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Functional integration method
for 1D localization, multipoint correlators
and persistent current in mesoscopic ring
at arbitrary magnetic fields

I V.Kolokolov

Budker Iustitute of Nuclear Physics,
Novusibirsk 630090, Russia

Abstract

Starting from the Abrikosov—Ryzhkin formulation of the 1D ran-
dom potential problem [ find closed functional representations for var-
ious physical quantities. These functional integrals are calculated ex-
actly without the use of any perturbative expansions. The expressions
for the multipoint densities correlators are obtained. Then [ evaluate
the mean square dispersion of the size of localized wave [unctions. Asa
physical application of the method, I find the expectation value of the
persistent current in mesoscopic ring with arbitrary magnetic flux @,
(For small @ this problem has been solved by O. Dorokhov). The case
when the random potential has finite correlation length is considered
too.

(© Budker Instilute of Nuclear Physics

1 Imntroduction and definition of the model.

Anderson localization is acknowledged to be a fundamental macroscopic quan-
tum phenomena. The localization manifests itsell most evidently in one di-
mensional case. The essence of the effect consists in all the eigenfunction of
the Hamiltonian

]

dax?

to be localized wave packets providing the potential U(z) is a random function
of z. (See the rigorous formulations, detailed discussion and bibliography
in the book [1].) This statement remains valid in the high energy limit
considered in the present paper.

The only quantities that can be calculated directly are various averages
over an ensemble of potentials U(z). The measure of this averaging is recon-
structed from the space correlation properties of a sample at our disposal. In
the simplest case of the white noise statistics it takes the form:

gt

+U(=), (1)

DU exp —5% f U*(z)dz |, (2)
~L
< U(z)U(z') >= Dé(z — z').

Here (—_—L, L) is the interval, '‘which our system takes up. P. Anderson
has shown [2] that the difference from zero of the density-density correlafor




can be used as a criterion of localization of the state with energy E. The
correlator can be expressed as

pe(z,z) = rliil;g <) 6(E - Eﬂ]i‘lln(x)[?lﬁ'n(r’)[g =

= lim lim £ < |G(z,2'|E 4 e))? >, (3)

L—co e—+0

where ¥, (z) are the eigenfunctions of }:

‘I-In(m) = Engln{r}

and G(z,2'|E + i€) is the resolvent of H:
(% - E) G(a,¢|E +ic) = 8(z — =) _ (4)

Indeed, the continuous spectrum wave functions are of the order of Fakie
in every space point, and the sum over n gives effectively the factor L, so
pe(z,z") ~ 1/L — 0. For a homogeneous in the average potential the pmb‘
ability to find the state localized about a given point is ~ 1/L, but the wave
function ¥, (&) on its own does not depend asymptotically on L here. Ilence
only normalizable states contribute to pg(z, 2') in the thermodynamic limit.
(Assume boundary mndllmna in the endpoints of the interval (=L, L) provide
the hermiticity of 7{.)

To calculate quantities like (3) two approaches have been developed. The
first one is so called “phase formalism”. It allows one, in principle, to derive
partial differential equations of the Fokker—Plank kind for various averages
over the ensemble (2) [3, 4]. (See for the review of advances [1].) However,
such an approach gives explicit results only in the regime:

D _ -

corresponding to the quasiclassical kinetics. Then another method can be
used [5]: extraction and sumnation of the infrared-singular terms of per-
turbation theory series (for review see [6]). The direct performance of this
Program requires «Gplnﬂncated constructions and tedious computations.

It has been noted in [7, 8] that the sum of leading terms in the above
mentioned perturbation theory corresponds to some expectation values for
spin 1/2 placed in a random magnetic field with Gaussian statistics. !

1 Conceptually the same method was used in the paper [9].

We present here derivation of this spin model somewhat modifying the
line of arguments.

For the wave function of the particle we assume the following boundary
conditions: q

¥n(z = ~L) = ¥n(z = L) = 0. (6)

The Green function (1) can be expressed in terms of the solutions u(x),
#t(x) of the initial-value problems:

(- E)u=(H-E)i= (7)
w'(-L)=0, u(-L)=1, a(-L) =1, @&(L) = 0;

S, u(z)i(z'), z<z2'
Glg, =] = W{u( Na(z), 2’ <=

Here W is the Wronskian of the functions u and :
W = -u"(x)ﬁ(a:] + u(z)a'(z). (8)

All the physical quantities of interest can be defined through one solution

only, say, u(z) (sce below). One can introduce for the function u(2) the
“plane-wave components” vi(z) and va(x):

vi(z) = e (' (2) + thu(z))
va(z) = g (u'(z) — tku(x)), E.: L2 (9)
u(z) = ﬁ (v1(2)e™T + va(z)e™H7)

so that v; = 0 (va = 0) for the plane wave propagating from right to left

(from left to right). The equation (7) is equivalent to the following first-
order matrix equation:

i (n0) ) = (otshithon, O ) () o

and reduction
vi(z) = v3(2). (11)
It is seen from (10) that the derivatives vy and vy with respect to z are small

along with the potential U'(z). That is, vy(z) and ve(z) are changed slowly
compared to exp(+ikz). Let us rewrite (10) in more compact notations:

i = (ip(z) + ¢ (2)s™ + ¢ (2)st) . (12)




Here - ()
doe 3
e(z) = =U(z)/k, (¥ (z) = £U(x) exp(+2ikz), (13)

s* = 0% [2,s% = (¢® +io?)/2 are the usual spin operators and the dot denotes
here and below the z-derivative. The formal solution of (12) can be written
in the form:

t(z) =T (z,—L)o(—L)
T(z,—L) = Texp /(iﬁp('ﬁ)s" +¢T(t)s™ + ¢ (t)sh)dt |, (14)
L

where the sign implies the product is ordered along the interval (=L, L).

Let us consider the expectation value of some functional of vy(z),ve(z).
Expanding the -exponential (14) and this functional in a series in the ficlds
@(1),¢*(t) and performing the averaging over DU(a) we obtain the result as
a series in integrals:

fd.a dt’ < p()e(t') >, /di dt' < CraNC () >,

fd,:dt’ < p()CER) >, /didi" <CHHCTH () >, /dm.ﬁ’ S ) >
(15)

over some domains of the order of L.

In the last three expressions we integrate fast-oscillating functions. There-
fore these integrals remain restricted in their values with increasing integra-
tion intervals and fall with an increase of energy. On their turn, integrals
of the first two kinds correspond to the infrared-singular contributions and
grow hnearly with L. Thus to leave in the perturbation theory series the
terms dominating in the large L limit the correlators: < (F¢* >, < (¢ >,
and < ,(* > should be neglected. It is equivalent to the assumption that
the fields ¢ and ¢* are statistically independent and the weight of D¢* -
averaging is phase invariant. For the white noise statistics the corresponding
integration measure has the form:

Dip(z)DEE () exp —;f(u.gsu(x]+c+(i:)("_(:t:)) dx ¥, (16)

where

w0
T
We shall consider below the parameter as an arbitrary one. (It describes the

phase randomization and does not enter the results.)
The formulae (14) and (16) were first proposed for the one dimensional

o

1
a= g (17)

“random potential problem in the work [7]. Our presentation of it does not

refer to the existence of the Fermi level. It allows one to suppose that
Abrikosov-Ryzhkin model has some universal features relevant to infrared
behaviour. The model can be easily generalized to random potentials with
finite correlation length. It may be usable to study spectral properties of
operators which are not random in the strict sense (see Conclusion).

The terms neglected in deriving of (14), (16) are decreased by a factor
~ 1/(kL) compared with the kept ones. Thus this model can be applied in the
study of mesoscopic systems (sce section 5), since the inequality 1/(kL) < 1
for sufficiently large k is compatible with [ > L, where [ is the mean free path
in a given potential,

The authors of the paper [7] have used the formulae (14), (16) to obtain
the conductivity of one dimensional metal. Unfortunately, the calculations
have being carried out there by perturbation theory method leading to cum-
bersome construclions, which are inadequate to the simplicity of the model.
In the present paper I solve this Abrikosov—Ryzhkin model exactly with the
help of functional integration method. On deriving the path integral repre-

“sentation I find the multipoint correlators of arbitrary density powers. With

the 1se of these expressions I evaluate the mean-square dispersion of the size
of localized wave function. As a physical application of the method I calcu-
late the mean absolute value of the persistent current in a mesoscopic ring
with an arbitrary magnetic flux ®. (For small ® it has been found recently
in [9].) In Conclusion I analyze the localization length dependence on the
correlation length of the random .potential. I discuss also a quantity that
could play a role of the order parameter corresponding to the localization.

2 Functional representation for averaged func-
tionals of o(z)
It is impossible to express ©(z) as a functional of the fields ¢(z), (¥(z)

explicitly. The same problem arises when one undertakes an attempt to write
out a closed functional representation for the partition function of quantum




Heisenberg ferromagnet. It has been solved in the works [10]-[12] and here

we take advantage of the method proposed there.
The ordered exponential T (z, —L) is defined by the equation

T = (ipt)s* + ¢t (@)s™ +¢~@)s™)T (18)

and the initial condition:

T(z=~-L,-L)=1. (19) _

Let us consider the operator given as a product of usual matrix exponential:

I

T(z,—L) = exp (sﬂ,(;‘(&:)) exp | is® /pdf X (20)
-L
x {
x exp (s“ [ awt@ex U pdr)) exp (=5t~ (-1))
L L

Here @*(m),p(m) are some new fields. It obeys the equation:
T ={(ip+20+47)s* +9%s™ + (U~ —ipy™ - v )Dst @)

and the last factor in (20) gives equality:

T(-L,-L)=1. (22)
Thus, the change of variables in the functional integral over the measure (16):
ip=1ip+ 2Ty,
(C=vm—ipp — Pt (YY) (23)
Chimgle
brings the ordered exponential T(z,—L) to the form (20):
T(z,~L) = T(z,~L), (24)

and allows us to obtain an explicit functional integral representation for any
physical quantity to be averaged. (Parametrization of SL(2, C)-valued func-
tions on two-dimensional space analogous with (23) has been used also in
the paper [13]). To accomplish the change of variables in [unctional integral,

much like the usual integrals, we need know the map (23) in one direction
only: from (¢, (%) to (p, ;bi). The Jacobian J[p, ¥*]:

DpD(TDC™ = Jp, ¢ 1D pDyY Dy~ (25)

depends on the regularization of the map (23) and on the kind of condition
imposed on the field ¥y=. The latter is necessary since there is first-order
derivative of ¥~ on the right-hand side of (23). The periodic boundary
condition renders the map (23) irreversible. Following papers [11], [12] we
consider the field 1~ (z) as obeying an initial condition:

Y~ (—L) = 9o, (26)

but, unlike [11], [12], the concrete value of 3y will be picked as the situation
requires.

The regularization of the map (23) is determined by the physical meaning
of the model: the white-noise correlator (2) is to be considered as the limit

of a smooth symmetrical correlation function. Any such a regularization of
the é-function gives for the correlators:

€0 [ @ =0 [ 27)

the limiting value equal to £ % what corresponds to the extension of a defi-
nition of the step function 0(z):

6(0) = 1/2. | (28)

The discrete version of the change of variables (23) providing the equalities
(27) has the form: (¢F = CE(tn); pn = ) vansden M g = =l &
2P h=32 50, M - 0,
1Pn = ipy + ',IE’I(E’):: e 5 Tf{";;—l)r
i .E_ ot o ]- i) et ] & =5 i n :
Cn ™ .'li'.( T }n-l) i EJ'JOﬂ('Jf)n + 1?ﬁﬂ-l) o Zifbn (ﬁbn +¢n-l)”! (29)
(v =¥n.

All the over-diagonal elements of the differential matrix of the map (29) equal
zero. Then the Jacobian 7, being the determinant of this matrix, is equal to




the product of the diagonal elements only:

L

7 = const exp w%fpdt : (30)
-L

Making the substitution (23) into the measure (16) with the use of the ex-
pressions (25), (30) we ohtain the weight of averaging over the fields (p, PE):

NDsDY+ DY~ exp (=S(p, ¥F)) ,

S(p, v*) =
L
= ;2; f dz (ﬂmé + Yty — (1 +4a)ippty™ - (1+ 4a-)(¢+-¢*)2) .
B :
L
+3 f dzp. 91
=&

Here N is a normalization constant depending on al.
i :  considering (p, ¥*) and (4,¢*)
In calculating of the Jacobian (25) we were considering (p,¥*) and (9,
as sets of independent complex variables or, in other words, as distinct co-
ordinate systems in the whole space C3M of the ficlds’ configurations. The
conditions :

Imp = 0,¢t = (C7)", (32)

being from the outset embedded in the model specify the surface I in B

along which the differential form Dy ADCEADPL or Dp ADyt ADY~ is
integrated. From the point of view of the coordinates set (p, y*) the equa-
tion (32) for X is implicit. According to the Cauchu—Poincare theorem the
integration surface can be deformed in an arbitrary way in the convergence
domain while an analytical function is integrated. There exists a continuous
family of surfaces (homotopy) situated as a unit in “perturbative” conver-
gence domain, which includes both the surfaces & and the “standard” one
b s

Y = {Imp=0,y" = ()} . (33)

The word “perturbative” means here that we check the convergence in every
order of the perturbation theory expansion. (This homotopy is presented
explicitly in the paper [10].) Thus, treating functional integral as the sum of

10
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perturbation theory series [14] we can replace the surface of integraiion ¥ by
the standard onc X'

Ilowever, to pass from I to ¥’ the expressions being averaged (and not
just the action) should be written in the form allowing the direct analytical
" continuation from the surface X. It means constructively that the definition
of any physical quantity in terms of the matrix elements of 7(z,—L) must
contain no complex conjugations. :

3  The density-density correlator expression in
terms of the functions (z)
The formula (3) defines the correlator pg(z, z') in terms of the singular at € —

40 part of the Green function G(z, 2'| E+i€). When we use the representation
(8) the singularity appears owing to zeros of the Wronskian W(E) on the real

axis. Neglecting € in the numerator (8) and substituting

W(E £ i€) = W(E) £ ieW'(F) (34)
into the denominator we obtain: .

u?(z)u?(z’)

pe(z,z') = < W) 5(1-{#")) 'Sz

W(E) does not depend on 2 and, thus, we may put in (8) z = L:
W = u(L) (36)

Being in the product with §(W) = & (u(L)) the solution #(z) is proportional
to u(z). The proportionality coelficient is determined by the conditions (7).
So, for an arbitrary functional F [ii(z)] the following equality takes place:

} 35)

Flu(z) 6 (u(L)) =F L?f((?)] 6(u(L)). (37)

According to (36) we can express W/(E) in terms of the derivative of u(z)
with respect to the energy E:

W'(E) = mazg). (38)

The function g(z) = du(z)/IE obeys the equation

(-j—; +U(z) - E) g(z) = u(z), - (39)

11



and the initial condition:
g(z = —L) = g'(z=-L)=0. (40)

The substitution g(x) = ¢(z)u(z) leads to the first-order equation for ¢'(z);
its solution gives us:

g9(x) = u(z) f uf(z’;) dy1u*(y1), (41)
and: 1 1 )
W'(E) 6 (u(L)) = m_)“g (“(L)) - 6 (u(L)) . (42)

u?(y) dy

I
i-ql:'_‘:t""

Thus the correlator pg(z,z') can be writlen via u(z) as follows:

u(z)u’(z')

pe(z,2') = < =

w(L) [ wi(y)dy
-L

6(u(L))> &>z (43)

In the high-energy limit (5) we can get rid of the é-function and obtain a
simple formula for pg(z;2') in terms of slowly varying amplitudes v1,2(x).
Indeed, in neighbourhood of any given point 2y the function u(z) can be
written in the form:

u(z) = uyl(z)sin(ke + 6) (44)

, where the envelope ,(2) and the phase é vary only slightly over distances
of the order ~ 1/k. Let us average the expression (43) over the interval AL
of the right endpoints’ positions of our "space” (-1, L):

L+AL
Pelz. 2z} = EI-I-: / pe(z,2")dL (45)
L
1 2
S € AL g =1 (46)
k &

(Here we introduce the standard notation { for the localization length.) In
the thermodynamic limit the functions pre(z,z’) and pg(z, z') coincide. On
the other hand, the value of u{z) in a given point, by the construction, does

12

not depend on the right endpoints position. The integral in the denominator
of (43) is determined by the envelope wu,(z) only. The variation of I, from I,
to L + AL does affect it asymptotically. The averaging (45) is sufficient only-
for the factor é (u(L)) /u'(L). Since the conditions (46) mean that U5 (x) can
be considered as a constant in the averaging interval, we obtain:

L+AL

1 X 1
AL L/ dL u:(L)fs(“(L)) = 3 HEI(L) ) (47)

We can derive similarly the relationship between u?;(z) and w?(z), in partic-

ular:
L+AL

-
2 o 2
ui(L) ~ X7 [ dL u*(L). (48)
L
Substituting into (13)-(48) the expression of u(z) via 9(z), neglecting the
contributions vanishing in the & — oo limit and keeping in the numerator of
(43) the “resonance” terms only, we obtain:

pe(z,2') & pe(z,2') ~ 5

1 < v1(2)va(z)vy (2" )va (')

= - | > 2L >E MY)
“t’l(L)UE(L)_{r v1(y)va(y) dy

The “non-resonance” terms containing the oscillating factors exp £2ik(z —
z’) will result in exponentially small in o/, contributions and, thus, can be
neglected.

4 Functional integration for correlators of the
density -density type

The form of the expression (49) allows direct analytical continuation from

the surface v; = (v3)* over the functions vy,2(z). It is not restrictive to put

exp(ikL) = 1 in the thermodynamic limit. (Only if the formula (49) has been
obtained already!) Initial condition for o(z) takes the form:

Mty ik ( ; ) :

13



To find d(z) we substitute into (14) the expression (20) for the evolution
operator T (z, —L) picking the quantity g to be equal to L:

vo=9¢v (-L)y=L | | (51)
It yields the equality: '

(e} =exp paff (e (52)
and the expression for pg(z, z'):

x . : L
v (2~ (2)exp | =i [ pdt—i [ pdi+i [ pdl

- L ~L - L

(I (L}J Y~ (y) exp (-—1 | pdi) dy I >

- L

Ppiz 2]~ .zi—g <

2’ >z

Here the averaging over DpPyT Dy~ is carried out with the weight (31). To
calculate this functional integral we employ a trick similar to the so-called
“bosonization” in the field theory models [15]. Using the identity:

exp (=S(p, ¥*)) = [ Dyexp (~501.,9%)

Snp, =)= -
Sk R
= — ]f&r ((1 +da)y® + ap® + pHo- + (1 -+ 4a)(2y — i,f;l)?fﬂ'*i,ﬁ!“) + % /d::ﬁ.
£x
- L —L
(54)
and the gauge transformation:
Sty = it exp | S H40) f T e (55)

- L

we get rid of the non-linear terms in the action. The Jacobian of the rotation
(55) is equal to

l+fla

Jn = const exp

/{2:} —ip)dl | , (56)

14

where the regularization (29) is taken into account. The fields n and p enter
the equation (53) via the combination

&£

f (2(1 + 4a)y — diap) di

=L
only. It is natural to consider it as a new integration variable:
£ = 2(1 + 4a)y — diap,
é(~L) =0 (57)
DpDn = const DpDE

Then the Gaussian Dp-integration can be done easily and we obtain the
expressions for the measure:

L L
1 - 2 .
const DEDx T Dy~ exp _&___‘/ dzg? — _f dextx-
| 2o @
~L =L

(L)
g

and for the quantity to be averaged:

pa(2,2") = = <x“(r>«r@:')e~cp(—( —&(m’)+5(ﬂ-))>rm,ﬂ, (59
: e f X f* E[F) dq).-

(The asymptotic equality in the limit (5) is assumed.) The initial condition
for the ficld y~ (a) follows from (51):

_(-*L) - i sk £ (GU)

[t means that x~ () contains both the fluctuating part x 7 () and the regular
one:

';(_l::zr}":. 1 4 x;(:zr}s x“{—ﬂ_} =1 Eﬁl)

The component x; ~{z) does not contribute to pg(x,z’) because the conju-
gated field does not appear in the broken brackets in (59). Thus, the only
averaging over the field £(z) remains. Its weight has the form

L

'l'.'..I.i.,f 1 .rr
exp (— '4 ) N'DE exp _ﬁj dz€? — —Z) (62)

A




Ilere the normalization constant N is determined by the quadratic in £
term of the action:

L

1 ey
N'DE€ exp —;-—fd.'l:{“ = L (63)
2o

i

The factor exp (—aL/4) provides the equality < 1 >= 1 for the averaging
over the entire measure (62). Thus we arrive at the following path integral
for the correlator pp(z, -

pp(z,2’) =
l i L .73 ( }
= 2__"rkN exp (—%{ﬂ f DE exp (—-2—% f di= — Ef) X
: €(—-L)=0 e

il
x exp (~€(z) - £(2") + (L) { f exp (~£(1)) ds} =

A al,
e " 4 O S
dba FR e

R vk }
x fdh [ Deexp|-L [ dt (§3+Ae‘f) + &0 | o
0 - §(-L)=Q e
X exp (—€(z) — £(2')) =
+ oo :
= N'(Arka)~! [ [ dodo’ exp (—1'—" c2 )x (64)
' EE |
X o D¢ exp (-—f{; [ dt ({‘-’ + e“f) i e—élz)=E(z")
§(~L)=0' &(L)=0 ~L 4

The last equality has been attained by changing of variables:
A=e " fnt—0 (65)
and by separating the integrals over the values of £(t) in the endpoints t = L

and ¢t = —L. The final path mtegral in (64) is of the Feynmann-Kac type
[16] and it is equal to the following matrix element:

pe(z,z') = exp (—%E) (Arka)~! x (66)

5 (EE,J'Ere-(L—r’]HE—Eeu{r’—x}ﬂe—fe——{$+5]ﬁIﬂEIE),
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£
v

with the Hamiltonian:

H = . s _E_E- (ﬁ?)

The function ef/? increase when § — oo and, consequently, it cannot be
represented as a linear combination of the eigenfunctions of /7

Hf&)= —%uﬁfy (E), . fule) = i_\/u sinh 27p Ko, (;—i-e-f”) (BB}

(folfur) = 8(v = V).

Still, explicit solution of the corresponding evolution equation leads to the
following asymptotic relation: :

-~ i r 2
exp(=TH)et/? — exp (Z—F) To(é) = %ﬂ:{p (ESE) K, (EE"EH) . (69)

Here I{,(z) is the standard notation for the modified Bessel function. The

function - :
= — K, (ue*“?) e ¢
¥ ry

in its turn can be expanded in terms of the complete set (68). Thus, the
correlator pg(x,z') is equal to:

To(&)e ¢

pe(z,2') =

= 4;::-& exp (_ﬂiéﬂ) (Yo(€)e™¢lexp (~fz ~ 277) [Yo(£)e~¢) =

- alr — z'|
Sk S\ g

¥ f dvvsh2mvexp (—%‘EI:L‘ — l’i){f f{yyh'l(y]ffz;‘p(y)} i

0 0
amr alz ——u:’l) Rdvvshavy . 5 o 2

= [ e e e i E}:‘J(—-m’ ;L’—':L") 70
9 P ( ] 5 {;113?”! ( 4) I 2 I ] ( )

The formula (70) up to the redefinition a/2 = I-! coincides with the well
known result [1],[6]. This niethod allows us to compute the high-order cor-
relators as well. For example: (z; < 29 < ... < zopy, m > 1)

(g,m) :
?ﬁkf}E (mlaﬂfﬂs---IErﬂ-l:IEm) v

17



= 2wk Liﬁj(%j §(E — E)|Wn(z) 27| ¥, (22)]29 x

% o0 X [¥a{zom-1)12YValz2m) 20 =
22 (gm - 1)k
 (2qm = 2)!

X

x lim lIm A=Y |G(zy, 22| E + i€)...G(zam—1, Zom| E + 1€)]*7) =

L—oae—=+0

7 m : i
2 <(}1 sw s - 'J]) (I-Vf(E))zq”*"é(w(ﬂ))> 2

(71)

= <(}"E{ uﬂq(mzjﬁl)"ﬂq(mzj)) : ‘Z?rk‘ # E(u(ﬂ))> ~

=1 L dym-—1
(J; u*(y) d-y) w(L)

9 I =2gm+1
s < (v1(2j)va(z;))’ (-_Evl{y)vi(y)dy) (‘UL(L)UQ(L))_1>

= N ) al,
B (2”.)2:;:?';—1(‘2??.”. - = 2)| EXp | — 4 X

<[ dodre@+22 [ Deexy (‘—afrﬂ (€2 + “))

E( L}_{T :E(L}‘_
2m
xexp | = 2 ¢€(z5) | =
= i
= 1 - ﬂ'(a:ﬁm g 171)
(2a)29m=1(2gm — 2)! e o 3 X
2m-—1
(Tﬂ-(E)l H g_qu {2 +1—$J]H1TD[€)ELQE)
J_
e (%)quH—l 2‘1(gr+m} & rr1+l ( P(l‘}) )Em-:}: -
27”"]’ ~— 1) (T‘(Zq)) 11(4?_' +1/2)

(11-"'.! - &
xcxp( it 1):::

oo 2m—1 !Er
E!- J‘l;[1 e ( - Azj ) vj sh2rv; PO (1) PO (v 1) X

x

2m-=2

x I:Il Q{q}(ys ) Vn+1),
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where Az; = zj41 — ; and the functions P () and QU9 (v, ) are defined
as follows:

L i
PO@) = —— [(¢- 1/2)" + V'] H G-1/22+v)°, (12
QW(v, ! e ﬁ e @ +v") + 1 (A )
S cosh 2wy — cosh 2w/ i 44 Edp

i=1
(73)
The expression for p {q' ](11 24) can be obtained from (71)by the formal sub-
stitution 1 for the product from s = 1 to s = 2m — 2 and by pufting m =1
in the remaining integral.

As one of possible applications of the formulae (71)-(72) let us consider
the dispersion of the sizes of localized wave functions. It is seen from (71) that
the distant exponential asymptotics of the probability distributions does not
luctuate. On the other hand, it would be natural to define the wave packet
size Rp as some integral property. For example, let us define Rg as:

sl
Ry =

o] o

L
/ dz |p(z)|L. ' (74)
- L

The coefficient 4/3 cancels the mean value of the fast oscillating factor
sin(kz + 6)
(see (44)). Then we have:

L
= 4 2ax 4
(REl) == mj [ EIJIPE(.'I.T, :I.') = '? = m. (?5)

=g
Here p(E) is the density of states at large E:
L

(76)

The expectation value of the square of REI can be found from the correlation
function (|¥(z)v(z")|*):

L

b fda: ]d.;:' 2D 2). (1)
~L
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. S . 2,1
Using the explicit expression for pi: ](:.':"1 z):

T

(L) oy —
PET(E, %) = e
% e }"'E/du CXp (—Eg—{:r — :1:')) ;13?:;!! (g + vz) (E 2 uz) :
0 .
(78)
and evaluating the integrals over dz’ and dv we obtain:
9 1
(Rp") =~ 0.237. (79)
With (75) it gives us the mean square relative dispersion of R':
—12 e R—l 2

(RE")

5 Mean current in 1D mesoscopic ring with
the magnetic flux &

Let us consider one dimensional metal ring in transverse magnetic field. The
expectation value of the current operator for one electron stationary state
becomes non-zero and the energy receives -odd term. Then the Fermi levels
for left and right directions of the mean velocity turn out to be shifted one
about another. As a result, a persistent current flows along this ring in the
ground state [17]. There are arguments ([19], [9]) that the total current is
about the mean current I corresponding to one-electron state on the Fermi
level. We will assume the ring size 2L to be comparable the mean free path.
Then the localization effects do not lead to the total suppression of I, but
I is rendered to be a nontrivial function of the magnetic field (sce below).
(The case of ordered inhomogencous conductor has been considered in the
paper [20]).

There exists the gauge by which the wave function of an electron in the
ring with the magnetic flux ® obeys the boundary condition:

(L) = exp (2mi®) (- L), (81)

and the Hamiltonian has the previous form (1). The mean absolute value
of current corresponding to a state with energy E' can be represented in the

20
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limit (5) as lollows [18], [9]:

I= <3}‘5 YBL En)un1> ,

1 0F,

(82)

G T T
(h = ¢ = e = 1, the magnetic flux quantum is equal to 1.) The condition (81)
18 nonlocal, therefore, the formula (82) for I cannot be rewritten in terms of
functions like u(z), @#(x) of Sections 1,2. It has been shown in [9], however,
that I can be expressed directly via the elements of the T-matrix (14). It is
worth noting that we have functional representation just for them.

Indeed, by the construction, the matrix 7 = 7(—L, L) satisfies the “uni-
tarity” conditions:

c*Tle? = T  detT = 1. (83)

Therefore we can parametrize in the following way:

i ( cosh T'ef@s sinh [et?s ), (84)

sinhTe=%+  cosh ‘e~

where T', @, and g, are slowly varying real functions of L. The mapping of
the initial data space at the point * = —F into the space of solutions of the
equation (7) at the point ¢ = [ is realized in the basis (u’ & iku) by the
1-['&11]5[&1’—]]’]&“'13{ -

T = exp(ikLo® )T exp(ikLo®) =

£ ( A i sinh Te!P+ )

i : 85
sinh Te~ %% cosh Te—i(as+kL) (85)

The condition (81) is equivalent for the matrix to have the eigenvalue ¢,
0 = 2nd: : :
det (T —€*®) =1,

or .
7(E) = cosh T cos(ay + kL) = cos?. (86)

The last equation defines the set of the energy E = k? values, and, using the
formula (82) for j,, we obtain:

sin

(E) = 8 (7(F) — cos0) [sinf]. (87)

Y 8(E —Ep)ljnl =Y 8(E - Ey)

n
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We can get rid of the é - function in much the same manner as in the previous
section. Averaging over the interval AL (1/k <« AL < 1) of the (half)
circumferences L we find:

E) — cos 8)) |sin 0] ~ <

wh
I_{L

‘—t Sql. E =
in e
\/Eil}h I—i—SiIl g

= (/ dps exp (—p®(sinh® T + sin ﬂ])) (88)

It is important that sinh?’T" can be rewritten so that the direct analytical
continuation from the surface £ becomes possible:

sinh®I' = (1,0)7's™ T ( ? ) : (89)

Ilere the sign £ denotes, as usually, transposition, and complex conjugation
does not enter this formula. For sinh? I" to have the most simple form in terms
of the fields p,b* the field ¥y~ should obey zero-valued initial condition:

¥ (~L) =0 (90)
Then substituting (20) into (89) we obtain:

— 5111 0

L

i L
sinh? I‘:g&"(L)/d’.t YT (t)exp _—i/pd'r . (91)
45

i

The right-hand side of (91) is bilinear in the fields ¥ but it is non-local. It

is convenient to start from the transformation of the Hubbard-Stratonovich
kind:

ksin
VL

L 5
X <exp —p2¢'(L)fdt ¥ (t) exp *i/pdf‘ >..—:
55

s

+o0
/ dyt exp (—p*sin? 0) x

t

+oo
= "'""‘“‘9| dp [ dzdz® exp (—p?sin® 0 — |2]?) x
L _‘L‘ S = 2[?)

X <exp {w—f;:zw,b‘ (L) —ipz" i dt p* (1) exp (—ffpd?') }> L
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turning the exponent to the linear in ¥* combination. Retracing the same
path (54)-(56) as in the previous section, and introducing the variable £(t)-
in a manner like (57):
£ = —2(1 + 4a)n + 4iap, -
€(L) =0 (93)
DpDn = const DpDE

we bring the DpDy-integration to the Gaussian form. Performing it we find:

-0

400
I =exp(—2L)|£sind| FN' [ dp [dzdz* exp (—p?sin? 6 — |2]2) x

L .
x [. Déexp (ﬂﬁlg j; dz (g?+¢2“?|zlzﬁ-£) 5 Sk ) (94)

£(L)=0
Let us change j¢ for the integration variable o:
ozt = e, (95)

and shift the trajectory &(z) by —o:
{(z) — &(z) -

Then the integral over (z z")-plane is calculated exactly and we obtain the

representation of I as the matrix element:

v/, k
ae— e:-:]:s(un4 )

sind| (12O exp(-2LDTE), (96)

Ilere H is defined in (67), and the functions Y1 2(€) have the following forms:

Y1(6) <exp (mé) (97)

and
NL

12(6) = ¥ exp {—%exp (-é) |sinr’?I}. (98)

Using the expansion in terms of the complete set (68) and the integral
representation for [{s;,(y) we find the explicit formula for the current I:

(7! =af2)
I . (I)”dex;( )sm ﬁ?/ ot Ahwadt ( Itz) 99
= — | — — exp | ——
Lk | 4 sin 0 4 sinh® ¢ ¢ L 0
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When sin®# runs from 0 to 1, the value of I increase monotonically from 0
0 Imaz. The first order of the Taylor series in # agrees with the result of [9].
[t is worth noting that the parameter I/L determines not only the absolute
value of I, but its dependence on the magnetic field as well:

400

i sin~ ¢ dt cosht ; { j2 (100)
Inaz ke O d a sin? @ 5 sinh” ¢ Sk “E
| smo (-117) -

This formula allows us, in principle, to find /L from the run of the experi-
mental curve I(#). Finishing this section I would like to emphasize that all

its formulae are exact in the limit (5) and no analogue of the “non-resonance”
terms have appeared.

6 Conclusion

Let us sulipnse for the random potential U(z) to have the finite correlation
length x=1;

< U(z)U(2") >= %Dn exp (—«&lz — 2'|). (101)

We can take it into account in the limit 1 < sl by the renormalization of the

parameter a:
g

144k K2
It should be noted that this renormalization may be sullicient since the in-

equalities 1 < xl and k/x ~ 1 can take place simultaneously.

: Indeed, the correlator (101) corresponds to the following measure of the
integration over the fields ¢*:

(102)

¥

L

GuaEs e - 2
Dt exp -2 (EICI’3+2£;§(C*"C‘—C+C')+ (1+‘1; ) rcP) da

o
-L

103
On performing the “bosonisation” and passing to the variable £ we o{)Lailz
some effective action S.;;(€). The terms with derivatives CE in the expo-
nent of (103) would produce the terms of Sess(€) containing derivatives as
well. The localization length [ is the only parameter of the length dimen-
sion occurring in the unperturbed problem. Therefore the contributions of
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those “non-markovian” terms would be suppressed by powers of the quantity
(kl)~!. Neglecting them we come to the formula (102).

The variable ¢’ appeared in (64), (65) could be considered as the global
order parameter corresponding to the localization. In fact, the non-zero value
ol the correlator pg(x,2’) in the thermodynamic limit is the consequence of
the following relationship:

a’ 1

1*. _ " 0. 104
Iﬂlclo el - i i

On the other hand, the quantity A = exp(—¢’) is conjugated to the wave
function norm. Then the inequality {104) corresponds to the exponential in
the average increase of the functions w, @ (7).

It is worth noting that the large-scale behaviour of wave functions is
governed by some averaged characteristics of the potential U(z). In the per-
Lurbation theory framework they appear as some infrared singular integrals.
The integrands are multipoint products ol potential with fast-oscillating ex-
ponentials. Thus, if the quantity :

r4+ 5

ba (.’L’, {-") = / dx’ exp (:-'.'ﬁ:{:.'iti .. :I‘!)) U(T)U(Jf} (105)
r—4

starting from some A

Frae N

hecomes independent on #, the Abrikosov-Ryzhkin model with some eflectlive
a and a can be used to investigate the properties of the wave funclions.

The method similar to that presented here allows one to derive path
integral representation for any averaged combination of Green functions at
arbitrary energy [2 [21]. Unfortunately, 1 sueceeded in computing such path
integrals in some simplest cases only.
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