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ABSTRACT

Paraxial equilibrium of the finite # plasma in the magnetic mirror is
considered. The upper § limit is established, upwards of which a current
layer is generated in plasma, and, as a consequence, a small longitudinal
scale-length occurs in the problem. The latter leads to the violation of the
paraxial equilibrium. Results are applicable to various plasma configurations
with the mirror confinement.
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Consider a paraxial (or “long-thin”) magnetic mirror with the vacuum

~ magnetic field on the axis B,(z), increasing from the middle plane (z = 0)

to the plugs. Let R be the mirror ratio of the vacuum field. In the paraxial
approximation, when the characteristic radius a of the plasma is small as
compared with the scale-length of the magnetic field variation along the axis,
the transverse equilibrium equation claims (see, e.g., the survey [1]):

87py + B? = BY(2), (1)

where B is the field strength, p; is the perpendicular plasma pressure, which
can be expressed as
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Here f denotes the guiding center distribution function, ¢ and u are the
energy and the magnetic moment of the particle, B, is the maximum field
strength in the plug, and the summation over the particle species is carried
out.

In the collisionless limit, f is a function of only € and p on the fixed
field line (see [2]). Since the particles with various energies contribute to the
pressure integral in an additive way, one can analyze the equilibrium for the
monoenergelic distribution

f = F(u)8(e o), o

and then perform the summation over all groups of particles. In this paper
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we select the function F{u) in the form:
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where ji. = €/B., and A is a factor, proportional to the number of particles
~on the given field line. The model profile (4) corresponds to the plasma
distribution, in which particles with large pitch angles dominate. DBesides,
the function (4) vanishes on the surface of the loss cone, which is determined
by the equation u = ..

Let us introduce g as the ratio between the perpendicular plasma pressure
and the pressure of the vacuum field in the midplane:
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The computation of p; , using (2)-(4), leads, accounting for (1), to the equi-
librium equation

G(R) = Rj(2), > (6)
where _ o5
I-R R+4 e
G(R) = 5 )R( 28 it )
and the following notations are accepted:
B B,
= "B—**, R, = B, ;

o BR3(1 - )"
5 o
(= Ruo(1 - 8)?] - 4+ Ryo(1- §)?

The subscript “0” refers to the values in the midplane (so that R,p, for
instance, equals to the inverse vacuum mirror ratio, R,o = R~1). Expression
for the pressure py cancels at the point B = B, (the first term in (7) equals
to zero if R = 1). In accordance with (5), (6), the quantities Ry and R, are
related as

(8)

Ro = Ryo(1 - B)/2. (9)

The plot of the function G(R) at some fixed values R, and 3 is presented
on Fig.1. The specific feature of the function G is that there exists a point
Rmin(Ryo, B), where G has its minimum. One can show that if
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Figure 1: G(R) profile.

then the equilibrium equation (6) has no solutions. Indeed, if (10) is satisfied,
then the function G(R) grows in the midplane direction in the interval Ry <
R < Rpin. The latter results in a contradiction (see (6)) with the assumption
of the decrease of the profile R,(z) in the midplane direction.

As follows from the elementary analysis, in the small 8 limit the value
Iy always exceeds that of R,.i,. As B grows (with R, being fixed), R
decreases, whereas R,,;,, increases. At some value § = .. the quantities
Ro and R, become equal to each other. With the further growth of S,
the inequality (10) comes into force, and the paraxial equilibrium becomes
impossible. Thus, the critical value G, is determined by the requirement

dG

E R=R, = 0’ (11)

or

ke -
S Ll T B Y (12)

2 R3

The numerical solution of the equation (12) is presented on Fig.2, where
Berit as a function of R. being shown.
In the limiting cases
R-1L1,

o
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Figure 2: Periy versus vacuum mirror ratio R. The dotted line marks the maximum
value f¢ris = 2/3. .

the asymptotes of the function Gt (R) are found to be

JBcrH = ‘I(R - 1) y
and
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respectively.

Examine now the magnetic field behavior in the vicinity of the midplane,
‘where B can be written as

Bo+ b,

with & being a small correction to the value By in the midplane. The expan-
sion of the vacuum field near this plane gives:

. 122
Ryo (1+§E) ;

where L is the characteristic scale-length of the vacuum field variation in the
axial direction. Using (6), one obtains:

oo : 7.
B ﬁ(RG (Ro)ﬁﬂ—ﬂ) , (13)
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with the prime denoting the R-derivative, G’ = dG/dR. According to (9),
Ro/Ryo = 1 (since B < Perit X 1), and so the relation (13) leads t.‘c:r Fhe
following estimate for the scale-length ! of the magnetic field B variation
along the axis:

| ~ LIRG'(Ro)]'” . (14)

When /3 approaches i, the derivative G'(Rq) terfdps to zero (see (11))
together with I, and the paraxial approach in the equilibrium problem fails.
Evaluating the derivative G'(Rg), one can find thaila the dependeuc? of the
scale-length { on the suberiticity value Beri¢ — f is given by the relation

1/2
erit

The paraxial approximation becomes invalid when the magnetic field varia-
tion in the axial direction has a scale-length, comparable with the charac-

teristic plasma radius a. Accounting for (15), one obtains that the paraxial

equilibrium violates even for

Beris — P X ﬁcrit(%)z- | (16)

It should be recognized that the small scale-length [ results from the
generation of the transverse currents in the midplane region, which are re-
sponsible for the steepening of the field line shape. In support of tl'1'1s, one
can verify that the vanishing of { for 8 = fBepi; is attended formally with the
field ]incﬂ fracture in the midplane, that is caused by the transverse current
layer formation. S

As follows from the discussion above, the solution of the equilibrium equa-
tion (3) exists if | :

: dG

— >0. (17)
dit =
The last condition coincides with the well-known criterion of the mirror mode
stability [3]. In paper [4] the requirement (17) was used for the definition of
the maximum MHD-stable beta values in the numerical Fokker-Planck code
evaluations. Besides, the condition (17) conforms with the results of paper
[5], in which a well-posed equilibrium problem being diﬁscussed.

The author is grateful to D.D. Ryutov and V.V. Mirnov for a number of

helpful remarks.
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