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ABSTRACT

Relativistic corrections to the positronium decay rate are calcu-
lated. They are close to 40(a/7)? and 46(a/x)? for singlet and triplet
states respectively.
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1. The strong disagreement between the experimental value of the or-
thopositronium decay rate[l1]

ro-Ps — 70482+ 16 ps™?. (1)

exp

and its theoretical value which includes the order o and a®log(1/a) correc-
tions [2, 3, 4, 5]

i 2(r? - 9) a 1 1 -
o—Pa & e 2 G —_ = 1
e [1 10.28?‘_ 3% log a‘ 7.03830 ps~. (2)

is a serious challenge to modern QED. For the disagreement to be resolved
within the QED framework the correction ~ (a/7)?, which has not been cal-
culated up to now, should enter the theoretical result (2) with the numerical
factor 250 % 40 which may look unreasonably large.

Such a hope is not as unreasonable however. The argument is as follows
(6]. The large, —10.28, factor at the a/n correction to the decay rate (see
(2)) means that the typical magnitude of the factor at the a /7 correction to
the decay amplitude is roughly 5. Correspondingly, this correction squared
contributes about 25(a/n)? to the decay rate. Indeed, numerical calculations
[7] have given factor 28.8 + 0.2 at (a/7)? in this contribution.

Moreover, it is only natural to expect that the interference of the second-
order radiative correction to the amplitude with the zeroth-order amplitude
should contribute about twice as much to the decay rate as the square of
the first-order correction. In other words, the natural scale for the total
second-order radiative correction to the decay rate can be about [g]

100(a/7)*. (3)

A similar conclusion is made in a recent paper [9] starting from the Pade
approximants.




One more class of large contributions to the positronium decay rate is rela-
tivistic corrections. A simple argument in their favour is that the correspond-
ing parameter (v/c)? ~ a? is not suppressed, as distinct from that of usual
second-order radiative corrections, (ar/7)?, by the small factor 1/7% ~ 1/10.
In this article we present the results of calculations of relativistic corrections
to the positronium decay rate.

This problem was addressed previously in Refs. [10, 11]. We differ essen-
tially from those authors in the approach to the problem and, which is more
essential, in the conclusions made. The origin of the disagreements will be
elucidated below. :

As to the relativistic correction to the parapositronium decay rate, also
obtained in the paper, its calculation was started by us as a warm-up exercise
for the much more complicated orthopositronium problem. However, the
correction in the singlet case also turns out large, quite close to the sensitivity
of the recent experiment [12].

2. The central point when treating the relativistic corrections to the
positronium decay rate is as follows. Calculating the decay amplitude we
have to integrate the annihilation kernel over the distribution of the electron
and positron three-momenta §. To lowest approximation in v/c the kernel,
both for para- and orthopositronium, is independent of those momenta and
we are lelt with the integral over p of the nonrelativistic wave function in the
momentum representation which is equivalent to ¥(r = 0) in the coordinate
one. However, already to first order in (p/m)® the momentum integral

8v rad
paZ + 1)2

[ drwmie = [ drw/m; (1)
linearly diverges at p — oo (a = 2/ma is the positronium Bohr radius).
Crucial for the problem is the following observation. The true relativistic
expression for the anmhilation kernel does not grow up at p — oo, as distinct
from its expansion in p/m. So, its integral with ¥(p) in fact converges. Let us
transform therefore the integral over |p] into that from —oo to 400 and shift
the integration contour into the upper halfplane. We will first come across the
wave function pole at p = ¥ma/2 and then the relativistic branching point at
p = im which originates from the amplitude and is not related by itself to the
wave function. It is obviously just the pole contribution which corresponds
to the relativistic correction we are looking for. This contribution can be
easily calculated and constitutes
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In other words, the recipe for treating the relativistic corrections originating
from the amplitude is just to make the substitution

U#ﬂﬁz=vg—+~§ﬂz (5)

in them. One may wonder about the sign in rhs of this relation. Let us have
in mind however that the main contribution to the integral comes from the
relativistic cut. That contribution corresponds to usual radiative corrections
~ a /7 and is of course much larger than the effect ~ o we are interested in.

The next point essential for our consideration is the use of noncovariant
perturbation theory (see, e.g., Ref. [13]) which allows us to treat in a natural
way the positronium binding energy.

Let us start with a more simple case of parapositronium. Here the non-
covariant annihilation amplitude can be written as

M = 4raV T (&ha Ach kl): A: (7= k)
E—w—e(@— ki) —e(p)
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In this expression x and ¢ are nonrelativistic spinors; E = 2m—ma?/4 is the
positronium total energy; € 2 and k; 3 are the polarizations and momenta of

the photons; wy = wp = w = E/2 are their frequencies; e(p) = V/m? + p?;

ap + ﬁm)
e(p)

are the projectors onto the positive and negative energy states of a fermion
with a momentum §F correspondingly. The Coulomb interaction in the inter-
mediate state can be neglected since the momentum of one particle in it is
close to m.

The expansion of the amplitude in p/m is straightforward. Averaging
over the directions of 7 (an S-state is under discussion) and using relation
(5) we obtain

V2

M+68M =1 +a2(% + M (7)

(B + (1 = 2),

As(F) = % (I:I:
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where M is the lowest order annihilation amplitude. The corresponding
relative correction to the decay rate is

fFE =a?(1 + -‘:—i) = 1.3507. (8)

3. The calculation of relativistic corrections for the triplet state decaying
into three photons is much more tedious problem. We believe that have
managed to simplify 1t considerably, but still it is too lengthy to be presented
in detail in a short letter. So, only its brief outline is given below.

The construction of noncovariant perturbation theory amplitude is straight-
forward. But it is convenient to treat it in a slightly different way than it
was done for the singlet state. First of all rewrite the initial energy E in the
perturbative denominators as '

E = E - 2¢(p) + 2¢(p)
and expand the amplitude in

‘.l"ﬂ.l‘.l2

(here we use recipe (5) for p?/m?).

Zeroth term of the expansion transforms into usual covariant Feynman
amplitude for electron and positron with 4-momenta (e(p), £5). Now we ex-
pand this “covariant” amplitude in p/m, average the terms of second order in
p/m over the directions of  and make the substitution (5). The interference
of this a®-correction with the lowest order amplitude after the summation
over the photons polarizations and. integration over the final phase space
generates the following correction to the decay rate:

6r'e <3 3172 — 240
r = 16(x2-9)°

(9)

This correction is conveniently combined with that originating from the
phase space correction. It can be easily demonstrated that the shift of the
total energy from 2m to E = 2m — ma?/4 changes the phase space and
therefore the decay rate by

— T (10)

In this way we come to the following total “covariant” correction to the
decay rate
6T + 6T,  ,27Tn? — 204

Rt TR 13%)

We have checked that if one goes over from a? to v? in Eq.(9) according to
prescription (5) and changes the phase space shifting 2m — 2m + mv?, the
result coincides with the v? correction to the probability of 3y annihilation
of free electron and positron in 2S5 state calculated in Ref. [10] (see also Ref.
1)),

The correction to the decay rate induced by the term of first order in
E — 2¢(p) = ma?/2 in the expansion of exact amplitude demands numerical
calculations which give

% = 0.8070°. (12)
Let us note here that the weird term with /2 in the correction to the singlet
decay rate (see Egs. (7), (8)) is of the same “noncovariant” origin.

Going back to the triplet decay rate, we have to note that our results for
the a? corrections themselves differ completely from those of Refs. [10, 11].
It is not so much due to the “noncovariant” correction (12) completely lost
there, this correction is not so large numerically. The main problem is that
of translating v? into a®. In Ref. [10] they use the prescription v?> — a2
which leads to a wrong sign of the a? correction (though to a reasonable
absolute value). On the other hand, the prescription v? — —a?/4 used in
fact in Ref. [11] gives a correct sign, but strongly underestimate the effect.
Quite possibly however, there is no direct contradiction between their result
and ours, since as it is stated explicitly in Ref. [11], their consideration refers
to a part of relativistic corrections only. :

4. Let us consider at last the effects originating from relativistic correc-
tions to the wave function y(7) itself. We will use here the Breit equation
following to some extent Ref. [6]. Para- and orthopositronium can be treated
here in parallel. ;

The part of the Breit Hamiltonian (BH) that corresponds to the relativis-
tic corrections to the dispersion law of the particles and to their Coulomb
interaction,

4
p TQ
L":: e 1
L+ Z56(0) (13)
can be easily transformed to 2
3
a .
Ve= s (14)




Here and below we omit constant terms in the perturbations (obviously, they
do not change the wave function) and substitute —ma/2 for 8, acting on the
ground state positronium wave function.

The next spin-independent term in the BH

o

Vin = =

(2 + 257995 | (15)

2m?r

describes the magnetic electron-positron interaction due to the orbital mo-
tion. For the ground state it transforms into

o’ o’

dr  2mr?’ (16)

The last term in BH of interest for our problem is the contact spin-spin
interaction

Vm =

T o
Vis = ;—n—idﬁ(ﬂ; A= ES(S +1)-2. (17)
It is conveniently rewritten as
TR [H 5"'—] R e namer p/m — a/r. (18)
: dm L ' r 4mr?’

The terms o®/8r, o®/4r from Eqs. (14), (16) taken together shift obvi-
ously the coupling constant & — a1 — 3a?/8) which leads to the following
relative correction both to the |#(0)]? and decay rate

ol 9a?
- =—— (19)

As easily one can calculate the relative correction due to the commutator
term in Eq. (18):

5113 : Et'z
e A_g_' (20)
Let us turn now to the singular part of the Breit perturbation
A a1}
G- d=ahr = 5) (21)

The normalized solution of the radial wave equation

1d° A ma i

8

is

R = 2(ma/2)%%[1 — A(3 — O)](mar)* exp[-(1 = A)mar/2]  (23)
where C' = 0.577 is the Euler constant. The eigenvalue E deviation from
—ma?/4 is by itself irrelevant to our problem. The corresponding relative
correction to the |1(0)|* and decay rate constitutes obviously

6T'3

= —2X[(3 = C) — log(mary)] (24)
where ro ~ 1/m is the distance at which the annihilation takes place. The
logarithmically enhanced part of this correction

&glog(lfa){ _12}3& g:tl} i s (25)

has been calculated previously for triplet (see formula (2) and singlet cases
in Refs. [4] and [6] respectively. So, we omit it and in this way come to the
following total relativistic correction due to the ¥-function modification:

6Ly _ 31/8 — 2C — 2log(mry), S$=10
r —19/244+1/3C + 1/3log(mry), S=1

= (26)

We believe that +1 is a fair estimate for the scatter of possible values
of log(mry) introduced by the uncertainty in the short-distance cut-off ry.
On the other hand, the cut-off of the logarithmic contribution at the atomic
distances has been taken care exactly in our consideration.

Our result for the atomic relativistic correction in orthopositronium,
(-19/24 4+ 1/3C)a? = —0.6a?, differs from that given in Ref. [11]. We
cannot explain the disagreement, since the authors of Ref. [11] present only
their numerical result for this correction: 1.16a2.

5. Tosummarize, the total relativistic corrections in para- and orthopositro-
nium constitute, respectively,

6T = ¢ &\ 9 i Py
oT b g &2 _—
T =477 =46(=)°, S=1 (28)

(it is instructive perhaps to present these relativistic corrections in usual
“radiative” units (a/7) as well). The terms with log(mrg), omiited here,
introduce the errors which we estimate as

+2a? = :1:2{](—:-)2, S =0; (29)
9
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As to the orthopositronium decay rate, our correction (28) and that of
Ref. [7], taken together, reduce essentially the gap between the theory and
experiment, from (250 & 40)(e/7)? to (175 £ 40)(a/7)2.

In parapositronium the magnitude of the calculated correction is close to
the present experimental accuracy [12]. Here there are no special reasons to
expect that true radiative corrections are as large. So the measurement of
the effect looks sufficiently realistic.

We are extremely grateful to A.S. Yelkhovsky for numerous useful discus-
sions and the participation in some stages of the work. We acknowledge the
financial support by the Program “Universities of Russia”, Grant No.94-6.7-
2053. One of us (I.B. Kh.) thanks the Cambridge University for the kind
hospitality and the SERC for financial support.

References

[1] J.S. Nico, D.W. Gidley, A. Rich and P.W. Zitzewitz, Phys.Rev.Lett. 65,
1344 (1990).

[2] A. Ore and J.L. Powell, Phys. Rev. 75, 1696 (1949).

[3] W.E. Caswell, G.P. Lepage, J.R. Sapirstein, Phys. Rev. Lett. 38, 488
(1977).

[4] W.E. Caswell, G.P. Lepage, Phys. Rev. A. 20, 36 (1979).

[6] G.S. Adkins, Ann. Phys. (N.Y.) 146, 78 (1983).

[6] 1.B. Khriplovich and A.S. Yelkhovsky, Phys.Lett. B246, 520 (1990).

[7] A.P. Burichenko, Yad.Fiz. 56 (1993) 123 [Sov.J.Nucl.Phys. 56 (1993)].

[8] I.B. Khriplovich, A.I. Milstein and A.S. Yelkhovsky, Physica Scripta
T46, 252 (1993).

9] M.A. Samuel and G. Li, preprint SLAC-PUB-6318 (1993).

[10] E.A. Kuraev, T.V. Kukhto and Z.K. Silagadze, Yad.Fiz. 51 (1990) 1638
[Sov.J.Nucl.Phys. 51 (1990)].

[11] P. Labelle, G.P. Lepage and U. Magnea, preprint CLNS/93/1199 (1993).
[12] A.H. Al-Ramadhan and D.W. Gidley, Phys.Rev.Lett. 72 (1994) 1632.

[13] I.B. Khriplovich, A.I. Milstein and A.S. Yelkhovsky, Am.J.Phys. 62
(1994) 70.

10-

1.B. Khriplovich and A.l Milstein

Large relativistic corrections
to the positronium decay rate

A.H. Muavwumeiin, H. 5. Xpunaosuu

Bonepmme peISTHBHCTCKHE TONPABKHA
K BEPOATHOCTH pacHaza MO3MTPOHHA

BudkerINP 94-30

OTeeTcTBennnil 3a Bunyck C.I'. Ilonos
Pabora nocrynuna 30 mapra 1994 r.

Cnano B Habop 1.04. 1994 r.
Ilopnucano B neyats H anpens 1994 r.
Popmat 6ymaru 60x90 1/16 O6vem 0,8 neu.n., 0,7 yu.-u3n.a.
Tupax 160 3k3. BecnnaTno. 3akas N 30

O6paborano ua IBM PC u ornevarano na
poranpnuTe UAD am. I''H. Bynkepa CO PAH,
Hosocubupcx, 630090, np. axademuxa Jaspenmvesa, 11.




