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ABSTRACT

Dynamics of a complicated quantum system interacting
with open decay channels is treated by means of the disc-
retized effective non-hermitean Hamiltonian. The main sub-

ject 1is segregation of collective short-lived resonances,

which are similar to the coherent Dicke states in optics,
from the background of equilibrium compound states. The
analysis is carried out with the use of two complementary
representations (internal and doorway). The phase transition
between regimes of weak and strong continuum coupling is
considered. The effects of the channel thresholds as well as
the problem of ergodicity (equivalence of energy and en-
semble averages) are discussed. Two simple models illustrate
results, show the relationship to the similar solid state
problems, and display new collective phenomena for doorways
strongly coupled to the background.

@ Institute of Nuclear Physics

1. INTRODUCTION

Recently, a number of interesting phenomena was
discovered in the dynamics of resonances embedded into
continuum. New collective effects and their coexistence with
the irregular structure of compound states are of special
interest. The goal of the paper is to give an uniform
treatment of such effects, to classify them according to re-
lative values of relevant physical parameters and to discuss
various manifestations of the collective dynamics in the
continuum.

It is well known [l, 2] that the behavior of a quantum
system with N internal states |[n> n = 1, ..., N, decaying
into k open channels ¢, ¢ = 1, ..., k, can be described by
means of the effective Hamiltonian # which acts within the
intrinsic N-dimensional space only but acquires, due to the
elimination of continuum variables, an antihermitean part,

K =H - (i72)W . (1)

Here H and W are both hermitean: H is the internal
Hamiltonian with a discrete spectrum whereas W originates
from on-shell self-energy contributions corresponding to
open channels. Due to the discretization of the dynamical
problems in the continuum, we have now at our disposal
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powerful matrix methods similar to those in physics of bound
states. ; :

In consequence of the unitarity of the scattering mat-
rix, W has a specific factorized form :

= ot c C
WeAAS W =7 A°4° (2)

clopen)

The off-shell contributions generated by the open as well as
by closed decay channels are assumed to be incorporated into

H. The decay amplitudes AT can be considered as real (for a

T-invariant system) and energy-independent quantities. The
latter assumption being valid within the limited energy
interval implies, in particular, the decay thresholds to be
remote from this interval. :
In practice, we are interested in the region of the

high level density p = N/2a = D"l, N » 1, where D is the

mean level spacing, and we denote our energy interval as
(-a, a). For many applications, it is possible to go to the
limit N > o keeping a constant. As for the channel number
k, two situations were analyzed: small number of explicitly
considered channels (usually k = 4) and large k making up a
finite fraction of N.

Various physical questions can be addressed with the
use of the effective phenomenological Hamiltonian (1).

A. This approach allows one to study the dynamics in
the continuum using the language of quasistationary states
- with exponential time dependence o exp(-i€t). Those are
eigenstates of the Hamiltonian (1) with complex energies & =
& E - (i/2)T. The structure (2) of the matrix W ensures that
' = 0 for all eigenvalues. In many respects such a
consideration is similar to that in the discrete spectrum.

Friedrich and Wintgen [3] observed that in a two-level
system with a common decay channel the width of one eigens-
tate can vanish at some parameter values. Moldauer [4] and
Kleinwachter and Rotter [5] in their realistic numerical
calculations noticed that, in the case of intrinsic levels
strongly coupled to the continuum, the broad states are for-
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med absorbing the significant part of the summarized level
width and increasing the lifetime of the rest of states. The
number of the short-lived states is correlated with the num-
ber of the open channels. The transition from the nono-
verlapping levels with uniformly distributed widths to the
regime with the striking difference of broad and narrow
states is rather sharp. It occurs at <[> = D where <[> is
the mean level width.

In Refs. [6 - 8] (see also [9, 10]) we have shown that
the existence of two dynamical regimes with the distinct
phase transition between them follows straightforwardly from
the formalism using the effective Hamiltonian (1). If the

characteristic parameter

R e o R (3)

is small, k « 1, the antihermitean part W 1is a, weak

perturbation providing the stationary eigenstates of H with

the small widths; off-diagonal elements of W are then of
minor importance. As a result, we have well separated narrow
resonances with the smooth width distribution. This is the
case for the neutron resonances at low energies. In the
opposite case k » 1, the off-diagonal elements of W play the
significant role. They generate the strong level coupling
through the common decay channels resulting in the drastic
redistribution of widths. For k open channels, Kk collective
states are created accumulating the lion’s share of the
total width w = Tr W = N<I'>, The remaining N-k eigenstates
become very narrow. The same effect was rediscovered for the
simplest case of the degenerate levels and one decay channel
in ref. [11] and then for more general cases in Refs. [12].

The detailed theory was developed in ref. [13] where
the collectivization of widths was interpreted as the clear
separation of direct and equilibrium processes and the
similarity to the Dicke coherent state [14] in optics,
created by the synchronization of the individual radiators
through the common radiation field, was pointed out. As has
been shown analytically and numerically [15], the transition
between the two regimes is very distinctive in the limit N =
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w, k = », m = k/N = const. The counterplay between the con-
ventional ("internal") collective effects in the discrete
spectrum and the "external" collectivization via the con-
tinuum was analyzed in Ref. [16]; the implications for the
giant resonances were discussed with the conclusion that the
precursor of the main peak should exist in the isovector
case near the unperturbed shell model energy.

B. Another aspect of the problem is connected with the
complicated structure of the intrinsic states corresponding
to some kind of chaotic motion. The irregularity of the in-
ternal wave functions does not destroy the collectivity
created by the common decay channels [6, 8]. In the limit of
the extreme chaoticity one can assume that the internal dy-
namics can be described by the Gaussian orthogonal ensemble

(GOE) and the decay amplitudes ﬂ": are normally distributed

random variables. The joint distribution function of complex
eigenvalues for this ensemble of nonhermitean Hamiltonians
was obtained in [6, 8] (the details of the derivation can be
found in [13]) for the one channel case. Even for the weak
overlap, k « 1, the Wigner level repulsion on the real
energy axis vanishes at spacings less than <I'>. The
repulsion of the complex energies is proportional to the
cube of the distance in the complex plane if these points
are not too near to the real axis. At k = 1, the broad state
stands out against a background of remaining resonances
which return to the weak overlap regime (very narrow widths
with the Porter-Thomas distribution). For the case of many
uncorrelated equivalent channels some results concerning the
eigenvalue density in the complex plane were obtained in
[15]  manifesting again the phase transition with the
segregation of k broad states. :

The interaction of  collective states with the
statistical background gives rise, in the limit of N - «, to
the spreading width of a collective resonance. The appli-
cations of the formalism under study ‘to isobaric analog
resonances and multipole giant resonances were considered in
Refs. [17] and [16] respectively. Here the scaling pro-

gy
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perties of the random matrix elements le and decay ampli-
tudes A: (« N"/?) are crucial.

C. The whole approach can be of some use for the ana-
lysis and parameterization of data concerning resonance
reactions. Actually it goes back to Ref. [18] where the
problem of the neutral kaon decays was treated in similar
way. Some general statements on the level repulsion for
unbound states were formulated in [19]. It would be highly
desirable to try to extend the standard analysis of the
neutron resonances, which gives the Wigner nearest Ilevel
spacing distribution and the Porter-Thomas width dist-
ribution, from the near-threshold region to higher neutron
energies where the resonances become to overlap.

In what follows, we try to set forth the general scheme
for the consideration of the dynamics governed by the
effective Hamiltonian (1) and to systematize the typical
situations which differ in the relationship between
available physical parameters. Some domains in the parameter
space apparently have not been analyzed up to now.

Sect. 2 contains the main equations written down in the
basis of eigenstates of the real internal Hamiltonian H
("internal” representation, IR). Various methods of
treatment and qualitative features of the phase transition
to the regime of strong continuum coupling for the single-
and many-channel cases are discussed. In particular, the
scaling of the critical value of the overlap parameter k (3)
with the open channel number is derived.

Sect. 3 touches upon a question of ergodic properties
of description of an open system where the internal states
have complicated wave functions which manifest itself in
the fine structure of cross sections. The preliminary answer
we suggest at the current initial stage of research :is that
the conventional energy average and the ensemble average
over the random intrinsic dynamics give different results in
the many-channel case. :

In Sect. 4 we transform the formalism to the basis of
eigenstates of the decay Hamiltonian W ("doorway" repre-
sentation, DR). Being strictly equivalent in the mathe-
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matical sense, as has been explained rather long ago, for
the single-channel case, by Jeukenne and Mahaux [20], the
two representations are complementary with respect to' the
domains of the physical applicability.

Septo 5 gives the generalization taking into account
the energy dependence of the decay amplitudes due to the
proximity of the channel threshold.

Two simple models clearly illustrating the whole
formalism and the variety of physical patterns are con-

sidered in Sect. 6. The model A establishes the analogy of

the IR to the delocalized Bloch wave basis in solids whereas
the DR corresponds to the localized surface states. The new
situation with the strong coupling of the doorway stace to
the background is considered with the help of the model B of
Sect. 6. Rather unexpectedly, it results in the splitting of
the doorway resonance into components repelling each other
as far as possible. Such an example was found in the model
calculations by P.von Brentano [21]. The underlying physics
is rather simple: the strong coupling to the doorway forms
another collective state from the background. :

In what follows, we prefer, as a rule, to use a lan-
guage of models being as simple as possible, to make clear
main features of arising physical pictures.

2. INTERNAL REPRESENTATION

Given the effective nonhermitean Hamiltonian ¥, one can
introduce the Green function

Gl = (B -1)" . (4)

describing the propagation through the set of the unstable
states coupled to the continuum. The bare Green function for
a stable system with the hermitean Hamiltonian H is

' G(E) = (6 - H)' (5)
so that, due to the separable structure of W, Eq. (2)," the
two propagators are interconnected as follows (here and

o

below the hat marks kxk matrices in the channel space):

8(8) = G(E) - (i/2)G(B)AL + (i/2)K(E)ATG®) | (6)

where A is the kxN matrix of the amplitudes H:, and
K(E) = A G'(8)A . (7)

Neglecting for simplicity the potential scattering one can,
using eqs. (6) and (7), express the amplitude T of the
reaction b2a as a matrix element of the kxk matrix

TE) = ATS(8)A = K(EXI + (i/2)K(E) ! | (8)

taken at the real reaction energy & = E + i0. The full comp-
lete scattering matrix is

S(E) =1 - iT®) = [1 - (iI/2KE)IL + (i/2KE)N™" . (9)

The amplitudes T°° (£) are the meromorphic functions in

the complex energy plane having the poles in the points & =
J
= l:",j - (i/’Z]l"J of the eigenvalues of the effective Hamilto-

nian ¥. Eq. (8) shows immediately that these eigenvalues can
be calculated as the roots of the secular equation

D(E) = det(l + (i/2)K(E)} = 0, (10)

where det stands for the determinant in the k-dimensional
channel space. Note the relationship between the
determinants (Det) in the N-dimensional level space:

Det(& - ¥) = Det(& - H)D(E) ; ' (11)

the poles of K(&) at real eigenvalues of H are canceled in

the r.h.s. of Eq. (11) by the zeros of DetG' (8).
Since the two parts of H in general do not commute with
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each other .the;v can not be diagonalized simultaneously with
an orthogonal transformation. Instead one should deal with
the complicated biorthogonal set of the eigenstates ]tI:jb of

H. As a rule, it is convenient to analyze the physical
pattern in terms of an appropriate orthogonal complete
basis. One of the natural options is to use the basis of the
stable eigenstates |n> of the hermitean part H ("internal

representation, IR). The matrix (7) can be written down in

the IR as - :
K*'(8) =

I

AAe ey By
n n n _

where & are the energies of the stable states in>_and'the'

n
same notations A° are maintained for the _transfor;med real
decay amplitudes. :
The decay matrix W, Eq. (2), has the rank k (we assume
k<N) which is equal to the number of open channels. k
nontrivial eigenvalues of W coincide with those of the kxk

matrix

X 3 X %Z&HA, (13)

so that, introducing partial widths 'arz = [A:llz, one has

szrW=tr;C=E[A;]zﬂEarz=E?,rn=23rc=2r‘j, (14) .
L | c

: : Gy h n

where ¥ = Zarc, afc = Zg-c and ' is the width of the j-th
n &0 h n n j
exact eigenstate |®> of the total Hamiltonian ¥; Tr and tr
i J .

stand for traces in the intrinsic and channel spaces
respectively. The last equality in (13) follows from the
invariance of TrW = - 2ImTrH with respect to the complex

transformation diagonalyzing X.
The IR is especially convenient in the limit of weak

10

overlap when the coupling to the continuum can be treated as
perturbation. Here and below we assume that all internal
states are of the same degree of complexity so that we can

use for estimates the average parameters <I'>=<y >=w/N=k<y >.
n n

In the weak overlap case, by the definition (3), k = <I'>/D =
= w/2a«l. Then the secular equation (10) shows that the

access to the continuum results in small widths of isolated

resonances,
E ~g - {i/2]arn . ; (15)

n n

Eg. (15) is valid for almost all roots except when the
energy € is just at the edge of the interval, |e % a|/a =
= exp(-1/k). But, in any case, the sharp cut-off at the edge
is the model artifact. The natural truncation is determined
by the decay threshold, Sect. 5. Up to the second order cor-
rections, the original distribution of energies is unchanged
whereas the distribution of widths is fixed by that of the

0

amplitudes 4.

imply the'_';};z “width distribution for k degrees of freedom
(the Porter-Thomas distribution in the one-channel case).

In the opposite case of the strong coupling to the
continuum (k > 1) the antihermitean part with its specific
structure (2) dominates the dynamics. One can still use the
IR but the resulting pattern is unlike that of the uniformly
spread overlapped resonances. For the single decay channel
eq. (10) reads ;

The normally distributed uncorrelated AC
: n

I (i/z}z 7 (6 - en}‘l =0, (16)

which ,givés_ one broad state E%’l = El - {fix’zll"1 and N-1 very
narr_crw'st'atés E?j_-,' Jo= 2 ., N At K-> 1. denohing Se> =

= Te y /w, we get
N n n
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R e 42 £ (<e>=¢ ]zar /WS = <e>[1 + O(m-zl] . (17)
1 = n n n :

r w - 4[ y (e -E Yrwe = wil - 0lk™)] . (18)
1 L i i R |
Thus, the collective ("Dicke") resonance is located near the

middle of the energy interval; it accumulates the major part
of the total summed width w reducing the remaining N - 1

widths to very small values l‘j = w/K°N << <> = w/N. These
states [¢_> correspond again to isolated resonances, their
J

overlap parameter being <k > = <I‘j>/D = K:_l << 1, and can be
J

considered in - terms of the statistical equilibrium since
their lifetime T =h/<I >~(h/D)x is much longer than the re-
o N
currence time h/D. The collective state vector [¢1>
represented as a vector in the N-dimensional space is almost
aligned along ‘the decay amplitude vector A = {An}; its
"transverse" components are of the order of a/l"lﬂ ' On
the contrary, compound states are situated mainly in the
orthogonal subspace. The typical energy dependence for the
scattering cross-section was discussed in Ref. [13] in terms
of the separation of the long-scale (compound) and short-
scale (direct) processes.

If one is not interested in the fine structure details
they can be averaged out. Neglecting, in accordance with the
picture of many intrinsic states of similar complicated
structure, possible correlations between the level energies

€ and their decay amplitudes, and introducing the intrinsic
% |

level density p(e) we come to the averaged version of
Eq. (16):

12

a
l+[i/2)J-ds’a‘(c}p(E](8~E]_lﬁl"fiz’Z}(gp)ln[f@'—a]/{8+a}]=D. (19)
-3
Since, in the same manner, £ ¥ = w =2 <yp> 2a, the mean value
I n

<yp> is nothing but our overlap parameter, <yp> = w/2a = «k.
Then Eq. (I18) gives the collective root in conformity with
Eq. (18), '

N l"1 = wk ‘cotk ® » w[l—(l:’i}mzll : (20)

In the continuous approximation (19) the collective width
vanishes at k = e 2/m. Of course, then the approximation

itself becomes invalid. But, as can be seen from (20), the
collectivity condition I‘l >> D is fulfilled very near to the

critical value of Kk, namely, at -(k - k )>> 4/Nm°. Thus, for
O

N >> 1, the reorganization of the spectra occurs rather
sharply showing up the phase transition .

Another way of averaging offers a possibility to take
into account the specific:  features of the internal level
density. For such a goal, we can right down the secular
equation (16) as

1 + (i/2)w<g(&)> = 0 , (21)

where g(8) is defined for the stable system (5),
g(8) = N"'Tr{(G(8)} . (22)

For example, let us assume that the internal dynamics is
chaotic and it can be described by the GOE [22]. The ran-
dom matrix elements of H are Gaussian variables with the
correlation function

T




e T e P T SR s R (23)
12 34 14 23 132 24 :

Here we use the standard scaling factor N_l [23-26] which

leads, in the limit of N>>1, to the Tr H° « N. It is well
known that this factor appears naturally in the estimates of
matrix elements of interaction between typical complicated
states if they have N simple (shell-model-like) components

superimposed with the weights = N% a is the typical

magnitude of the, interaction matrix elements between the
simple states. Such a scaling is essential to explain
qualitatively many aspects of statistical reactions; as
examples the dynamical enhancement of the -parity non-
conservation in the fission process [23, 24] and the
suppressed variations of the spreading widths of isobaric
analog resonances [27, 17] can be mentioned.

In the GOE case (23) the average Green function (22) is

2,1/2
=

<g(E)> = (2/a°KE - (§°-a%) (24)

leading to the semicircle level density distribution
confined within the interval (-a, a),

p(E) = (2N/ma’)(a>-EH"?, |E| = a . (25)

Substituting (24) in (21) we again get for the Dicke state

=0 = w[ll—az/wzl w[1"{4+¢2]-1] ; (26)

1 1

in agreement with Eq. (18). Evidently, the arguments used in
the end of the paragraph after Eq. (20) could be repeated

here.
The diversity of possible patterns. grows with the

number k of the open channels. Apart from the parameters a
and w, the resulting picture is determined now by the

partial widths 'grc for the specific channels c¢ (the likeness

14

of the intrinsic states is still assumed) and by k(k - 1)/2

angles 5*° between the decay amplitude N-component vectors

c

A° = {A°}. Thus, in the regime of the strong coupling to the
5 .

~continuum, k>>1, for two decay channels a and b we get two

broad states |¢+> and N-2 long-lived states which share

altogether the width of the order wk . Quite similar to
Egs. (16 - 18), one can find the complex energies of the
broad resonances & = (i72), dependent on the bare

- +
widthsh ?';2= [Aa]z and ?,rh = (Ah}z as well as on 4, [Aahh) =
= (%) “coss,
el 76" £ B ) S SR L
n .
Ei = ,(27)
l"+w - Zg’aa’bsinzﬁ
r, = (1/2)w  [w'- 49y sin’01"%) . (28)

In the "perpendicular" situation, ¢ = m/2, the channels
are almost decoupled (decoupling becomes perfect for the
degenerate internal levels En] and the broad resonances are

matched to different channels. In the Hilbert space they are

aligned along the orthogonal vectors A* and A° and their

widths are unperturbed ones, v~ and 'arb respectively. When
the angle 9 decreases the channel mixing increases. At small
¢, one of the broad resonances disappears joining the
quasicontinuum of the compound states. For this state the

components along A* and A° interfere destructively so that
their ratio equals [-grb/g'a} and the width goes to zero as T

= [vagrh/w}ﬁz. The second state with the constructive
interference (the ratio of the component is one) absorbs in
the "parallel” situation, ¢ > 0, the total decay width, I"+ =

b : :
¥*+ % . The rest of the states is concentrated mainly

]

= w
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in the subspace orthogonal to that spanned by the vectors A”

and Ab. :
Again, for the broad states, the average description
can be achieved with the use of the average Green function

(22) and the decay matrix X (13). Let %r be the eigenvalues
o SR YR o IR %;r = w (the so called eigenchannel

representation); for the two-channel case expressions for
these eigenvalues coincide with I, Eq. (28). Then the

secular equation (10) falls apart into the product of the
equations analogous to that for the single channel case

(21): i
m [1+ (i/zﬁr«:g[@'m =0 . (29)

r

For each eigenchannel, the solution of (29) coincides

with that of Eq. (26) with w = %r. However, one Oshould have

in mind that the average description (29) is valid under
more strict condition than (26). Here the overlap condition
w>a is replaced by the similar constraint for each eigen-

channel, ; #~ w/k > a. Therefore, the range of parameter
values exists at large number of open channels, k >> 1,
where w/k < a < w, so that the levels are overlapped (w/N>D)
but the collectivization of widths does not occur yet:
roughly speaking, one needs the strong coupling to the
specific common decay channel to create the coherent state.
The mechanism deferring the onset of collectivization
in the case of many "nonparallel' channels was discussed
briefly in [10]. The matrix elements (2) of W are sums of Kk
independent products of the decay amplitudes. Therefore one
can expect that the off-diagonal matrix elements are

proportional to K% at large k whereas the diagonal ones
grow linearly with k. It can be seen easily if we introduce,

similar to ﬁab, the angles X between the N k-dimensional
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vectors A = {4},

W. =& K =ly o }Mzcosx 7t (30)
m n m m

Imn n

At natural statistical assumptions, these  angles are
¢ . -1/2
uncorrelated with ¥ and the mean value of cosy is Kk
n
which implies the smallness of W , m#n, in comparison with
mn

W . Evaluating the second order correction to the eigen-
nn

values induced by these off-diagonal terms, we find that it
ceases to be small at w/Nk ~ D, i.e. at Kk = <I'>/D ~ k. It
defines the border between the two dynamical regimes. This
k-scaling can be seen in the realistic nuclear calculations

[5] for the dipole resonances in 0 where proton and
neutron escape channels populating the ground and the first

. RERET :
excited states in N were taken into account, k=l, 2, or 4.
In the asymptotic limit of the large channel number,

N+ o k= o mzKk/N = const , (31)

the two regimes are separated with the sharp phase tran-
sition at Kk # k as was demonstrated very distinctly in the
numerical simulation made in Ref. [15] for random matrices
of type (1) (N = 200, k = 50) with the same statistical
properties as in [13], namely the GOE for the hermitean part

H and the Gaussian distribution for the amplitudes A° with
y n
the uncorrelated equiprobable channels,

A4S = [y/NIS>s . (32)
n m n :

m

In the phase transition point (y = 2a) the cloud depicting
the eigenvalue distribution in the complex energy plane
dissociates into two subclouds one of them (compound states)
being flattened against the real axis and the second one

17



(coherent short-lived states) stretched along the imaginary
axis and contained the fraction k/N of the total number of
states. The phase transition looks like as an appearance of
the finite gap separating the two domains.

This scenario of the width collectivization when
increasing the mean overlap parameter k imposes the rest-
raint on the standard concept of the Ericson fluctuations
[28]. As has been pointed out in Ref. [13] the collec-
tivization mechanism suppresses those f{luctuations at small
number of the open channels. At k<l the levels are not over-
lapped whereas at k > 1 the majority of the quasistationary
states again returns effectively into the same regime of
isolated resonances. The room for the Ericson fluctuations
appears in the case of k>k>1 when there exist a large num-

ber of strongly overlapped states uncorrelated with each -

other. In the overcritical region of k>k, one can expect
attenuation of fluctuations. The whole question deserves to
be elaborated in detail.

3. ENERGY AVERAGE AND ENSEMBLE AVERAGE

In this section, we discuss briefly the problem of
ergodicity as concerns the theory of reactions in the regi-
on of overlapped resonances. In the conventional practice,
the experimental cross-section is averaged over some energy
interval I covering a number of internal levels, I>>D, but
still keeping track of the intermediate structure energy be-
havior, I < a. For functions F(E) of energy. which have
analytical properties similar to those of the S-matrix (9),
the energy average can be taken explicitly wusing the
Lorentzian weight function. It results in the simple recipe:
F(E) = F(E) = F(E + iI). Such a procedure when applied to
the scattering matrix (9) leads to

A A A
S(E) = [1-(i/2)K(E)][1+(i/2)K(E)] " . (33)

It implies the independent averaging in the numerator and in

18
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the denominator of the original amplitude (8).

If the intrinsic levels are of equally complicated
structure one would expect that, at N large enough, the le-
vel ensemble shows up the self-averaging properties and the
ensemble average coincides with the energy average (33) with
the possible exception of the outer edges of the energy
interval. Indeed, it can be shown to be true for the small
number of open channels, m = k/N » 0 at N-w. In this case,
the terms taking into account the correlations between the
K-matrices in the numerator and in the denominator of
Eqs. (8) or (9), have the lesser number of traces in the

internal space and therefore they are of higher order in N
than the main term originating from the independent avera-
ging of the two K-matrices, so that

SE)> = [1-(i/2)<KE)>11+(i/2)<K(E)>]T . (34)

Here <...> stands for the ensemble average. Note that the.
similarity of Egs. (33) and (34) takes place independently
of the assumptions concerning the decay amplitudes: one can
treat them either as dynamic quantities [26] or as random
variables [8, 13] like in Eq. (32).

The situation changes for the large channel number,
i.e. in the asymptotic limit (32). The Green function (4)
for the total Hamiltonian (1) can be averaged out with res-
pect to the internal dynamics to give

<E(z)> = z {1l + <HE(z)> - (i/2)W<E(z)>) . (35)

For the GOE case, calculating <HE> by the formal expansion
and resummation with the use of (23) in each term, we get

[z + (i/2)W]<G(z)> =1 + [a2/4]<g(z]§{z}— N (dE/dz)> : (36)

where the trace gl(z) was defined in (22). I.i'; the limit of
N-=w, the average product <g&> = <g><§> + O(N ) so that

19



&Gz = [z - (a%/d)<glz)> + (i/2)W] . (37)

' Of course, at W-0 eq.(37) reproduces the result (24) for the
stable system. Actually the same formula, with [-(i/2)W]
substituted by Ha‘ is valid for any deterministic operator

Hn added to the GOE Hamiltonian H. The average analog of
Eq. (6) is

S(z)> = § (21 - (i/2)Al5 ' (2) + (/2)XAT) | (38)

where now, instead of G(z), the function

§ (2) = [z - (a®/a)<g(z)>17 (39)

appears, containing the trace g(z) of the full Green
function including the decay effects. Eq. (38) immediately
determines the: average reaction matrix (8) and the sca-
ttering matrix (9),

T(z)> = AT<E(z)>A = f{[g;(z) « (W2X17 (40)
$Slz) = {1 = (1/2)%?0{2];(][1 + [i/zwﬂiz}i]‘l : (41)

This expression, being the exact result of the GOE for the
internal interaction, differs from the "ergodic" formula
(34) by the replacement

.

KD = GEBR S K(2) = 5 (2)X . (42)

The function ?D(z] would coincide with the pure GOE result

<G(z)> (equal to <g(z)> given by Eq. (24)) for m = k/N - Q.
However, if in the asymptotic limit m - const, the distorti-
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on of <g(z)> and of the state density is not negligible. The
trace of the full average Green function (38) is easily

found to be
oy @’ﬂ(z}il - (i/2)mt(z)] , (43)

where t(z) is the trace of the reaction matrix (40) averaged
with respect to the channels,

t(z) = k_ltrf}(zb : - (44)

Hence, for finite m, the similarity between the energy
average (33) and the ensemble average (34)  is violated.

Formally speaking, the small factor ~ N ' associated with
the contractions of the random variables taken from the
numerator and the denominator of the S-matrix (9), Iis
compensated by the large number k of decay channels. Using
the more physical language, we can estimate under which
conditions the extra term mt(z) in Eq. (43) ceases toc be a
small correction. In the resonance region, |z|<a, it hap-
pens, for the large channel number, m<l, when the typical
matrix elements ¥ ~® w/k of the matrix X reach the order of

|§(2)| ~ a, see Eq. (40). This condition coincides with

that of the width collectivization for the large channel
number, Kk = w/a = K. It is clear that on the border of the
two dynamical regimes the formation of the coherently
decaying states destroys the homogeneity along the energy
axis which implies the violation of ergodicity.

The breakdown of ergodicity in the regime of the strong
coupling to the continuum is of rather general nature which
persists, as can be shown, even if the decay amplitudes are
treated as random variables and the additional averaging is
carried out, for example as in (32).
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4. DOORWAY REPRESENTATION

The eigenbasis of the IR utilized in Sect. 2 becomes
remote far away from the eigenstates of the effective
Hamiltonian # in the regime of the strong coupling via
continuum. For the general system with nondegenerate in-
ternal levels it turns out to be good practice to perform a
transformation to the alternative basis [13] which can be
called the doorway representation (DR).

Since the antihermitean part W.of the total Hamiltonian °

H# dominates now the dynamics, it is natural to start with
the diagonalization of W. For the case of Kk open channels,
k<N, we gétt k states |d>, d=l,...,k, with non-negative

eigenvalues %d which exhaust the summed width, %ﬁ Ed = w, and

the orthogonal (N - k)-dimensional subspace where all eigen-
values of W are zero. Using this degeneracy we can in
addition diagonalize the (N-k)x(N-k) submatrix of the her-
mitean part H in this subspace to obtain the new "energies"

€.t =ktl,..,N

The two consecutive orthogonal transformations bring
the matrix # into the form where first k states |d> have the
direct access to the continuum (doorway states) whereas the
remaining states can decay only through the doorway ones.
Note that the DR looks very different from the IR where the
characteristic pattern is that of many uniformly distributed
levels with the comparable decay amplitudes. Nevertheless,
the two representations are strictly equivalent. The IR is
more practical in the case of weak coupling to continuum.
Meanwhile, at k>1 the advantage of the DR is that here the
coupling of the "trapped" states [t>, t = k + 1, ..., N, to
the doorways turns out to be weak.

The k-dimensional doorway subspace is spanned by the k

: . d , d ,
unit eigenvectors ¢ ={c } of W corresponding to the nonzero
3]
eigenvalues ¥ d = 1,..., k (we assume that the amplitude
a . < - M - *
vectors A~ are linearly independent; otherwise the dimensicn
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of the doorway space is less than k). The vectors A° lie
entirely in this subspace and their components ,UE":l = A% =

d
= gt along the new axes ¢ can be treated as the
nnn

components [pd}’:EL of the -eigenvectors p':i diagonalyzing the
matrix X (13),

z Xabpbd = pad } (45)

the eigenvalues ;d coincide with those of W. For t = k+l,

vectors ¢t of the trapped states are orthogonal to A%,
The analysis of the general properties of the DR can be

done as follows. Let ¢t = {c:l} are the eigenvectors of the

trapped states. The di&gonalization of H within this sub-
space leads to
el H =fF (46)

m n mn Al
mn

The coupling matrix elements between the two subspaces are

=V ateiyg (47)
m n mn
mn !

Using eqs. (46), (47) and the definition (5) of the Green
operator G(z) for the internal Hamiltonian H in the total
space, together with the closure condition,

et N e s : (48)

m n in n mn
t
. t . dt
the amplitudes ¢~ can be expressed in terms of H :
m

c*‘z-ZG{E)c“H‘“. (49)
m mn t n

mrni
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Substituting (49) into (47) one gets the set of linear

equations for the coupling matrix elements Hdt,

! '

dt ~ '
B ) el e o ML (50)
- m it mn n
d mn
and, after simple algebra using the orthonormalization pro-
: d a’ dd’ .
perties Yoo =8 , we come to the secular equation for

n naimn

= detQ(s) = 0 (51)

Lt

€, where the k x k matrix Q(z) is similar to K(z), Eq. (7),

but, instead of the decay into the open channels, describes
the exit to the doorway subspace,

~ F d. f

Q: QY (2) = ) CiGmniz}cn . (52)
mn ;

It can be shown that Eq. (51) has N-k roots Et each of them
being isolated within one of the N - 1 intervals [sn, €n+1]
between two next eigenvalues of H (that basis was used in
the IR); k = 1 of those intervals contain no Et.

: Below we show that, in the regime of the strong
coupling via continuum, the interaction of d- and t - states

becomes weak. It means that the energies Et are close to the
real parts Et of the exact eigenvalues of the total Hamil-
tonian # (1). Then the above mentioned arrangement of €
implies that the repulsion of the exact Et is, on the
average, stronger than that of the energies £ of the stable

In

system (a very close contact of € and & . has no counter-
n n+

part for Et}. This fact observed also numerically in [30]
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reflects the randomizing influence of coupling through the
common decay channels which can mix the intrinsic states of
quite different character.

To estimate the typical coupling strength between
d - and t - subspaces, we make use of the normalization

condition for Cr::’

Pt dee ) f =gl m el (53)

m L e n n

mn d
This condition being orthogonally invariant is especially
simple in the IR basis where G is diagonal (for the
transformed £~ we keep the same notations assuming as in the

n

previous sections that the average properties of the

amplitudes ¢ do not change under orthogonal transformations
i |

of the internal basis):
E (5 <e¥ieh)f =i, (54)
t n n
1]

In the sum of Eq. (54) the main contribution comes from the

intrinsic levels in the immediate vicinity of €, Therefore,

r r

<f‘2> ~ D2 o~ az/Nz. Since <c:c:> ~ 6dd N‘l, it gives
<H™% ~ (N/K)<E® ~ a°/Nk . (55)

At large k when one expects the DR to be useful, the
widths l“fL acquired by the trapped states due to the coupling

H® are small and they can be evaluated by the perturbation
theory. Indeed, one gets in such a way

Al 2 el g -1 dt. 2 s :
r, = g (B g le E) s34 2 ; Ve g (56)



According to Eq. (55), the upper boundary of l"t can be esti-

mated by the order of magnitude as k(a%/NK)/<y> ~ w

(R/N]K,_z. The estimate will be self-consistent if the widths
I“t do not overlap the adjacent trapped states so that

D ~ w/Nk > wk/N&z, or k>Kk. In the previous sections we have
already discussed that this inequality marks the border bet-
ween the two regimes. -

As for the subspace of the doorway states, the hermi-
tean part H mixes the eigenvectors |d> of W by means of the

Fi : r

matrix elements Hdd_ which can be estimated as <(H'® )»* ~
~ a%/N. If the differences |§d—§d,| are of the same order as

the widths themselves, the simple perturbative estimate

shows that the corrections to the widths 5§d are relatively

small, a?dﬁd ~ mk’/k® <1 at k>k. The case of many equip-

robable channels with random decay amplitudes (32) gives
different results since here the average density of eigen-

2 : : =
values y occupies the interval (¥, a’+] where ¥, = y(1x vVm)

so that the mean spacing of the widths is 4yWm/k <<y. In
this case the doorway states are strongly mixed.

To illustrate the general results, let us consider the
simplest single channel model (d=1, t=2,..., N). Here the

only doorway state absorbs the full width, §1= w, and the
Hamiltonian H# in the DR has the nonzero matrix elements

=g g 57
t1 t tt’ £t e (57)

I
<
I
g
=

#H =h - (i72w, *H
i1 1t

The exact secular equation for the complex energies & = E-
- (i/2) can be written down as :

QE) = & - h + (i2)w - R(E) =0, (58)
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e

?(@)=thtg~z)‘1.

£
t

(59)

Farlier we have justified the applicability of the pertu-
rbation theory in ht. Therefore one obtains for the widths,

in agreement with what was found in the IR (18),

e s B Eoand PR
o= wil - Z Rlth - €)° + w4l = w [1-0k )], (60)
1"t = W hf [(h - Et)z + w2f4]_1 ~ W/NKZ i {(61)

The scattering amplitude (8) takes very simple forim
when using the DR. The K-matrix (7) is equal to

K(E) =w G (8) =w [E - h - REN, (62)

i

so that (&) is defined by Eq. (58))
T(E) = w Q7(8) . (63)

As it should be, the poles of T(E) coincide with the complex
eigenvalues of #H (roots of Egq. (58)) whereas the amplitude
(63) and, hence, the cross section, has zeros at real ener-

e

gies E = €,

R(E), Eq. (59)).
In the extreme limit k>>1, the coupling ht is very weak

and eq. (63)
resonarnce,

corresponding to the trapped states (poles of

displays the scattering via the single Dicke

TE) = w [E - h + (i/2w]} . (64)

The intermediate coupling, k>1, reveals the fine structure

of the cross sections, namely N-1 narrow resonances (their
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P —

shape 1is not the simple Breit-Wigner one) due to the
long-lived states involved in ®R(E). Outside this energy
region, the amplitude (63) has the Breit-Wigner wings cor-
responding to the doorway state with the width w. If the
fine structure is not resolved the sum (59) over large
number of intermediate states can be substituted by the

integral with the appropriate level density p(g), see for
example (25). It gives rise to the imaginary part of R(E)
which adds the spreading width [29] of the doorway state

(E) = -2ImR(E) = znp(E]<hf> : (65)

Originating from the interaction of the doorway mode with
the background of the trapped states, the spreading width is
of the same order of magnitude as the energy region a
occupied by the internal states coupled to the given

channel: from (55) one gets 't ~ (N/a)(a’/N) ~ a.
Using the results (60) and (61) for the strong coupling
regime, the amplitude (63) can be presented [10] in the form

i et e - . -1
T(E)= ZSlnaleprlﬁll + Zexp[zlﬁlﬂmt)l"t[E E;+(1/2)rt] " (66)

tgd (E) = - (1/2) T [E - EI]'1 ; (67)

where phases of residues for the trapped states are small,
-1 :

e K . Thus, the Dicke resonance simulates potential

scattering as a fast direct process, T 1’1/’1“l ~ h/w, which

is short as compared to the reactions proceeding via the
compound states (the sum in Eq. (66)), T hx’l"t. According

)

to Eq. (61), e hk/D guarantees the equilibrium character

of the compound process exceeding by the factor k the
recurrence time o h/D.
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5. THRESHOLD PROXIMITY

In the previous account, we neglected completely
effects originated from the possible energy dependence of
the matrix elements of the Hamiltonian (1). The whole
approach is based on the elimination of the channel
variables and, in order to be able “> work with the
effective dynamics within the internal space, one have to
pay by the nonstandard features of the Hamiltonian H: it is
nonhermitean and energy depen- dent. The imaginary part W
arises from the o&-functional contribution to the self-energy
operator [2] corresponding to the open channels. Therefore

the amplitudes ﬂ:l are to be taken at running energy.

The main energy dependence of the decay amplitudes
tomes from the proximity of thresholds. If the thresholds
for the essential channels are far away from the energy do-
main under study, the energy dependence is generally accep-
ted to be smooth and, hence, to be of minor importance in
the small region with the high level density. The principal
value contributions to the self-energy operator do not disc-
riminate open and closed channels. Therefore, as earlier we
neglect the energy dependence of the hermitean part H.

To get the impression of what we should expect due to
the threshold behavior, we consider the simplest model where
the decay amplitudes are taken to be of the s-wave form,

n n

A°E) = pEn’ = (8 - EDVAC . (68)

Here E° is the threshold energy, pt[:‘.—?} is the relative

a
. c -
motion momentum, and u  are reduced energy-independent amp-
n :

litudes; Coulomb effects being essential near the threshold
for the emission of a charged particle are not taken into
account in Eq. (68). The generalization of Eq. (68) for hig-
her partial waves is straightforward.

We start with the one-channel case when the IR secular

-equation (16) can be written down as
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1 + (i/2)(€ -E ) z n (€ - zﬂ)'l =0, (69)

where we have omitted the channel superscript and introduced
# 2 .
the reduced widths n = (u ). As earlier, we assume that
I n

the internal levels are distributed more or less uniformly
within the interval (-a, a). We specify the threshold energy

E <-a and denote w = -EG Enn to ensure the correct limiting
o n

‘transition to the previous results for the remote threshold
(E~» -o, E > E ). Note that now, due to the additional
O e

threshold singularities, the analytical properties” of the

scattering amplitude are more complicated and w is not bound

to be equal to the sum of imaginary parts I' of the roots t—‘?j
J

of the secular equation. In the time evolution language, it
means that the decay of the unstable intermediate states
located near a threshold is not exponential [31]. However,
the structure (2) of W still guarantees the unitarity of the
S-matrix as well as the inequality l"j 250,

The solution of (69) is obvious in the extreme limit of

very strong coupling via continuum: w, E >>a. Then ' the
o

internal levels are concentrated near the origin, € » 0, and
J rn
Eq. (69) gives the collective Dicke state 8’1 = E: - [iKZJFl,

which can be expressed in terms of the new parameter € =
= w/2|E | = Zn /2,
L8] n n

[ =2|E [£/(146%), E = E £/(1+€7) (70)

and N-1 stable states & = B e see that the

- n
threshold attracts the resonance (E < 0). For the remote
QO

threshold, & << |, l"‘1

2

w and the displacement of E1 to the
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left is small. But in the opposite case of the close thre-
shold, & >> 1, the resonance gets on the threshold, El %-E.,

O

and I‘1 ~ w,f'&j2 is much less than the "natural" width w. Of

course, we always assume to. stay in the region where the
amplitudes still obey the threshold law (68). '
The scattering cross section being, in our units,

equal to

T HE =T YN (71)

can be easily calculated with the aid of Egs. (8) and (68):

2
c(E) = e S
Bt

Proximity of the threshold distorts drastically the Breit-
Wigner resonance shape. The cross-section starts linearly

(£ ETHES Ellz + rfm]‘l . (72)

from the threshold with the slope do/dE = ngﬁi and reaches

the maximum in the point

EoeP S HE < B s altiop oy (73)
max o 5 (a] 1 o
where it equals
o(E_ ) =01+ (1+5'°12|E | . (74)
max Ly

At £<<l the Breit-Wigner peak centered in the origin is

—1. - L} L] ;
restored and o(E_ )»|E | ° which corresponds, in our units,
max o

to the absolute maximum of |T{E]|, Eq. (8), attainable, for

the remote threshold, in the poles of K(E), |T(E}|2= 4. For
£>>1 the cross-section grows very steeply and the pattern
resembles that of the cusp anomaly.
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The corrections associated with the finite extent 2a of
the energy interval can be calculated in the way similar to
(17) and (18). Introducing
2
)

e S e /Znn=—E N £ Awy brz ==E En {e <) /w o 1T15)

n o n:n O R T L T 1 BRI § R

where b ~ a is assumed to be small, b << min{|EG|,wl, one

gets

2y-1

E = [<e> + Eﬂgzl{l g (76)

[ =2[E [Ell-<e/E I(1 + €) - 20°/Eke> - E 1. (77)

These results agree with Egs. (17) and (I8) as well as with

Eq. (70) in the limits E » - « and a » O respectively.
i

The methods of Sect. 2 for taking into account the
average influence of the background of the internal levels
also can be -generalized to include the threshold effects.
Thus, in the strong overlap region, Kk = w/2a >1, we obtain

instead of (19):
1 - [1/2}(E/a](Q—Eﬂ}lnlié’—a]f{8+a}1 =0 (78)

As can be checked, at £€»0 and w fixed, we return to eq.(20).
This approximation is valid if &<k i.e. if the threshold is
still outside the level interval. Within the accuracy of
(E/K}q, the collective energy E1 given by (78) coincides

with that of Eq. (70) whereas the width combines both cor-
rection due to the finite k, Eq. (20), and due to the thre-
shold proximity (70),

l"1|= w {{1+.§21_1 Bt e (79)

The whole consideration can be extended to the
many-channel case. The most intriguing situation (and the
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most important practically), arising when the new decay
channels become open one by one within the region under
study, should be treated separately. Since the interaction
of intrinsic states via continuum shifts the real parts of
energies, their disposition with respect to the thresholds
iIs to be computed self-consistently. Here small cont-
ributions from the principal value of the original
self -energy operator can be essential so that it might be
necessary to go back to the total hermitean Hamiltonian
including the channel variables explicitly.

We conclude this section noting that, in the case of
rather remote threshold, the value of the parameter £ can be
found immediately from the universal Eq. (76),

£ = (<e> - E) /LB <E ), (80)

5]

using the experimentally known shift SE = <E>-E1 of the peak

from the bare position towards the threshold and distance
&E=El— ED of the peak to the threshold. Eq. (80) defines the

bare total width w = 25|E0|. Similarly, for the particle

escape in the partial wave with the orbital angular momentum
l, one gets

g

* = @) GE/|E_NaE/|E )Y (81)

These rough estimates can be applied to the long stan-
ding problem of the A-resonance in nuclei. Assuming that
pionic and nonmesonic channels are approximately orthogonal
in the sense of Eq. (32), we can use (81) for the p-wave

pions to get from the 12(3{3He,t] data (see, for example, the

review talk [32]) the value 52 # .63 which gives for the
summed width in pionic channels w =% 250 MeV. Then the
coherent resonance width can be estimated, similar to (81),

as Fl = w.:*{.f_‘xE',/[Eﬂf]zH1 % 80 MeV. The rest of the 'observed
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resonance width can be attributed to nonmesonic decay
channels of the A-hole (and more complicated) states. Let us
note the universal character of the displacement of the
collective peak towards the threshold. The same is valid for
internal states with the energy center <e> under the
threshold: the cross section in this case looks as if this
cluster of states is shifted up, again to the ‘'hreshold.

6. TWO SPECIFIC EXAMPLES

In this section we discuss two simple models which
stress various noticeable aspects of dynamics of open
systems. The first example describes a typical system with
the exit being possible from the surface only, namely a
finite chain of potential wells where the outer wells are
coupled to the exterior. The second example concerns the
model with the strong coupling of doorway states to internal
ones.

A. Many-well potential.

Let us consider N potential wells coupled to each other

by the tunneling amplitudes v and v ; let the outer
n,n-1 n,n+l1

wells have access to the continuum. Keeping the most generic
features of the dynamical problem we assume, for simplicity,
all wells to be identical so that the effective Hamiltonian
(1) takes the form

H =B85 rwls 48 )-AINE 8 ey s 8 (82)
-1 nl ml nN mN

nm nm m,n+l1 m,n

where € stands for the level energy in each well (neglecting

the jumping probability); 'JL = (A 1]2 and 'grR = (A N]E are
= =

the decay probabilities to the left and to the right

respectively from the edge «cells of the chain (in this

"two-channel” formulation the LL and RR processes correspond

to reflections from two sides of the system whereas LR and
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RL processes describe transmission).

The basis [n> of localized stable states utilized in
(82) can be transformed into that of the DR, Sect. 4, by
means of the diagonalization of the hermitean part in the
(N-2)-dimensional space spanned by the interior states |n>,
n=2, ..., N-1. To have the continuous transition to the clo-
sed chain, we construct first the IR. :

- The coupling v between wells splits the N-fold dege-
nerate level £ (below we put € = 0) into the band of crystal
standing waves with the integer wave vector g=1, ..., N and
the corresponding energies w |mq|<: 2V,

W = 2vcos¢., ¢ = nqg/(N+l) . (83)
q q q

The level density at N>>1 has maxima on the band edges,

plw) = [N/?,?Ivsincpq]w:w S AN/ Y (84)
: |

The basis |g> = Z|m><m|g> of these delocalized states is the
m

one used in the IR. The components of the eigenvectors |g>

are

]IL«"E

<m|q> = [2/(N+1 sinlmcp{I . ' (85)

leading to the matrix elements of the antihermitean part

W [2/(N+1)]sinqoqsi.n@q,[gr" e (86)
99

Finally, one has to diagonalize the total Hamiltonian
matrix M =wd , - (i/2) W ,. The secular equation for
qq

F

aq q qq
the complex energies & takes the form

aE) = 1 + il" P (8) + 75 (PUE) - PAeN =0, (87
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P,(8) = (N+D)7Y (+1)%sin’p (8 - 0 )7 . . (88)
- . q 9

The results for the limiting cases follow immediately. At
weak coupling to the continuum, we neglect the last term of
(87) and get small imaginary corrections to the band
energies (83): |

€ =w -2, T =W = @+-N2/8Disin%e . (89)
q q q q q4q q

The width being written down as

L =?L|{l|q>[2+3'R|<N|q>|2 : (90)
agrees with the intuitive argument that the decay executes
the decomposition of the quasistationary state isolating the
components matched to the specific decay channels. Such an
argument is used in the conventional derivation [22] of the
width  distribution for the compound states (the
Porter-Thomas - distribution for the neutron resonances). As
has been discussed in [8, 13], simple identification of the
widths with the particular components squared of an internal
wave function is not justified in the case of the strong
coupling via continuum. In our problem the width distri-
bution (89) replicates that of the group velocity squared
reaching the maximum in the middle of the band. The weak

coupling approximation (89]. is valid, for N > 1, if arL’R <<
<< _vf]sin»:pq], i.e, :rL’R << v for the states |q> well within

the band and 'arL’R << Nv near the band edges (q =1 or q = N).
The opposite limiting case of the strong overlap,

3'L’R>v, can be treated as in Eq. (16). According to the

general results of Sect. 2, to the main order in k., the

two collective short-lived states can be found from (88)

discarding wq in the denominators of P ooThen P (26)7"
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whereas P vanishes. Thus, for N>>1 the collective states

have pure imaginary energies

Bl iiw SO e (91)
L.B

Corrections of the order k %can be computed by the help of
the various methods developed in Sect. 2.

In the middle of the band we have two Dicke states
superimposed on the background of (N-2) long-lived states.
The Dicke states accumulating the total width for the escape

to the left {3“]—] or to the right {'arR] can be labeled as |L>
and |R> respectively since, in this limit, they become
localized on the chain edges, |L>=|m=1> and |R>=|m=N>: for
such states the irreversible decay outside occurs much
faster than the hopping to the next well. (Note that the
limit P-» O found in the previous paragraph is the simple

consequence of the orthogonality of the states |L> and |R}].
Thus, in the problem under study, the phase transition
between the two dynamical regimes manifests itself as the
segregation of the short-lived surface-localized states from
the band of the delocalized Bloch waves.

In the regime of the strong continuum coupling, it is
useful to go to the DR of Sect.4. Here the doorways |d> are
the surface states |L> and |R> of the previous paragraph.
The subspace of the trapped states |t>, peml NI e
spanned by the interior states |m> m = 2, ..., N-1; similar
to (83) and (85), the energies (46) and wave functions (49)
are, respectively,

Et = 2vcos$t = 2vcosint/(N-1)] , (92)
ot wemity i [zzu.r-n]”zsin(m-1)at : (93)
% .

The dispersion law (92) for the trapped states satisfies the
secular equation (51) which takes, using the [q>—basis of
Eq. (83), the form

3



PXG) - PX@) = 0 (94)

where the sums P_(z) have been defined in (88). As it should
be, the N-2 roots at coincide with the real solutions S‘t of

the full secular equation (87) in the limit of very strong
continuum coupling. On the other hand, (94) represents an
example of the nontrivial mathematical identity including
the two sets of trigonometric functions (83) and (92) with
intermittent frequencies (for N odd there is a coincidence

of Gt =0, t = (N - 1)/2, with o =0, q=(N+1/2)

The matrix elements (47) which couple in the DR the
doorways to the trapped states can be readily found to be

i

Ho w1 i AN - 10 %0 Et , (95)

which meanﬁ,'. in conformity with (55), that the admixtures of

the doorways are weak, « vz/N, and distributed over the
trapped states in the same way (89) as the widths in the
limit of isolated resonances. The amplitudes (53) are equal

to f‘; = <l|g> i [1+(-)%*"], and Eq. (54) becomes an
another identity:
Zsinz$ E M=) sinzrp [cosp -cosg 2= N o (96)
t b q t q :

The final diagonalization of interaction (95) in the DR
basts containing |L> |R> and [t> states gives, analogously
to the one-channel case (58), (59), the secular equation for
the complex eigenvalues € of the total Hamiltonian (82)
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2

(& + (i/2)y -R (B)IE + (i/2)y" -R(E)] - R%€) =0, (97

R,(8) =Y)' HH 16 -61" . (98)
t
In the case of rL'R >> v which is the most favourable for

the application of the DR, the perturbation theory is valid
(see Sect. 4) so that one gets small widths of the trapped

states

r. = [2/(N-D)] v/y) 51“2;1 : | i aay

y = (WHaH+a/17 - (100)

obtained at the cost of the depletion of the doorway widths,

it is easy to check that
L R .
= + . 102
Ml m g S H02)

Of course, one can analyze (97) more in detail.

For the conclusion, we write down the expressions for
the scattering amplitude (8). Calculating the K-matrix in
the IR, we get, in terms of Q(E), Egq. (87), and P_(E),

Eq. (88), _ __
T NE) = @7(B) 277 (B) + ™ PAE)-PAED (103)

TME) = T HE) = @ EX-2)r"v )P (E) . (104)

In the limit of the weak continuum coupling, the scattering
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pattern is that of isolated Breit-Wigner resonances corre-
sponding to the individual Bloch waves; the pole contribu-
tion at the complex energy & (89) is

q

LL,RR,LR
9

T (E) =

R\1/2,, L

i + - : '
= [r, 7% 260 + Y qu/(E -8, (105)
In the opposite situation, one sees at |E|>2v the wings of
the broad Dicke resonances (91) in the reflection channels,

T NE vy IR T (106)
and the very small transmission (percolation) amplitude
TRE)=-( )" 2 /EYN EUE+(/2)y NE+(1/2)5R D (107)

Evidently, in -this case the whole chain acts for passage as

an extended barrier with the penetrability « vN*I.

B. Doorways strongly coupled to background

Here we discuss very briefly a little bit different case
where a number of doorways |d>, E'd -5 (i/ziard, are coup-

led to the set of internal ‘states |n>, with real energies

€, by means of the strong hermitean interaction Vd
n

As we have seen in Sect. 4, if the doorway states are
generated through the Dicke mechanism from the same intrin-
sic reservoir, the interaction V is bound to be weak so that
the doorways are close to the exact eigenstates of the total
nonhermitean Hamiltonian. It was illustrated explicitly by
the simple model A of the previous subsection. The strong
coupling V can arise for the intruder states |d> of foreign
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origin falling within an internal energy interval. To
imitate such a situation, one can, for instahce, modify the
model A assuming that the surface states have the tunneling
amplitudes V to the interior larger than the amplitudes v
between internal wells.

The effect to which we would like to pay attention
occurs already in the single doorway case. It was observed
in the numerical simulation of neutron resonances by P.von
Brentano [21]. The complex eigenvalues of the problem are
determined by the secular equation [Ef'dn Un]

]

5=8+Ev2(€-e}“1. (108)
d n n :
n

The full analysis can be carried out with the use of
methods of Sect. 1. Here we give the limiting result only
for the case when the energy interval ~ 2a of internal le-
vels is small as compared with the doorway width ¥, s well

. : 2,1/2
with the summed interaction strength V = |V| = (E e

Putting the origin of the real energy scale into the point

S5 =3 HE/V we obtain, to the second order in a/V or af"grd,
Bl I T

two collective solutions

g, =E, - (i/2)r, = (8 % (& + av)")2 . (109)

*

For example, if the doorway is centered near the origin, €~

ey

L]

R T 32/16}1’2

-

oV - ?,rdz’du} : (110)

o il
== + = . :
I"i [gd + (g’d 16V ) E(Ed/f-} V)l/2 (111)

Here a peculiar phase transition occurs at the critical
coupling strength V = 3’d/4. If the interaction is under-
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critical both solutions stay at the center, E, = 0, and one

is able to discriminate the doorway state by the large width
Ff Ty The corresponding wave function gets the main

{+)
d
internal states are

&

contribution from the doorway state ( the amplitude c 1)

whereas the contributions t‘:{+J of the
n

{+]|2
d

collectivized representative of the background states which
at increasing V takes over gradually the decay width from
the doorway state. The corresponding wave function is built

|C{-]|2/lc[_}tz +
n d

-small, ,]c:][zﬂc ~ VEKN'JE. The second solution is the

up mainly from the internal states so that
gj/ﬁvz.
In the overcritical regime, the total width 7, is

divided equally between the two resonances repelling each
other along the real axis to become located at E .=V for

V}bfg’dﬂl. In ' this limit, the collective states .can be shown

internal states hyb-
with the door way,

to be coherent - superpositions of the
hidized, constructively or destructively,
(%) (%)
C B 0NN,
n d n

This behavior resembles that of the giant resonance
considered [16] from the viewpoint of competition of two
collectivizing interactions (standard separable forces of
multipole-multipole type and coupling (2) via the common
decay channels). Typically, one obtains two collective
peaks, the conventional giant resonance and the Dicke
satellite, sharing the total decay width as well as the
multipole strength. The variety of arising patterns is
created due to the additional parameter available, namely
the angle (similar to that in. Egs. (27) and (28)) between
the N-dimensional vectors A of decay amplitudes and D of the
multipole moment. However, in the giant resonance problem
the limit of very strong coupling V seems to be rather
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meaningless.

" The many-channel version of the model under study can
be analyzed along the same line. For the two-channel case we
start from the two doorways with complex energies :’-_?12 and

vectors ‘Vlz of coupling with internal states. As a new pa-

rameter, we again get the angle ¢ between these vectors. The
eigenvalue equation obviously takes the form similar to (97)

2 —_—
[E - 8’1 - Ru[é?}][ﬁ' > Qz = REZ(S}I P R12[8] =0, (112)

(6w

dn d’n n

R (8 =}

(113)
dd .

I

Omitting all particular results we just mention that in the
limit of very strong coupling Vd the number of collective

states is twice the number of doorways; in the orthogonal
case, cos®# = 0, they are located at i‘».r’d whereas in the

two states are still at the
z}uz
. :

parallel situation, cost¢ = I,

origin and two peaks are shifted to i[V? + V

7. CONCLUSION

Let us try to summarize the content of the paper.

(i) The  effective  phenomenological non-hermitean
Hamiltonian (1) is shown to be an adequate tool for the ana-
lysis of the dynamics for an open quantum system in the
limited energy interval.

(ii) The ways of the practical treatment in various
physical approximation schemes are developed. Two mathe-
matically equivalent representations, IR and DR, turn out to
be useful in complementary conditions of weak and strong
continuum coupling, respectively. In both representations,
the dynamical solutions can be combined with the statistical
consideration of irregular properties associated with the
chaotic nature of the complicated internal states.

(iii) Collective dynamic phenomena generated by the
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interaction of the intrinsic states through the common decay
channels were investigated. The generality of the Dicke
mechanism generating the coherent short-lived states in the
strong overlap limit was stressed. We have analyzed the spe-
cific features of the resulting patterns under various
relationships of relevant parameters. The phase transition
between the regimes of weak and strong continuum coupling is
proved to be rather sharp as a function of the overlap para-
meter Kk (3). The critical value of this quantity scales
roughly proportional to the number k of the open channels.
This is related to the problem of the Ericson fluctuations
which can show up at k >> 1.

(iv) The preliminary analysis of the ergodic properties
of the dynamics shows that the two averaging procedures,
namely that over the energy interval including many fine
structure levels and that with respect to the ensemble of
random internal wave functions, are not equivalent in the
region of many open channels. The Dicke collectivization
destroys the uniformity of the energy scale and violates the
ergodicity.

(v) In ‘the vicinity of the channel thresholds the
energy dependence of the decay amplitudes should be taken
into account. It modifies significantly the reaction cross
sections attracting the resonance energy to the threshold.

(vi) The similarity of problems under consideration to
the simple solid state models was noticed. The simple recipe
for the translation from the nuclear physics language to
that of the solid state reads:
localized  Bloch wave basis whereas the DR describes the
localized surface states. The model was considered where the
strong hermitean interaction of the doorway state with the
background forms the new collective resonance repelling the
original state. -

The future applications of the formalism may include

the statistical analysis of the available body of data on
nuclear reactions, ° especially induced by neutrons and
photons, in the broad energy range where the transition bet-

ween the two dynamical regimes could be traced. Another
related fields of interest are the structure of giant reso-
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the IR corresponds to the de-
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‘lication. One of us

e:epi

nances [16] and its temperature dependence; propagation of
an unstable particle through the nuclear medium (the example
of the A-isobar was mentioned in Sect. 5); the influence of
switching on new decay channels with the thresholds within
the energy domain under study; description of the relaxation
processes competing with the decay into the open channels,
and so on. There are also diverse possibilities of appli-
cation to the solid state physics.

The authors are thankful to P.von Brentano, A.N. Fi-
lonov, F.M. Izrailev, and 1. Rotter for constructive dis-
cussions and making their results available prior to pub-
(V.Z.) highly appreciates the en-
lightening conversations with H. Weidenmiiller.
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