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Abstract

Static magnetic quadrupole moment of a nucleus, induced by T- and
P-odd nucleon-nucleon interaction, is investigated in the single-particle
approximation. Models are considered allowing for analytical solution.
The problem is also treated numerically in a Woods-Saxon potential
with spin-orbit interaction. The stability of results is discussed.
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1. Magnetic quadrupole moment is a static characteristic of a quan-
tum system which is forbidden by P- and T-invariance. Nuclear magnetic

quadrupole moment (NMQM) can be induced both by the nucleon electric

dipole moment[1] and by P- and T-odd nuclear forces[2]. The interest to
NMQM is due to the experimental searches for P- and T-odd effects in atoms
and molecules (see, e.g., book([3]).

The manifestation of electric dipole moment (EDM), which also violates
P- and T-invariance, in atomic and molecular phenomena is strongly ham-
pered by the electrostatic screening. In a stationary system of nonrelativistic
pointlike particles interacting via Coulomb forces such a screening of average
electric field acting on any paricle is complete. Therefore, in such a system
for a particle EDM there is nothing to interact with, which means that this
EDM just cannot be observed [4, 5].

The nuclear dipole moment becomes observable however due to the finite
size of a nucleus, more exactly, due to different distribution of its charge
and EDM [6]. One more way to transfer nuclear P- and T-violation to an
atom or molecule is via NMQM [1]. It demands of course nuclei with spin
I > 1/2. Besides, the NMQM induces P- and T-odd effects only in atoms
(molecules) with unpaired electron angular momenta since it interacts di-
rectly with magnetic field of the electrons. However, when operative, the
NMQM is much more effective for circumventing the electrostatic shielding
in atoms and molecules [1, 2, 3].

It has been shown in Ref.[2] that the NMQM induced by the P- and T-
odd internucleon interaction can be much larger than that due to the nucleon
EDM. In that paper the quadrupole moments, induced by that interaction,




were evaluated in a simple model where the profile of nuclear density was
assumed to coincide with that of nuclear potential. In the present article
we calculate NMQM within a more accurate approach. Namely, we use a
realistic description of the nuclear density; the nucleon wave functions and
Green’s functions are obtained with Woods-Saxon potential which includes
the spin-orbit interaction. We include also the contribution of the current
generated by the spin-orbit interaction; contrary to naive expectations, this
contribution does exist for an outer neutron, but does not for an outer proton.
One more model admitting a closed analytical solution is considered, that of
the oscillator potential. We restrict throughout the present paper to the
single-particle approximation, that of a valence nucleon above a spherically-
symmetric core.

This approach was recently used by us [7] for treatment of nuclear anapole
moments, P-odd, but T-even characteristic.

2. Let us begin with discussing the T-and P-odd nucleon-nucleon poten-
tial. In the local limit and to first order in the nucleon velocities p/m it can
be written as follows (see, e.g., book [3])
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where the notation { , } means anticommutator. The dimensionless
constants € characterize the magnitude of the interaction in units of the Fermi
weak interaction constant G = 10~°/m? and are supplied with subscripts in
order to distinguish between protons and neutrons.

After averaging this expression over the core nucleons we obtain the P-
and T-odd mean field potential for an outer nucleon
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Here p(r) is the density of the core nucleons normalized by the condition
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the subscript a takes the values p and n for an outer proton and neutron,
respectively.

Let us note that, as distinct from the case of the P-odd, T-even interac-
tion, no contact current is generated here in the single-particle approximation,

even if one starts from the two-body interaction (1). Indeed, it is only the
last term in (1), dependent on £!,, which contributes to the contact current
operator
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However, even this contribution vanishes obviously after averaging over the
core nucleons.

Now, the correction §¥ to the valence nucleon wave function generated
by the interaction (2) is a solution of the equation

(o — B)SU() = —W(7)¥(7) (4

where H and ¥(F) are the unperturbed mean field Hamiltonian and the
unperturbed nucleon wave function. To begin with, let us discuss a simple
model where the profiles of the nuclear density and the central mean field
potential coincide:

plr) = =22 ()

and the spin-orbit potential is absent [2].
Eq.(4) transforms here as follows:
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which gives

(6)

Here €53, 18 a spheri{:a.l spinor, R(r)is the unperturbed radial wave function
of a nucleon, and K = (I — I(2I + 1).

Even in a more general case, beyond this model, it is convenient to define
the correction § R(r) to radial wave function by the following relation:
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The correction § R(r) can be calculated using two independent solutions of the

radial Schrodinger equation u;(r) and us(r), regular at the origin and at the

infinity, respectively. These solutions are normalized to the unit Wronskian:
dug du1

Uy —— — — us = 1.

dr dr
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This correction 1s
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where I = 21 — I, ug(r) = rR(r) and f(r) is a density profile f(r) = p(r)/po.
The magnetic quadrupole moment operator M;; is defined by analogy

with the electric quadrupole one Qi_,, via the interaction with the corre-
sponding field gradient:
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The symmetric tensor M;_._; is related in the following way to the current
density Jn: ;

ﬂ,’j =/dr_"{?‘ffjm“+1‘jfimﬂ)rmfn. (10)

For a valence nucleon this operator can be presented as[2, 3]
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where p is the nucleon magnetic moment, and ¢ equals 1 for a proton and 0
for neutron.
With the usual definition

M= (Im=I|M,|Im=1).

one obtains after taking expectation value over angular variables
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The radial matrix element here is
(6R|r|R) = ] r2dr § R(r)rR(r). (13)
0

for a valence neutron. Here UP"

For the simple model described above (6) the matrix element can be

calculated analytically with the following result

K =13

(6RIrIR) = =5 o (14)

One more model allowing for an exact analytical result for MQM is that of
the oscillator potential. Here it is convenient to start from expression (13) for
the matrix element. Separating the tensor structure in (2), (11) one obtains
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For a harmonic oscillator
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Substituting this identity into (15) and using the completeness relation, we

find :
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Taking again expectation value over angular variables, we obtain
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3. Expression (11) for the MQM corresponds to the contribution of the
convection and the spin electromagnetic current densities. In this section we
discuss one more contribution to MQM, that originating from the momen-
tum dependence of the spin-orbit two-nucleon forces. In the single-particle

(6R|r|R) =

(6R|r|R) =

~ approximation this current density is [7]
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for a valence proton and
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is the constant entering two-body protc:i-
neutron spin-orbit treated in the contact limit:
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The proton-proton spin-orbit interaction does not contribute to the current
density in the zero-range limit we use.

The direct calculation shows that, contrary to naive expectations, the pro-
ton spin-orbit current (17) does not contribute to the static NMQM. However,
for an outer neutron the corresponding correction does not vanish. It equals

G 221
Mp= S0 gl e ss T
s ﬁﬁpﬂ el;, 1771 (6R|rf(r)|R). (20)

4. We are ready now for a more realistic single-particle calculation. This
numerical treatment is based on the Woods-Saxon potential including spin-
orbit interaction and on a realistic description of nuclear density. The profiles
of both density and the central part of nuclear potential are described by a

Fermi-type function
1
f(l') - 1+ EIP(r-—H)! (21)

a

The total single-particle potential U(7) is chosen in a standard Woods-Saxon

form
df(r)
dr

where Ug(r) is the Coulomb potential of a uniformly charged sphere.
We use the values of the density parameters from book [8]:

(13) + Uc(r), (22)

U() = U () + Ui~

R=111AY3 fm; a=054 fm py=0.17 fm=3. (23)
The Woods-Saxon potential is parametrized as in [9):

R= Ry, =1.2443 fm, a=a;, =0.63 fm,

N-2Z -
Up = (~53.3%33.6 — =) MeV, U, =~0.263(1+2 Nﬁ 20 (24)
The spin-orbit interaction constant as fitted in Ref. [10] is:
UP™ = 134.3 MeV - fm®. (25)

The correction §R(r) calculated in this way is plotted in Fig.1 together
with the model function (6). Obviously, the latter is a reasonably good
approximation to the correction éR, as calculated numerically in the more
realistic approach.
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Figure 1. The correction §R(r) for *"Cs. Dashed line is the model function
(6). Full line is 6 R in the Woods-Saxon potential.

Our results are conveniently presented in terms of the dimensionless con-
stant T related to the NMQM as follows

G  2I-1
M_V/E£QI+2ET' (26)
This constant itself consists in general of two contributions:
T - To + Tis,
n = £2(u-q)2RIr|R), (27)
Mp
5 Z
M= AU ZRAGRIF(IR), (28)
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The values of 7 calculated for two neighbouring nuclei, with odd Z and
odd N respectively, are presented in Table 1.

5. In conclusion let us compare the results obtained for the NMQM,
generated by P- and T-odd potential, with those for the nuclear anapole
moment (AM), generated by P-violating, but T-even potential. In particular,
we wish to compare the stability of nuclear single-particle calculations for
those two moments, T-odd and T-even.




Nucleus p=—=Upo/Ug IIai:monic Woods-Saxon
oscillator
BCs (148,,) T=10 0.16 0.26 0.18
¥7Ba (2d5,,) -0.09  -0.17 -0.12
Tis -0.02 - -0.02
T =011 -0.14

Table 1: The dimensionless MQM as calculated in different approaches -

For the sake of comparison with the constant 7 calculated here, it is
convenient to delete from the dimensionless AM characteristic & the fine
structure constant « (related to the electromagnetic interaction of an atomic
electron with nuclear AM) and the P-odd nucleon-nucleon constant g (the
T-even analogue of the constant £ used here). The typical value of this AM
characteristic is[11, 3, 7]

e (29)
ag  mrg
where rg = 1.2fm.
As to T, its typical value is

T~ uK4m*Upry. (30)
The ratio of those two factors, 1.e., of the T-odd effect to T-even one,

I
4mUy ?‘g

A~3 ~ 015 K A™2/3 (31)

is very small. The origin of the AM enhancement ~ A2/3 can be traced back
to the AM dependence on the geometrical cross-section of nucleus, this is
a bulk nucleus effect [11, 3, 7]. As to the NMQM, its magnitude depends
completely on the nuclear boundary (see egs.(2), (16)).

It results not only in the relative suppression of the T-odd effect. The
value of NMQM is more sensitive to the details of the nuclear model than
that of AM, 1t 1s less stable.

However reliable theoretical predictions both for AM and NMQM can be
obtained only when the single-particle calculations will be supplemented by
a serious treatment of many-body effects.
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