MHCTUTYT AJEPHOU ®USUKH
um. I''A. Bynkepa CO PAH

Z.K. Silagadze

SO(8) COLOUR. AS POSSIBLE ORIGIN
OF GENERATIONS

L

}- BUDKERINP 93-93

HOBOCHUBUNPCK



SO(8) Colour as Possible Origin
of Generations

Z.K. Silagadze

Budker Institute of Nuclear Physics
630090, Novosibirsk-90, Russia

ABSTRALCT

A possible connection between the existence of
three quark-lepton generations and the ' triality
property of SO(8) group (the -equality between
8-dimensional vectors and spinors) is investigated.
SO(8) appears to be a natural one-flavour unifica-
tion group. Family formation due to weak interac-
tions results in SO(10) group and a broken triality
symmetry. Further speculations about how to restore
this symmetry lead finally to E_ exceptional group

and three quark-lepton families.

@ Budker Institute of Nuclear Physics, Russia

1. INTRODUCTION

One of the most striking features of quark-lepton spec-
trum is its cloning property: g and T families seem to be
just heavy copies of electron family. Actually we have two
questions to be answered: what is an origin of family
formation and how many generations do exist. Recent LEP data
[1] strongly suggests three quark-lepton generations.
Although Calabi-Yau compactifications of the heterotic
string model can lead to three generations [2], there are
many such Calabi-Yau manifolds, and additional assumptions
are needed to argue why the number three is preferred [3].

There is another well-known example of particle cloning
(doubling of states): the existence of antiparticles. Algeb-
raically the charge conjugation operator defines an (outer)
automorphism of underlying symmetry group [4,5] and reflects
the symmetry of the corresponding Dynkin diagram. We can
thought that the observed triplication of states can have
the same origin.

The most symmetric Dynkin diagram is associated with
SO(8) group. So it is the richest in automorphisms and if
SO(8) plays some dynamical role we can hope that its greatly
symmetrical internal structure naturally lead to the desired
multiplication of states in elementary particle spectrum.
What follows is an elaboration of this idea.



Although the relevant mathematical properties of SO(8)
are known for a long time [6], they have not been discussed
in context of the generation problem, to my knowledge.

To make the paper as self-contained as possible, I have
reproduced in it some well-known results concerning SO0(10)
and Eﬁ groups, Although 1 hope their treatment here doesn’t

merely copy the existing literature.

4. PECULIARITIES OF THE SO0O(8) GROUP

To explain why D4, the Lie algebra of the SO(8) group,

is the most symmetric among simple Lie algebras, let us

briefly outline their classification theory. Details can -

be found e.g. in [7,8].
Let £ be a complex Lie algebra and xe£. x is called
semisimple if adx, linear operator on £, defined as

adx{y)=[x,}.rl, is diagonal in some basis. The Cartan

subalgebra is the maximal Abelian subalgebra of ¥ with
semisimple elements. £ can have several Cartan subalgebras,
but they all have the same dimension, which is called rank
of £, e

Let K be some Cartan subalgebra and X = its dual
space (i.e. the space of the complex valued linear functions

on K). For any REK# let us define ,‘B?‘ as a subspace in
¢, such that for each XEE)‘ and yeK the eigenvalue equation
ady{x}=hl{y}x is satisfied. If A20 and .,Sﬁhsso, then A is

called a root of the algebra £. The number of roots is
finite and if R is the root system, then

L2=Ke} 2 (direct sum of the vector spaces) , (1)
A€R

where each fh is one-dimensional. Thus

dim ¥ = rank £ + number of roots .

If we select some {Kl’Kz’”"Kr} basis in K and add

nonzero vectors EAE.{‘E&, AeR, we get the Cartan-Weyl basis

for £ Lie algebra. In the case of normalization

‘Sp{adK -adK] = GU 3 Sp{adE -adE ) = -1, (2)
i J A -A
‘the commutation relations in this basis have the following
form .
[Ki’E?L} = }‘(Ki}E?.. 5 [EA'E—A] = - )E ?L(Kl]Ki
5 (3)
[E-A’Eu] = Nl,u E?L+p ;

In the last equation A+u#0 and N?ap differs from zero only

if A+peR. £
Let some basis be chosen in K. A vector from X is
called positive if its first nonvanishing coordinate is
positive. A positive root is called simple if it is not
representable as a sum of two other positive roots. The set

*

*
of simple roots S spans the space K (can be served as a

basis in }{*) and any A€R root. has the unique representation
A=) m where m are integers all having the same signs.
®ES =

For every AeK there exists uniquely defined th.’}{

element, such that for any xeX

}'L{'.$c)=Sp(::1u::lh}'L . adX] ; (4)

Using this the scalar product can be defined in K

= ‘ (53

(A,u) Sp(adh adh 2 (5)
A u

The angle between simple roots, which can be derived

from this scalar product, turns out to be very restricted.



Namely, if ¢ is the angle between a pair of simple roots,

then 4cos’p = 0,1,2 or 3 and ¢ =90°. Moreover, if ¢ #90°,
then the ratio between their lengths turns out to be
2| cosepl.

The crucial point is that Nl h structure constants in
] ¥

(2) and, therefore, the structure of a simple Lie algebra,
are uniquely defined by the length and angle relations among
simple roots. This information is compactly represented by
the Dynkin diagram. On such a dlagram each simple root is
depicted by a small circle, which is made black,if the root
is a short one ( any simple Lie algebra has simple roots
with at most two different lengths and usually the longer
simple roots are normalized to a length-squared of 2). Each
pair of vertexes on the Dynkin diagram. is connected by

lines, number of which equals to 4(:052@, ¢ being the angle
between corresponding simple roots.

The main classification theorem for simple Lie algebras
states that there exist only four infinite series and five
exceptional algebras shown below:

An LD R oy [, AR G2 P

B O0—0—0¢+s O—Coaell F4 0——0
n

S e
6
E? D—-—--*-'O—I——O—O—-"ﬂ

E o O £ o o o e}
8

Cn' *—8—@ ++s —0—0

Dn 0—0—0---0—<

Now it is clear that D 4 really has the most symmetric

Dynkin diagram

Actually only the symmetry with regard to the cyclic
permutations of the (« a:anr.] simple roots (which we call

triality symmetry) is new, because the symmetry with regard
to the interchange X e, (last two simple roots) Iis

shared by other Drl Lie algebras also.

The operators of a simple Lie algebra may be repre—
sented by nxn matrices acting in n-dimensional Hilbert
space. Cartan subalgebra, being abelian, is representable by
simultaneously diagonal matrices. Using this, each vector in
representation space can be (up to possible degeneration)

labeled by some elements from J{*, called weights. If REJ{. is
the weight -associated with the Hilbert space vector | A>,
then for every KekK, a€R

IA> = A(K) |A> and Em |A> ~ |A+a> . (6)

So Eo: for positive roots act as a raising operators.

All properties of any irreducible representation are
uniquely determined by its highest weight A for which |A> is
annihilated . by all raising operators. Other vectors in
representation space can be obtained from |A> by means of
the lowering operators E_{x

Often it is useful to label weights by their Dynkin
coordinates, which for any weight A are defined as

2 {?L,ﬂi.i]

e {n:l,oti] o MEs - 4

The convenience of the Dynkin coordinates relies upon the
fact that they are always integer numbers. Moreover, for the
highest weight they are non-negative integers and any such
set [al,az,...,ar} of non-negative integers is a set of

Dynkin coordinates of the highest weight for some irreduc—
ible representation.

The weight system for any irreducible representation
can be easily derived from its highest weight by the



following simple algorithm: if ‘h={a1,...,ar} is some weight

in the Dynkin basis, such that alm and A+:x1 is not a

weight, then i-th simple root can be subtracted from A a,

times, each subtraction giving also a weight.

The root system can be constructed in a similar manner,
because, as (2) shows, the roots are weights for the adjoint
(regular) representation x—}&dx.

At last, let us cite the Weyl formula for the dimen-
sionality of an irreducible representation: :

(A+8, o)
N =1 ~ ? (8)
ucER+ (3,)

where A is the highest weight of the irrep, R+ is the set

of the positive roots and &=(11,...,1) in the Dynkin basis
is half the sum of the positive roots.
For D, the adjoint representation is ~(0100) and the

above described algorithm gives the following root system:

+o .t . to , *a , o +a ), o o +(o +A
5 ot 3 4’{12 {z 3}’ 24}’

G
+{a +o +o +(o +or +o (o +o0 +a )
: 12 3} ! s 4] ' i 4] ' (9)
+(a +o +o +a ) , o +20 +a_+a ) .

e hed S ko e e

The simple roots, as the Dynkin diagram shows, are not
orthonormal; the nonzero scalar products being:

(ml,u1]=[ﬂcz,mz]=(m ,ug)%(m4,m4)=2 -

? (10)

[txl,azlﬂ(az,a3}=[mz,m4)=-_l ;

Sometimes more convenient is the

KK, KK}

{vl,pz,v ,v4} basis dual

3

basis of the Cartan subalgebra:

to the

v (K)=8 . Eq. (2) implies that
m n mn
It can be deduced from (10) that

vi-hasis is orthonormal.

o =p -V o =V =V o =P -V o =V 4V (11
Tl S e el W U P el i TRl Bl 0 T )

and other roots also take the very simple form in this basis

o of b R T o
m n

The dimensionality of any {al,az.a ,a ) D, -repre-

3’74
calculated from (8) wusing (9), (11),

4

sentation c¢can be

' §=3v +2v +v_ and A=) le«, where 1.=E{A"l] a, A =
1 2 3 1=1111 1 1j J i)
.2(-11,05}
3 . is so called Cartan matrix for D and
ta ,0 ) 4
3]
F o=t ) . - A SR T
-1 2 -1 -1 o R X R
GE e, e EE. ot 8 21
3 e A« S Fodik -8

The resulting formula (although not very convenient)
has the following form: :

N(a ,a ,a_,a )=
L gy e

a +a a +a
(1+al}[1+32](1+az}(1+a4}[1+ 12 £ ][1+ _znwf_]x

a a5 a +a_+a a_+a +a
1+ 2 4 1+ 1 2 . 1+ i
g e 3 3

. a +a +a _+a a +231 +a +a
e S e 1 Bl e
1+ 1+

; 4 o
In particular, sz(IODD}, 8C={0010] and 85={0001}
basic irreps all have the same dimensionality 8 — the



remarkable fact valid only for the D4 Lie algebra. The

corresponding highest weights

e 1 £ 1
o e {:x3+ac4}, Rrasi.t = [‘x1+a4}

i i
and hs_a4+mz+T{a1+“3}

are connected by the above mentioned triality symmetry. For
other orthogonal groups (10...0) is a vector represen-
tation, (00...01) — a first kind spinor and -(00...10) — a
second kind spinor. So there is no intrinsic difference
between vectors and spinors in the eight-dimensional space
[9], which object is vector and which ones are spinors
depends simply on how we have enumerated symmetric simple
roots and so is a mere convention.

It is tempting to use this peculiarity of the SO(8)
group to justify observed triplication of the quark-lepton
degrees of freedom. We continue this line of thought a bit
later. Now let us consider the realization of the eight-
dimensional vectors and spinors through octonions [10,l11],
in terms of which possible connection between generations
and SO(8) can be formulated most naturally.

3. OCTONIONS AND TRIALITY

Octonions can be viewed as a generalization of the
complex numbers: instead of one imaginary unit we have seven
imaginary units eAm-l, A=1+7 in the octonionic algebra. The

multiplication table between them is given by the following
mnemonic diagram [11]

10

(12)

5 b

where arrows show what sign plus or minus should be taken,

fe. ee=e, e 8=-€, € *e=¢, €' =-¢ and so on.
VRl T e S T s e it A 4

If we consider {1,eh} as a basis for a real or complex

vector space, then we get the algebra of real or complex
octonions g=q tq.e, . where q.q, are scalars (real or

complex numbers) and the summation over A from 1 to 7 is
assumed.

The octonion algebra is not associative, but obeys a
weaker condition than associativity: it is an alternative
algebra. This means that the  associator  (x,y,z)=x-(y-z)-
(x'y)-z is a skew symmetric function of the X,¥,Z
octonions. -

The conjugate octonion q and the norm  N(q) are
defined by '

e .... = -_ = _- = a — 2 z
q=q,-q,¢, »  N(Q)=q-q = q-q N, * )oa .
Note that the norm form satisfies N(p-q)=N(p)N(g) — common
property of the real numbers, complex numbers, quaternions
and octonions.

Using the norm form, the scalar product of octonions
can be defined as :

(p,q) = % (N(p+q)-N(p)-N(q)} = -é—[pa +qp ) = (3,9 . (13)

This scalar product reveals the following cyclic symmetry:

(x,y°2) = (y,z'x) = (z,x*y) . (14)

11



Let us consider eight linear operators I"m, m=0+7,
acting in the 16-dimensional bioctonionic space:

q 0 e q e :q, o
= 15

it
i
|

E -
2 m 2 mql

0
al
o

O

Using the alternativity property of octonions, it can be
tested that these operators generate a Clifford algebra
F-1. 47T =20
m n nm mn
(Note, that, because of nonassociativity, the operator
product is not equivalent to the product of the correspond-
ing octonionic matrices).

The eight-dimensional vectors and spinors can be const—
ructed in the standard way [12] from this Clifford algebra.
Namely, the infinitesimal rotation in the (k,1)-plane by an
angle 0 is represented by the operator

R =1+LBF1" :
kl 2 k1

q
and the transformation law for the (bi)spinor ¥ =[qI] is
- 2
'
¥ =Rkli‘, while to get a vector X we should form the opera-

tor X=me‘m and the vector transformation law is generated by

!

]
X = Rkl}{ Rkl : (16)

For I‘m given by (15) the upper and lower octonionic

components of the bioctonionic spinor ¥ transform indepen-
dently under the 8-dimensional rotations:

it 3 we il .
ql—q1+?9 ™% {el q1] el " . Fkliql}
’ (17)

e .- ; =
S Uiae, pode [el qz] e Ckl{qz]

12

and for vector octonion x=xﬂ+ xﬁeﬁ we have

¥ I T Pl
X = X + TB {ek {el X)-X {ek el)}

(To obtain this, consider (16) as an operator equation and
apply both sides to the [ﬂ unit spinor).

Note that

1 e e =
= [ek'{el~x}-x (ek el)]

; 1 = i
Ektel,x)_eltekpx)_ -2_ {{Ek’x,et}-l-{x’ek’el]]
and the last term in the square brackets equals zero because

of -alternativity and ["i,y,z]=[2xu-x,y,z}= -(x,y,2z). So the

vector transformation law can. be represented in a more
convenient form

')

X =X + B{ek-{el,x)—el'(ek,x}} =X + 6 Gm(x} . (18)

One nmore manifestation of the equality between
g-dimensional vectors and spinors is the fact [9] that each
spinor transformation from (17) can be represented as a sum
of four vector rotations :

1

e (B *O *G + G ¥ (19)
oA 2 0A nlsl hZBE A333

where Ai,Bi are defined through the condition e e e,

: i 1

and : 1 b
F =— (G +G -G -G 20
AIBE 2 AIBI DA AEEZ ASBB

For example
1
Fm"_z_ [Gm+ e o GEE}

i .
25 7-[Gzﬁ+ Go? Gaﬁ 614)



The (anti-Hermitian) generators le obey the following

commutation relations

[G .Gk1]=6 £ 0 tr o« o b s 00l

mn ml nk nk ml mk nl nl mk :

The same relations are valid also for the Fk] generators, as
can be easily proved using alternativity of the octonion
algebra. So the correspondence

w G —— F (21)

mn mn

is an automorphism of the [}4 Lie algebra. Another D4
automorphism is

k: G —>KG K = e

m mn

-G , Emor n s U
{ e

G ,if mand n # O.
mn

where K is the (octonionic) conjugation operator K(q)=q.
These two automorphisms do not commute, instead we have
wex=(k )%

If ll?l,'lfz are l6-dimensional (bi)spinors, x  — vector

and X=x T ,then ¥ X¥ is SO(8) invariant. This can be
checked explicitly by applying spinor and vector
transformation laws ‘{ =Rk1'1’. XJ=RMXR; and taking into
account that (15) and the octonion multiplication table give

for an operator Fm a symmetric 16x16 matrix.

For v = i and - ¥ = v this invariant can be re-
1 |0 2 (Y

written as octonionic scalar product (q,x-p) (to take q
instead of q is convenient because of cyclic symmetry (14) ,
which lead to the cyclic symmetric form of the triality
principle described below), where q=¢,~¢,e,) X=X +X € and

P=""u*"’f"; From the other side, for the infinitesimal

14

F—

rotation in the {k,i}—plane, 8(q,x-p)=0 means: (because of
(17) and (i8))

ESm{q),x-p} + [E,leﬁx]*p] + (@,x:C (PN =0, - (23)

where
S =kF K. (24)
ki kl _
But for any SO(8) - (vector) rotation (q,p]=qmpm is obviously
invariant and, as we have seen in (19) and (20), Fkl can be

considered as such a rotation. So

(S, [@.x-p)=(S,_(a),x"p)= -(q,S, (x-P))= -(q,S (x-P)) ,

and (23) implies the following algebraic equation, valid for
any two X,p octonions

Ski{x_-p} =G _(x)-p+ x-C_(p) , (25)

(25) remains valid under any cyclic permutations of

(S :,le,Ckl]. ‘It is an algebraic expression of the equality
K

between vectors and spinors in the-eight dimensional space
[11].

Note that
2
= = = 26
Skl T{le} ; Cki T[Sm] T {le} ; (26)
where TR Indeed, only the second - equation is not
i =T * =- = foll
obvious. But T =m'K, and Ct:m Fug’ CﬂB FﬂE as follows

from their definitions through (17).
We can call T the triality automorphism for the .D4 Lie

algebra. It performs a cyclic interchange between vector and
spinors, because le operators realize the (1000) vector

representation, S~ @& first kind spinor (0001) and C - a

15



second kind spinor (0010), as can be established by explicit

construction of the corresponding weight systems. For

example, if K =iC ,K =iC K =iC_ ,K =iC represent the
it el Binat. gy SR SN SRR )

Cartan subalgebra and {ui,i=l+4} is its dual basis, then the

weight system and corresponding state vectors look like

-l*{-v-v -+ ) — U —wi——{—v-v -V 4V ) — 1|.1mE
2 12 8 4 0 2 , o R R 0
—1-(—U+v +v 4V ) — u - -—1—-{-v+v S Y i,
2 - Ao B 1 2 Rt s 1
~l—{+v—v +¥ 4V ) — u -~—1—(+v—u P+ ) — u*
2 Bl o 2 2  NE e o 2
i(+w.:+w v+ ) — u ——1-{+v+v v+ ) — u
= SR e et | 3 2 R Sy R ) 3

. : . 1 - 1
So the highest weight is h—T[vl+v2+u3 u4]—az+m3+—2—-{ml+m4}

and we have (0010) irreducible representation. Here the
state vectors are expressed in terms of split octonionic
units [11]

s
(e +ie ) u=
0 0

- |

u e —ie )
0 [n 7

: (27)
(ek-1ek+3]

#*

NS

u =— (e +ie ) u
k 2 k k+3

where k=1+3 .
In general, vector and spinors transform differently
under 8-dimensional rotations, because leat Skf Ckl. - But

it follows from (20) that G and G -G are

AE CAB AB AB

SR B {1 =33

invariant with regard to the triality automorphism, and so
under such rotations 8-dimensional vector and both kinds of
spinors transform in the same way. These transformations are
automorphisms of " the octonion algebra, because their
generators act as derivations, as the principle of triality

(25) shows. We- can construct 14 linearly independent deri-

16
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|

vations of the octonion algebra, because the method

described above gives two independent rotations per one

imaginary octonionic unit 8 S "8 - One of possible choices
iy

is

L1=i(G4z+G51} La= "é_ [G41+GEZ+ZGSE:]
L2=i{621+654]' L9= ‘/;« {Gﬁ1+Gz4+2c'3?)
L3=i(641+625] L1n= _;;:-"_ {554+G12+ZG%]
L4=i{6a1+643} L11=7—-§_ lIGlﬂ-zﬂ'ﬁ’riadﬁ261?} (28)
L5=i{c,;54+631} L1z= :é__ (Gaz+655+2647]
La=i[GEE+Gaz] L13= {; {G43+Gm+26ﬂ]

_ L7=i{632+565} L14= ,‘,;« {631+C’45+2G15}

It is well known [10] that the derivations of the
octonion algebra form Gz exceptional Lie algebra. We can

rediscover this by constructing the Cartan-Weyl basis and
root system from (28): '

(L %L ) —#2p !
1 A 1

(L +iL ) — (v +V3v )
" 1 2

Do e

(L +ilL ) — *(-v +Y3v )
b 7 1 2

17



The role of the Cartan subalgebra basic elements play K1=L.'3’
K3=L3 and {vl,vz} is its dual basis in the root space. Note
that K1’K‘z are mutually orthogonal but not normalized to the
unity (as in (2)) and so do VsV, But the normalizations of
the Ki’Kz are the same and we have (ul,ul}=(v2,u2) and
{vl,vz}=0.

The simple roots are u;l=vl-'-/§uz , a2=(2/1/§]v2 and they

correspond to the Dynkin diagram G=—3.
It follows from (28) and (29) that the first eight

generators are closed under commutation and form Az Lie

algebra — the Lie algebra of the SU(3) group. Algebrai-
cally this SU(3) can be defined as the subgroup of the
octonion algebra automorphism group G2 which leaves the

seventh imaginary unit invariant. With regard to it u
*

&
transforms as triplet, e as antitriplet and u,ug are

singlets [11).. Therefore, if we take this SU(3) as the
colour group [13,14], then all one-flavour quark-lepton
degrees of freedom can be represented as one octonionic

(super)field

q(xJ=l[X}uD+ qk{x]uk+ qi(x}u} ic(x}_u; : (30)

here 1(x), qk{x] are lepton and (three coloured) quark

fields and I-C[x], qi{x} — their charge conjugates.

Note that it doesn’t matter what an octonion, first
kind spinor, second kind spinor or vector we have in (30},
because they all transform identically under SuU(3).

So SO(8) can be considered as a natural one-flavour
quark-lepton unification group. We can call it also a gene-
ralized colour group in the Pati-Salam sense, remembering

their idea about the lepton number as the fourth colour [15].

Then the triality property of the SO(8) gives a natural
reason why the number of flavours should be triplicated.

18

4, FAMILY FORMATION AND S0(10)

Unfortunately, SO(8) is not large enough to be used as
a grand unification group: there is no- room for weak
interactions in it. This is not surprising, because weak
interactions connect two different flavours and we are
considering SO(8) as a one-flavour unification group. '

The following observation points out the way how SO(8)
can be extended to include the weak interactions. Because

CﬁB=FAE and Cﬂﬂﬂ-Fm for A,B=1+7, the S0(8) (Hermitian)

generators for the (bi)spinor transformation (17) can be

represented as M =-j =M =-i
rep -3 1FAB and M.o.n Mcm. m'SF'm. The last

equation suggests to consider M = =-ic F e
A, Tk L Tag EoN rators,

where k=1+3 and summation to the modulus 10 is assumed, i.e.

7+3=0. So we have two new operators —ia'lFAu, -ia'-zl-" which
AO

mix the upper and lower (bi)spinor octonionic components.
Besides, if we consider these operators as, rotations, then
we have to add two extra dimensions and it is expected that
SO(8) will be enlarged to SO(10) in this way and two
different SO(8) spinors (two different flavours) will join
in one SO(10) spinor (family formation).

To complete the derivation of the SO(10) gfoup, we need
the generators of rotations in the (7+i,7+j)-planes. They
must obey IMA M 1=iM (no summation!). On the

ST+l ATH] T+i,T+]
other hand

M - -_-L
i A,?+1’MA,T+]1 [EI'EJIFADFAU 2 eijkﬁk 5

l .
because F F = as can be easily verified. So the

AO A0~ & '
final expressions for the SO(10) generators are

=-iF M — Epu
AB AB T+i,7+] 2 Eijkﬁk

M ==ic F ; M =-M
7+k, A A, T+k

, (31)

19




where A,B=1+7 and i,j,k=1+3. They really satisfy the S0(10)
commutation relations

M M ]=~-i(&_M +6 M. (32)
[T v

M_-8 M_ -8
P T Up HPp VT UT VP VP UT

To prove this, besides the [FAB,FCD] commutator, cited

earlier, the following anticommutator, which results from
the alternativity of the octonion algebra, is also helpful

1
s PN Rl S P (33)

It is clear from (32), that MocB (a,=0,7,8,9) and an

(m,n=1+6) subsets of generators are closed under commutation
and commute to each other. They generate the Dz and D3 Lie

algebras of the SO(4) and SO(6) groups. Comparison of the
corresponding Dynkin diagrams shows that D _~A @A and D_~A_.

Therefore SO(4) and SO(6) groups are locally isomorphic to
the SU(2)xSU(2) and SU(4). So the SO(10) group has
SUL( 2) xSUR( 2)xSU(4) subgroup. The generators of the

SUL{leSUR(Z} subgroup are

Tll_ 72 %{qu* Mg T; =% e M
TE =%(M03_ M,,) Tz =_;:_{M ot M)
TE =%[M39‘ ) T; =%{M39+ M,
It is interesting, that they can be rewritten as
i= %- cu 'T;= % u‘lu:; . (34)

L
So multiplication by u, or u split octonion units plays the

role of projection operator on the left and right weak
‘isospin,respectively.
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The SU(4) generators, which correspond to the
generalized Gell-Mann matrices, are the first eight Lm

operators from (28) (SU(3) generators) added by

r r

L =M - M L =M - M
9 35 26 13 v 24 15
L =M - M L =M - M
10 23 56 18- -18 45
e e L =V LA T IR I e T &
15 3 14 25 36
L =M - M
12 46 13
From them SU(4) ladder operators can be constructed
oin : Cal 2 ax N a8
E1z_ 2 [L1+1L2} Em" 2 {La 11"5.] Eua_fﬂ' 3“1“-14}
T T R L e e e oy
e, S ety N 3% 6 7 100 2 10
E =i(L $iL. ) E =-—1—{L’+iL' ) E =L(L' -iLJ )
v 6 .7 01 2 9 10 20 2 11 12
e il e L BT g R by S
- 5 AR AR T - SR 11 12 b g 14

Using eA'(eﬂ-q}+eB-[eA-q}=-26AEq , which is equivalent to
(33), they also can be expressed via split octonionic units:

L 3 »* *
Eu—- —-ul'{!uJ v B -uj-[t:lk T MJ'{UIE : (35)

In the last two equations (i, j,k) is a cyclic permutation
of (1;2,3). It is assumed that, for example, Elj(q]=

=-u1-[u:'q). (35) together with the split octonion multi-

. plication table
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W * [
H = r=e . u =u 1 ~1] =
il S e 0 i
» #* »* i #* * *
Uy = u u *u =u u *u =u
i ) ik k R i
#* k. *
u -u=-8 u u-u= u ‘u =u (36)
o5 ij o g o S <
» » S S
u*‘u=-4 u u *u =u u *u =u
Lo} ij o g 1. 3 0O 0 0O
> ] E
u *u =0 u +u =0 u *u=u +u =0
i 0 0 i ' T o PR o B

gives E,g(u )= and E {u;1=—a u. , where a,B,7=0+3.

u ’
of By « «B oy B
In other words, u, transforms under SU(4) as a 4 fundamental

* *
representation. and u = .8 its conjugate 4 . So SU(4)

unifies u, colour singlet and u colour triplet in one

single object, and therefore plays the role of the
Pati-Salam group [15].

Note that all one-family (left-handed) quark-lepton
degrees of freedom are unified in one bioctonionic (super)
field (16-dimensional SO(10) spinor) [16]

v(x) q(x) ). o faie)

Yy = TR u + RS L 437
1x)). ° il ' =), ° Cix)f. !
{. Byantpy L 9, L

The explanation why we should take the Weyl (left-
handed) spinors instead of Dirac (why the weak interactions
are flavour chiral) is beyond the scope of this article (I
don’'t have any). Algebraically this indicates close
interplay between space-time (space inversion) and internal
symmetries [17].

Thus our construction leads to SO(10) as a natural
one-family unification group. But doing so, we have broken
the triality symmetry: only the spinoric octonions take part
in family formation and the vectoric octonion is singled
out. Can we in some way restore equivalence between vector
and spinor octonions?
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First of all we need to realize vector octonion in
terms of the SO(10) representation and this can be done by
means of 2x2 octonionic Hermitian matrices, which together

with the symmetric product XGY=%[XY+YX} form the Mz
Jordan algebra [18].

a a
Elements from M: have the form = ] where o,B are

B

real numbers and a=a + a e, is an octonion. Clearly each

such element has the unique decomposition ncE1+,BEz+Fa, where

Lofroy. o [6 Fa_Ea
1 100} T2 e 1) T - | i

So Mg can be represented as a direct sum M2=RE1@RE2@F,

Actually, this is the Peirce decomposition of the Mz Jordan
algebra relative to the orthogonal idempotents EII,EZ2 [19].

The validity of the following multiplication table can
be established by calculation

E R E Eite
i J ij 1 i

2

where i, j=1,2 and 1=E1+Ez is the unit element of Mg.

2 P ab) 1 . (38)

Let Az to be a set of the 2x2 octonionic anti-Hermitian

8
matrices with zero diagonal elements. If A€A_ and XEMS then

z'l
5 MR
M,X]=ﬁX-XAEM2. For any A = [- } let aM denote the

-a 0
following linear transformation of Mi: ah}(:[A,K].
Calculating, we get
s S°EwE" a"‘Fb=2(a,b}(El—Ezl (39)

(38) and (39) indicate, that ah is a derivation, i.e. for

any X,YEME we have a’(XoY)=(a"X)oY+Xo(a"Y).
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Let now d&e€Der Mz be some derivation and 6E1=m1E1+
a a
sBE+F !, SE=a E+BE+F >. Then from  E=3(E oE )=
1 2 gy e i $ 0

=2F oSE follows that a =B =a =B =0 and from O0=8&(E °E )=
RS  hay W Rig i 2 -2

PR e T Gl Drew e T N RS L L
e By P v 1 2 . 2

will annihilate E‘.I,E2 idempotents. Thus any  d&€Der Mz
element can be represented as

; a=ﬂ+ah ] [.40']

where A is the derivation which annihilates El idempotents.
This decomposition is unique: if &=0, then a’=-a
annihilates .‘Z1 and alhE1=-FaL shows that a=0.

Let AeDer Mz and ﬂEi-——O. Then applying A to E_cFa=LFa
1

2
a1 a a : :

we get EieﬁF =-—2-~I‘1F and therefore AF e€F. So A induces

linear transformation D in the octonionic space:

AFR=pP@ (a1)

Applying A to F2eF’=(a,b)l we get (Da,b)+(a,Db)=0, i.e.
(a,b) scalar product is invariant under D and DED4.
Vice versa, if DED4, then A: Mz—} Mz linear mapping,

a_ .Dh(a)

defined as :EE1=U, AF =F is a derivation. If we denote

&mD_h_n then the general element from Mg will have the form
s5=a"+D". This indicates that dim(Der M)=8+28=36. It can be
tested, by explicit construction of the root system, that
Der M}B T the Lie ‘algebra of the SO(9) group.

Acting by both sides of equation on the E‘.l,,F;"1 basis,

the following commutation relations can be verified:
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e

AeAa A A Ay _A KA ey N (42
[Dl,Dz}-[Dl.Dzl , la,b]=D_, . [D",a 'I=D(a) , )

where D . €D. is defined through D_, (x)=4(a,x)b-4(b,x)a. Let
ab 4 ab |

us check, for example, the third equation:
[D“.a“]ﬁ:l=n"‘a"‘sl=-l-”‘a’=D(a1""r::1
[DA,EA]E " =Fnla]=D{a]hE
2 2 2 x
AX
a2 =-a"D" x=—2{a,Dx](El—E2]=2{Da,x](EI-E2]=D{a} e

Let sz be a set of elements from Mz with zero trace

and for any TESM? let TA stand for the following linear
8
transformation of Mz: TA)(:ToXEX-T. If deDer M2 and 6+TA=D,

then O={6+’[A]1=TJ\1=T shows that 6=TA={}. Therefore we have a

8A

. A
direct sum of vector spaces L=Der[Mz}$SM§ , where '.SMz =

| ={TA,TESMZ}.

In L we have d&e€Der Mz, l-"am“,'ﬂn (where E=E1—E2) elements

and their linear combinations. By direct calculations the
follbwing commutation relations between them can be derived

A LA ARl 18T . 43)
: 4 "ab 2

So L is closed under commutation and therefore is a Lie

algebra. To find 'out what a Lie algebra it is, we need its

root system, which can be obtained from the following

Cartan-Weyl basis for L [20}:

e S il s K =g
K = Kz"lssz B 0 K 1% 5
oA Y S
= = = = — + |F
glj_T/:] €0 10 Eor o1 rETh [ ]



u,A u A

= A U i e ey B i

Y8y L% ot [F ] e N [F ]
UNA U\ A

. s A 0 il A 0

my [F ] W= ful + [F ]
u A ' UuLA

+_ 1 = A 0 __ 1 A {}

W e [F ] o At [F ] (44)

- - * - [ ] [
where i, j=1+3; u, u, are the split octonionic units (27)

and the Dq. transformations are defined through

2T1zmii642+ 651}_(654+ 621] 2T21=i[{342+ Gsz}+{Gﬁ4+ GZI)
2T13=HGM+ 643]_(Ga1+ Gm} 2T31=i{Gai+ G#B]+{GSI+ Gm}
2T23=i{653+ Gaz}_{Ga; Gaz] ZTSQHE(GEJ Gazl+(Gbﬁ+ Gaz}
2Tm=i!:{}53— GB?]-(GﬁE— GBZ) 2T01=i[653— Gﬁz}+{6&5- ngl

e o Lt R SRR B O L Ol 18 = G
S LB B 2T sl - Gs1]+[65; G,! (95

03
s
2S =ilG + — = o i
1 20" G?1j+(610 Gt'm} 281 l(G4u+ GTI) [Gm G'M]
.'-'f'\-l- - ' _ll T i
282 S G?z}+[Gzo G’rsl 252 _I{Gﬁn+ G?z} (Gza G?s)
2S  =i(C + - - 5 =
s G?a} {Gau G:'a) 253 ltGan+ G?:a] [Gau G:rs}
2R =ilG :

= { —t = =5
1 40 G?1J+‘6m+ '674} 2R _I{un G‘?l} {Gm+ G'M]

e

2 :1{{}50- G?z]+{62n+ G?EJ 2R

ZR3 =1(Gﬁ0— GTB}+[G:30+ G%] 2R

=1(05u— sz]'(qu"“ G?s}

W 2 N &=

=1{Gﬁﬂ_ GTBJ_{G3{1+ G'.-'ﬁ]

and Gmn operators were defined earlier in (18).
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&

A computation of commutators shows that (44) is indeed
a Cartan-Weyl basis and the roots have a simple form ivmiuﬂ
(n,m=1+5), ‘where {um} basis in root space is dual to the
{K } basis of the Cartan subalgebra. Note the correspondence -
m

between the Cartan-Weyl ladder operators and roots:

—_— P =V it e 4 g — vV #V
glj e giﬂ } Kk 01 j
[
s +v X —_— =V -V X — Vv +V
Xli T i b 5 i 2i e
- Y " (46)
S P — =V +V -_— -V .
XZi v4 Fi 11 & 1 1i 41
‘t’ﬂF 2 +
— =Y _+V —_ v -V — P +V
Yzi SR 2i 5 1 L e
= + o,
— =V =V W — v -v W — -v +p
W1_ l)4 B GETR 5 4 R g !

ct=v—u,o:=v—v.a;=v--v
o 5.9 5 -3 4 ERE e

o=V +v5 and they correspond to the Dynkin diagram
5 4 .

m< 014
o
5
Lie algebra and the (44) operators, acting in the

The simple roots are & =D v

o o
1
o

o

So L is D5
8
10-dimensional complex vector space generated by the Mz

8 : .
basic elements (the complexification of le, give its

(10000) irreducible representation.
Thus, now we have at hand the realization of spinoric

octonions as a l6-dimensional SO(10) spinor [31] and
v
o q
vectoric octonion as a 10-dimensional SO(10) vector - 2

How to unify them? The familiar unitary symmetry example how
to unify an isodublet and an isotriplet in the 3x3 complex
Hermitian matrix can give us a hint and so let us consider

3x3 octonion Hermitian matrices.
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S. Eﬁ, TRIALITY AND FAMILY TRIPLICATION

Together with the symmetric product, 3x3 octonion
Hermitian matrices form the M3 exceptional Jordan algebra

[10]. For it we can repeat the considerations of the
preceding section.

A general element from Mz has the form

r —

TR e
= 3 2
A= x3 E xl
kxz }{1 7
x1 xz }{3
and can be uniquely presented as X=CCE1+BE2+3'EG+F1 +F2 +F‘3
where :
[0 @8 0 0 0 [ -G -0)
E- =100 E = E={0 0 0O
1 2 3
0 0 ‘ 00 9 LR iR
0 0 @ 00 3 (0 a0
F=lo 0 a Foslo 0 0 Fe=|a 0
1 = 2 3
10l =0, ja: -0 {JJ 0 9 9

This is the Peirce decomposition of Mg relative to the
mutually orthogonal idempotents E and RE=(«E: oeR},
F_ff{F?’: a is an octonion} are its Peirce components. In
particular, if (i,j,k) is some permutation of (1,2,3) and
XEMz obeys EjoXmEkoX=-I-X ,. then XgFi.' !

2
The multiplication table looks like (no summation!)
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: " e | a

of = oF =— (1-8 )F
E:L EJ GUEi E'.i FJ 5 ( ”} 3
a .b_ ; a b1 .ab
FinFl—{a,b][EfEk] Fl Fj- 5 Fk

where (i,j,k) is a cyclic permutation of (1,2,3).
Let Ag designate a set of the 3x3 octonion
: 8
anti-Hermitian matrices with zero diagonal elements. If .PLEAB

and XEME then [A,X]=A}{—XAEM§. Theref ore we have Ah: Mz-—;

_ Mz linear transformation defined as A”X=[A,X].

—

0 a a
3 2

For any A= —Ea 0 a | matrix let us designate
-a_ -a 0

2 1 _
{a ,az,aa}mﬁh. By direct calculations its effect on the Mg
1

basic elements can be got:

{a ,a ,a JE =_F32_F33 {a ,a_,a JE = F‘aBFFEll
e 2 3 B Balle RTE 3 1
a a a a aa
{31’az'aa}E3=Fzz+F11 {al,az,aB}F?=F23 +F3 “ +2{a,al]{E2—-E3]
aa aa

8 o4 3
{al’az’aa}Fsza oL +2{a’az}(E1 Ea} (48)

a_4a aa
2

a 1
{al,az,aS}Fa—-Fl ; s +2[a,a3](E1 Ez]
Using them, it can be shown that if }AEA; then A_h is a

derivation. 5
Let &eDer Ms be some derivation. From 6E1=6[E19E1)=

=2Ei¢5El it follows
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SE o(1-2E )=0 , i=1+3 . _ (49)
1

i i i
X X &
Let SE=a E +BE +yE +F ' +F ° +F > . Then from (47) we get
i | e / | e 1 2 3 :

1

X
i
SEI o{l—ZEl )= —or:lE1+ﬁlEz+;r]Ea+F1
2
XE
5E2¢{1—2E2}= ﬂcEEl—BzE;rzEa«er :
3

X
3
51:3 o {I-ZES]— nt?:t’.:_j]:-.l+j33E‘,z-:a':ilzs-?-FE

: > E ; ; ! i A
hence (49) is fulfilled if acjt,B_z'J_:D and XI=X2=X3=0.
i i
Furthermore, E ¢E =0 {i#j) indicates EE_cEj+Ei¢:6E =0, Sub-
1 i
d i ]

> xk 2 3 L 3 1 2

stituting here JE=F ~ +F we get X=X, X ==X, X =X
i k| k 1 1 2 2 3 3

and therefore

3 " 3 2 3 3

'3.2 ..fla XI Ka Xl }-'.2
OE =-F =~ -F SE =-F = +F gk =F “+F © _-(50)

i 2 3 2 1 B 3 1 2
PN £ | ;B Rt
Comparing (48) and (50) we conclude that 3-{}{1,3{2,}{3}
derivation annihilates aliathl‘ee idempotents. 4
Thi oy d€Der Ma derivation decomposes as &=A+A ,
/here oA and A derivation annihilates IEZi idempotents. This

. : : : . A A .
lecomaposition is unique: if A+A =0, then A E1=0’ i=1+3 and

(48) shows that A=0. SR
Let ﬂEl=D. Acting by A on the equation E_oF]=?Fj
1
(izj) we get EinﬁF‘?E% &FT. Th_is shows that the Peirce
30

components Fi are invariant under A, and A induces &1
linear transformations in the octonion space:
A (a)
a i .
ﬂ.Fl = F'1 ; (51)

Applying A to FTGF?=[a,b}(EJ+Ek] we get

ﬂla b a ﬂlb
Fi °F1+F10Fi S

i.e. {ﬁia,b}+[a,ﬂib)=0, So (a,b) scalar product is invariant

under A, hence A €D,.
i 1 4

Similarly, from Faan=4l—Fab it follows
A S A
Aa b a &b 1 &S{ab}

1 pa
Fl ¢F2 * FlaFE = —2“:-F3 »

or ﬂB{a_B] = {ﬂla]-b + a'(ﬂzb). This shows that ﬂl,ﬂz,ﬂz'
form a triality triplet and ﬂz='l:{ﬁ-i1, ﬂ3=1:2{;11], T being the

triality automorphism (26).
Let us denote A derivation, which annihilates Ei

idempotents and in the Peirce components acts according to
£51), by {ﬂl,ﬂz,ﬂa}. Thusa general element from Der Mz is
6={al,az,aa}+{ﬂ1,ﬂz,ﬂs}. So, because a triality triplet is

uniquely defined by its first element, dim(Der M§]=

.=3x8428=52. It can be tested, by constructing the root

system, that Der M; is F 4 exceptional Lie algebra.

The commutation relations in the Der Mz are given by
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(46, .8_,8_),48 8,8 YI=(18 ,A 1,04 .4 1,0a_,8.1)

- ; 52
[{ﬂi,ﬁz,ﬂa},{al,az,aa}] {ﬁlal.ﬁzaz,&aaa} (52)
[{a,0,0}, {b,0,011=(a’ ,A® ;A% } [{a,0,0},{0,b,0}]={(0,0,ab)

ab ab ab
[{0,a,0},{0,b, 0} 1=(a> ,a’ ,a% } [{0,0,a},{b,0,0})=(0,3b,0)
ab ab ab
[{0,0, a}, (0,0, b} 1=(a% ,a° ,A' } [{0,a,0},{0,0,b}]=(ab, 0,0},
ab ab ab
where a‘h,azb,fb triality triplet is defined through
a a a ;

ﬂ;b{x1=4{a,x}b—4(b,x)a
ﬂzh{x]ﬂg-[a-x]—ﬁ'[b-x} .
8% (x)=(x-a)-b-(x+b)-a
ab
As an illustration, let us prove that

{{a,o,o},{o,b,o}}FT={o.o,a_b}F’f ,

Using (48), we get
f{&,0,0},{0,13,0}]}:'}1‘:;-2'(3:3}13-3 (x-b)
Furthern ¢, because of octonion alternativity

a, s lzob)=(X+a) b-(a,x,b)=(x-a) b+(X,a,b)=x-(a*b) ,

I{a,o,o},{o,b,ﬂ}lF’}F’; (ab)_g D,E}F’: .

Let SM3 be a set of elements from Mz with zero trace.

For any TESME let T denote the following linear trans-
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formation of Mg: T X==ToX . As in the case of Mz, we have a
direct sum of the vector spaces L=Der{hﬂz]@smzﬁ.

Commutation relations between &eDer MZ,{F?}A, {FZ]h,

a,A A A
[Fa)’ Eza’ E,13 (where E”—E‘.l—EjJ elements of L can be
obtained using octonion pmpertig:-s and the result is

aA b.A, -1 .1 2 39 B.A DA .8 i .0
(FVF ) =8 A8 ) HE)" (F ) en(a® al 4% )

LD, (Fo)M=-2a% 2%ty (P, (2 1=-1(0,0,35)

4
3 e . o SR | —= a.An bA, 1, —
{(Fa} ,{FIJ 1= E{U,ab,O} [{Fz) ,[FBJ ]——E{ab,D,O}
A aAy A i O |
[E’_(F )" == {a,0,0) [E ,.(F,) }=~-(0,a,0) . (53)
A Ay 1 A Bohy 1 .
[Em’{Fa) ]—T{G.D,a} -[Eza"(F1] ]-T{a,{},ﬂ}

A - T A a,A,_ 1
[E23’{F2] ]—T{O,E.O} EEZB’{FB] I= -4—{0.0,3}

e 4 A
[E; ,.E},1=0 (5, T"1=5(T)

As we see, L is closed under commutation. To rediscover the
known fact [10,21] that L s E _ exceptional Lie algebra,
-

‘let us consider the following basis (G '=t(G), G =t2(G)):

2 2 2
e T T 2 A b2 T -
2
iy T LT <oy Srei g A s
Ka_l{G'm'Gm'G'm} Ka_Eza Ka_ s {2E13 Ezaj
v3
2 2 2

o T % e ; Ak, =5 :
gij"l{TiJ’Ti ’Tij} €0 I{Tm’Tm’Tm} gm_l{Tm’Tm’Tni}

J

33




1 ul o
X11=§{u1’0’0}+ [FI }

&
* . *
X =R ,R ,R °)
21 S i

b £
2i

Vv
R

—_ +
2 {u 0,0}
—'2"—‘{1.1 0,0}+
%{D O, u ,'-+
1 =
..,L.z_.{ﬁ‘,_.i b
—é—{'},ﬂ,tl}-ﬂ-
—L{D u ,0p+
2 ¥ ]
- .0 .0
_2,_ ¥, Tllhl, +

40,0, )+

1
- T {0,0, 'I_Iﬂ}'i"

1 { *
== ? O.UD,D}+

*

34

2
Y =8 5" 8"} Y ofs 6 "8 "
11 e Tl 11 S i
po U4 A r Ufﬁlﬂ
i * 1 * i
F Y = —{u ,0,0}+|F
e 2i 2 i S
HE
¢ A E 2 o KN
F° e kel e
g L 2 0 8]
rl.lwf"t £ Uﬂwh
LF1J WR ?{L‘L 0 D}'i'[ { |
*
: ui_\n 2 ! Mk ulm.
e X = —{0,0,u }+|F
a8 Li = I a3y
E
¢ Hi}f\ . 1 = , inﬂ
FIF Y = = {0,u ,0}+|F
g zj L1 2 | T
*
f ui M 1 r ui'\f\.
ELFS ] X =“?{0,0,U }+ LFa J
T e 1y A
i * 1 * i
sz) YRi_-T{Oiuijo}"' LFE j
*
r U A e U 4 A
F D] \'4 -———L{O,u O}+|F 2
R L 2 0 e
; uﬂ A ks ; u;-.n
hFa] VR T{O O,u }+LF3 ]
@
F UNA g P
P vV e i tooa e ?
o8 L 2 0 {3
]
r U 4 A r U A A
0 * 1 : 0
LFZ] VR,- ?{O,uu,ﬁh LF2 ]

‘o Lat00fF ] x =R.RTRT)
il + o
LB 1] a 1y

(54)

the results of action of
(their eigen-

the roots, we need
u=1+6 operators on this basis

To find
the adK i

I |
values). The calculations by means of (52) and (53) show

that (54) is the Cartan-Weyl basis and the roots are

i
+A + — + P 5
ivmivn < _ﬁo:_ 5 (uﬁﬂ@tﬂﬁ] : M 2 (v v’_‘v ) (55)
where m,n=1+5, a=1+4 arId
M=M -v -v M= L[v+v+u +u)
HREE T R R £ 200
- 1
hl—.!"tq--l?j—vk P‘n4~* *z"' {P]+F2+P3“‘P4].

The correspondence (46) remains valid. The other Cartan-Weyl
basic elements correspond to the roots

1 #* 1
X — M +5(v V3P ) =M e W SV
1 * 1 :
YLi—- ﬂi T{U +th' ) YLI-——- —hi+~—2*[u5+@uﬁl
X --M-—l— v -3 ) X*—-M+—l~[v—ﬁv]
Ri jo ok 5 & Rl Jret g o 6
1 | * 1
YRi_ ﬁ1+T(v5+ﬁuﬁ) Ym_ _ﬁi-ftv;ﬁpaj (56)
+ 1 = = 1 = .
VL _— .—ﬂ4+§ [v;»’ﬁvﬁ] VL — ﬁ4—-§=(v5+1/3vﬁ]
o oy —~1—[v V3 ) et e e e
L e, L K. 5 6
et —M+ 1 (v V3V ) Vot M-—l(v-v'?._'v]
R e 5 6 R g 2050 6
1 & * 1 2
V — =A -= (v +/3v ) Yoo A +—(v5+‘b/3l?ﬁ}

R R IR T o R g 2

The simple roots from (55) are
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1

«=— (v -v -v -v -v -V3r ) oK =P + o« =p -v

S I 23 &% 6 = K8 3 3 %
i

o =y -v a == ((v-v-v-v-v+3v) a=v-v ,.

TR Wik s 2  Eoed - . REy WA 6 S

and they correspond to the Dynkin diagram

o [+ 4 o (14 o
1 2 3 4 5

o 0 I o o
24
6

1
| 24 arnn:L ;
Hence L is Eﬁ exceptional Lie algebra. The way how it

(it can be shown that (v ,v )=
m’ n

was constructed shows the close relationship between [Zl5 and

Eﬁ: the  latter is connected to the exceptional Jordan

algebra Mg and the former — to the Jordan algebra Mz [22].
f4?} multiplication table shows that M: has three Mz

subalgebras, consisting correspondingly from elements

a a -0 & 0 8 - 0.0
& B 0l. ]0o o OfF and |0 o =
000 a 0 B -8 A

Therefore E 6 has three equivalent D_ subalgebras. It is

-
interesting to note that the corresponding SO(10) subgroups
in Eﬁ are the analogies of the U-,V- and T-spin SU(2) sub-

groups in SU(3). This becomes clear if note, that when
octonions are changed to real numbers the above described
construction for D5 gives Al Lie algebra and for Ea —— Az

Lie algebra.
Let Dé be that D5 subalgebra of E& which acts in the Mz

L

Jordan algebra, formed from the F?,Ej,Ek elements. D;
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A

& a,A g
_consists from {ﬂl,ﬂz,ﬂa}, {FIJ A E [Ejk_Ej Ek],

{31131’61232'.6t3a3} - operators and their [LI;mpIex) linear:
combinations. Therefore the intersection of these 'Dé
subalgebras is D, formed from the {ﬂl,ﬂz,ﬂa} triality
triplets, and their unification gives the whole E’a algebra.

The triality automorphism for D4 can be continued on E&:

: {al,az.aa} {FT]"‘

/I A \ ,/"H \

a,A . e
{az,aa,al}{”‘_ {aﬂjal'ai‘.} {F3] {"""‘"'"""__{le

5
: (57)
{ﬁl,ﬂz,ﬂa} E‘“‘ :
- \ e \
.r"‘-'-il- /
AN N M (KA % "
SR el 3 2

It can be verified that (57) actually is an Eﬁ automorphism,

i.e. that (52),(53) commutation relations are invariant
under it. For example, let us consider

a.M 33 oS aaz s M
[{a,,a,a ), (F?) 1=[1=2 ] +[F3 ] +2(2,a )E}. .

We have
i — an LY
-c[{al,az.as}]—-{as,al,az} ; ‘r:(F‘1 )= F‘2

and

a_ayA ¢ 3aA ; a_a)A ¢ aayA <
b [Fz ] +[F3 ] +2{a,a1}E23 =_[F3 ] +[F1 ] —Z{a,al}Em.

But with the help of (48),(53) we find that really

s T aaa A 3.3.2 A A
a3 ),~(F2) ]=—.[F3 ] +[F1 ] -2(a,2 )E" .

2 o




Th1s T automorphism causes a cyclic permutation of the

D' subalgebras
D

A 5\ .
;L o _ (58)

3 5
D ¢ D
5 5

and the following cyclic permutations in the (54) basis
*

B e e

e e 0i L2
- i L e -
" B T
g X ik
1i 1i
k] # ;
Yo S W 2 S Ll el R
1i SLi 11 13 2i R
o i " 2
R1 Ri Li (59)
* & - ~
Y —} WL —_— —VL W — s -V
i i -~
X\ N
\ X &:/ : \xh vV J‘.‘/ \\ V" F
L L
- E 3 +
W — -V W — -V
R R R R

il ,.J’/
\‘J; . \ V; rd

On the Cartan subalgebra its effect is given by
1 T
r{l(ll— - [Ksz_Ka_Ka;] T{KE]_- % (—K1+K2—K3—K4}
1 1

" 1 f— ]' -
‘r(Ksl-- T[K5+\f§ Kﬁ] T(KE}-?[@ Ks I(ﬁ)

So E, exceptional Lie group is very closely related to

triality. Firstly, it  unifies the spinoric and vectoric
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octonions in one Z27-dimensional irreducible representation
(algebraically they wunify in the Mg_ exceptional Jordan

algebra). Secondly, its internal structure also reveals a
very interesting triality picture:

The equality between SO(8) spinors and vectors now
results in the equality of three SO(10) subgroups (in the
existence of the triality automorphism t, which interchanges
these subgroups).

To form a quark-lepton family, we have to select one of
these SO(10) subgroups. But a priori there is no reason to
prefer any of them. The simplest possibility to have family
formation which respects this equality between various
SO(10) subgroups (E6 triality symmetry) is to take three

copies of M§ and arrange matters in such a way that in the
first Mg the first SO(10) subgroup acts as a family
formating group, in the second M: — the second SO(10) and
in the third one — the third SO0(10):




More formally, we have 27+27+27 reducible representation of

Eé’ such that when we go from one irreducible subspace to

another, representation matrices are rotated by the triality

automorphism T : for any aeEﬁ element a representation
matrix looks like

A 0 0

O o TlA) 0 ;

& < 0. e k)

where a— A correspondence gives a 27 irreducible repre-
sentation.

6. CONCLUSION

If we take seriously that octonions play some
underlving dynamical role in particle physics and SO(8)
appears as a one-flavour unification group, then the
triality property of SO(8) gives a natural reason for the
existence of three  quark-lepton generations. Family
formation from two flavours due to weak interactions can be
‘connected naturally enough to SO(10) group, but with the
triality symmetryv violated. An attempt to restore this
symmetry leads to the exceptional group EG and three
quark-lepton families. :
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