor in the feedback
system (0.2 - 0.5 um). But even in the case of ultimate
damping for only one turn there are strong limitations for
an acceptable spectral power of the lens motion ¥ fP{mn] «
6*10*Epmz/Hz (It corresponds to r.m.s. amplitude of the
"white noise" of about 0.03 um at frequency band Af = f e
3.4 kHz). This is a very small value and can be easily
exited by technical noises of accelerator systems such as
movement of cooling water, helium movement, its evaporation,
etc.

It is important to note that for a given external noise
an acceptable & value determined by the beam-beam effects
increases proportionally to the emittance square root £ «
ve. It means that the considered in ref.[12] coalescing ten
bunches in one allows to increase the luminosity vI0~3 times
for the same current. To have the same strength in the
beam-beam effects the beam emittance has also to be inc-
reased 10 times.

Further serious experimental and theoretical
investigations of the problems under consideration in the

present paper are undoubtedly necessary,' as they may solve
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many questions and make exact predictions about the collider

operation.
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Appendix: Coherent beam-beam effects in the presence of

external noise in the hard bunch model

To estimate this influence let’s consider a simple
linear model in an assumption of rigid bunches and one IP.
In this case after an interaction the bunch changes its

angle by:
66‘1= 41{&5[1{1-){2) g (Al)

Here the saﬁlé dimensionless variables as in (1l1) are used,
indexes 1 and 2 correspond to both colliding beams and & 5 is
the total linear tune shift (with taking into account an
interaction at parasitic IPs). We shall omit index s for
simplicity. '

One can write down the matrix of transition through IP

3 0 0 0 xl

kA o LARE I =9nt 0O 1
s MIFX 2 0 0 1 0 x; (A2)
-4n€ O 4mnE 1 o |

and through the whole ring
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B L § B 1 1 0 0 0 xln

e e T a8 c 0O OF | 4nk " 1 ~4nt O |9
Xn+1_M XH‘MR men‘ 0-0. ¢ 8 SE s e x;: :
0 0-8 c -4nE O 4n€ 1 ﬁZn
(A3)

where both the storage rings have equal tunes eNon v and
c=cos(2nv), s=sin(Znv). (A4)

Let be the beam is influenced by random kicks:

Exln
— ad
ﬂn & 6}{:1 : {ASJ
so°"
Zn
where
BT > =<B0° > = <Bx° > = <58 > = 0°/2 (A6)
1n in 2n 2n

which corresponds to the fluctuations of N lenses (N » 1)
distributed along circumference and moved with r.m.s. shifts

equal to o/vN. After n turns, the beam coordinates will be:

e s VoA (A7)

kil i i
1

MCA =
k
1 k

X =
n
k

1
ne~ls
1+

| ¢

]
[

Here ?1 and Al are eigen vectors and eigen numbers of the

transition matrix M:

cHimgs s -4mgs O
_ |4n€c-s ¢ =-4m€c O
e -4nEs’ 0O c+4n€s s| '’ (A8)
~-4n€c O 4mn€c-s cC
and coefficients a , are defined by equat
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4 4
E=Ea e (A9)

The r.m.s. beam deviation from the closed orbit after n

turns is equal to:
s R

<x:> = l<(x ,X > =

n

*n—k n-1 ,—* —

1n 4 q
=Z‘I-“kz_: E <a Ry AR

lillljl

Z i(aa:‘){v V] i *n_kn-k—

I.i

-Fil'.'-"i

a
Z<a a > (V ) < (A10)

where * is a sign of complex conjugation and it was taken

into account that:

o L
< > =X >
LN a, a 6k1. (A11)
and that only members with i=j make contribution which is
proportional to n because A s kh’:ﬁk 1.

After a simple caiculatian one can find out that the
eigen vectors and eigen numbers of the transition matrix M

are equal to:

+
A .=c-isEe'zmv, A —c+41rEs+i‘/1 (c+4n§s} =e e

1.2 $a E (Al2)
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1 1
1 . =
- | = -4n§i1\/l—[c+4ngs}z {c-eﬂa]/s
] 2 V = = 3 (AI.S]
0 R 3,4 -1 i
+l- A —
i 4n§¢11/1——{c+41t£s}2 -(c-eﬂa]/s
and the scalar multiplications of eigen vectors are:
R M e
= = 0O 4 0 0
vV ,V - »
{ J} 0 0 o.a (A14)
0.0 4
p = Ez (I-c:cos &), q = Ez {I+e_21a —Zc-e_ia} i (A15)
s s ,

The solution of equation (A9) determines the coefficients

a
ik

3,V ,

el iR
(A Vl) . a *

m»—-
.m-

a
I{l kz

i — et Ty
p(& ,V.) - q{ak,v;J
a =a* = (Al6)

kd k3 2
P ogogn

Substitute (Al4) and (Al6) in (Al10) and after average:

<a*a>=<a"a>=ln'z,
. JEhEE L, 8
N e
" =4 * — L] —
*<:a:3 a3> ¢a4 a4> - =3 (A17)
P —4qq

one finally has the emittance growth rate

49



de

s
L % AL
dn 2 [“ ]-4[“

2 2

[41‘:&)z
25[5—4n€c—(4n§}zs]

z | . e
p -qq* '

The second addend in brackets is connected with contribution

of the coherent dipole interaction. It tends to infinity

near the boundary of stability [9]:
s-4n§c-(4n£)25 =0 (A19)
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