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Abstract

The intensity of the coherent undulator radiation of electron beam,
preliminarily microbunched by the FEL master oscillator for the FEL
power outcoupling, is approximately calculated by simple analytic con-
siderations, taking into account the transverse emittance and the en-
ergy spread of the electron beam.
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In our previous paper [1] we discussed the conservation of spatial-temporal
correlations of longitudinal density of the electron beam in two undulators,
which are separated by achromatic magnetic system. This property causes
the mutual coherency of radiation from these undulators, which we had re-
ally observed earlier [2]. If the first undulator is a part of magnetic system of
the oscillator FEL (see Fig.1), i.e. is situated on the axis of the FEL optical
resonator, then the electron beam will be longitudinally modulated on energy
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Fig. 1. The schematic diagram of the electron radiation outcoupling from
the oscillator FEL.

and density. Then, going through the second undulator (radiator), this beam
will coherently radiate on the wavelength of its longitudinal modulation (the
wavelength of the master oscillator FEL). We can deflect this coherent radi-
ation from the axis and take it out of the optical resonator, having placed




the magnetic system of achromatic bend on a small angle between the first
and the second undulator. Let’s note, that in this case the transverse mode
composition of intraresonator FEL radiation doesn’t influence on the angular
distribution of the outcoupled FEL radiation, that’s why the use of confocal
optical resonator in the master oscillator FEL seems attractive here [3,4].

Now we'll discuss the quantity characteristics of the coherent undulator
radiation of the electron beam, which was preliminary modulated in the mas-
ter oscillator FEL. Such radiation has been already discussed in a number of
works [5,6] without taking into account the influence of emittance and energy
spread of electron beam in undulator. Let’s study the stationary continuous
beam of relativistic electrons, which spreads with velocity v, close to the light
velocity ¢ (v & ¢) along the axis Z, with the electron distribution function
fo(zo, Yo, Th, ¥h, b0, to) in plane z = const on their deviations of transverse
coordinates zo, yg, of angles z§, ¥, and relative deviation of energy & (o 1s
the time of particle passing through this plane). Let’s note, that fy is the
density of particle flow in a phase space with the normalization
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Let the given beam be at first subjected to periodic modulation of electron
energy with relative amplitude A and frequency of modulation w inside a
short undulator of the master oscillator FEL, when the electron distribution
function is transformed to

Hi(zo, Yo, 5 Yo, 00, to) = fo(za, Yo, g, Yo, 6o — Asin(wip), o) - (2)

and then it passes a short magnetic system with longitudinal dispersion D,
after _he conversion in which the electron distribution function looks like

fa(20, Yo, ©os Yo, b0, to) = f1(2o, Yo, Zo, Yo, b0, to — 8o D/c) = (3)

= fg(:.':n,yn, .'I:E],ya,én — ;:lsin(wtu — kDﬁu),tu e 5QD/{:) s (4)

where k = w/c.
Then, let such modulated electron beam pass through a planar undulator,
in median plane of which the magnetic field H is parallel to axis ¥ and

oscillates along the axis Z with amplitude Hy. Its dependence on coordinates
y and z near the undulator axis is described as

Hy(y, z) = Hoch(kyy) cos(ky,z) , (5)

where k, = 27/Ay, Ay is a period of undulator. Such distribution of magnetic
field provides focussing of electron vertical betatron oscillations with longi-

tudinal period 27f3, > A,, where §,; 1s matched beta-function of electron
beam in undulator:

pc:\/i E2
Pu = ~ .
&Hu EH{]
p and E are momentum and energy of electrons, respectively. Inside the

undulator, in components of electron velocity vector oscillating parts appear
with the longitudinal frequency k,:

v (2) = vz — au(z) sin(ky2)] (6)

(6)
0y (2) = v/ (2) (7)
0.(2) = VT =0T = 0%~ o{1 = [(hou(z)sin(ke2)? + 2072}, (8)
where a,(z) = EH’-"':E[:“”{EH < 1 is amplitude of deflection angle between the

electron velocity vector and the undulator axis; y(z), ¥ (z) are dependencies of
electron vertical coordinate and angle deviations at the betatron oscillations
along the undulator:

y(z) = yo cos(z/Pu) + yoPusin(z/By) ; (9)
¥ (2) = ygcos(z/Bu) — yosin(z/Bu)/Pu - (10)

For small amplitudes of the betatron oscillations k,y(z) < 1, not taking into
consideration small quickly oscillating parts, supposing

Eoy/2
gk (11)

we'll get from (8)

) {1 _ (1 —28)ado/2 + +28 + yi /85 + v5 +
2




{12
+—;1‘E cos[?kuz]}, (12)

where a0 = E—‘Fi“— and Ey are mean deflection angle amplitude and mean
energy of the electrons in the undulator, respectively. From (12), in particu-
lar, one can see that the electron longitudinal velocity v,, averaged over the
undulator period, keeps its initial value at passing along the undulator.” In
more general case, when the undulator construction provides both the ver-
tical and horizontal focussing, the vertical magnetic field near the undulator
axis is described by the dependence

Hy(z,y,z) = Hoch(kus)ch(kuyy) cos(kyz) , (13)

where kZ_ + k2 = k2. Then the dependence of the longitudinal electron
velocity along the undulator gets a form, analogical to (12):

: { [(1——2:‘5)&“['/2-1-—1‘%/,3”1 +J: +y[1/18uy +y:]]

vi(z) mvil— 5
&2

+-~‘1—‘1ﬂ— cos[?fcu]} , (14)

where

ﬁuz‘ = ﬁuku/ku:ﬂs ﬁuy = Jﬁﬂkﬂ/k“y1 1/183-; 4 llfﬂzy = 1/18;2; : (15)

and the transverse components of the velocity vector are expressed as

ve(z) & v[z'(z) = ayosin(ky2)], (16)
(&) =), (17)

z'(2) = 2} cos(z/Puz) — zosin(z/Puz)/Pux , (18)
Y (2) = Yo cos(z/Buy) — yosin(2/Puy)/Puy - (19)

Let’s describe the radiation field of moving electron by Fourier-harmonic
of its vector-potential 7]

» _e { v()
ST cJ R(t)

where R(t) is distance from the electron to the observation point at the time
t. In far zone of radiation field

exp{iw[t + R(t)/c] }dt, (20)

R(t) = Ro = 7(t),  |Ro| > 7], (21)

where R, is radius-vector from the undulator to the observation point, r(t)
is radius-vector of electron moving along the undulator; making replacement
of the integration variable

&
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0
where t/ is the time of electron coming to the undulator input, we’ll get

&

L
= — '] i { e .E: d
A= exp(szg]Df o202 exp{ i |wiy+w 7(z) &

[ Uz(zl)
0

(23)
where L is length of the undulator, k ~ wave vector of radiation (|k| = w/c),
directed to the observation point,

F{Z) = [I(Z) + aryo COS('{GHZ)/ku, y(z}: z]:

z(2) = zgcos(2/Puz) + 2o0uz sin(z/ Buz), (24)
y(z) == N CGS{:E,’/—.HUH) n y:]-guy Siﬂ(zlflﬁuy)- (25)

The total vector-potential of radiation field of electron beam with the dis-
tribution function at the undulator input fa(zo, o, 24, ¥, 64, 1g), taking into
account the normalization (1), is expressed as :

- (kR ) L 400400400 +0o+oo+rfw 7(z)

waluh wexp(iklly — w z
s A 2mcRo /]/f][ / @)
0 —o—o—0—00—00—
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d;:l =
X exp &t ut'-|—u/ —kr(z X
0 . Uz{zl) )

fa(zo, Yo, £, Yo, 80, to) dthdxudyndmhdyadéadz} ; (26)
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where I is total current of the electron beam.

Knowing, that the total power direction diagram of the first harmonic
of electron undulator radiation is concentrated in the angular cone with the
opening angle about 1/v. [8] (where 7. = v//1 + K?/2, v is electron rela-
tivistic factor, K = yay0 is undulator parameter), let’s define the area of the
subsequent approximate consideration of the coherent undulator radiation,
having limited r.m.s. dispersion of the electron angular spread o,/ ,+ in the
beam

ﬂ'_.rrlyr < 1/?* (2?}

and diffractive divergence of the coherent radiation of electron beam with
r.m.s. dispersion of its transverse size o 4

Ox.y - Tsu/l'rf : (28)

With such approximation, having omitted small parts and rewritten in (26)
subintegral expressions as

-

()
v, (2)

f dZ] =
wfﬂz(zi)ulﬂz)w

~ k{[(1—26) /72 + 02 + 02 + 20 /B2, + =5 + y3 /B2, + Vi) /2~

s

—é-fﬂ sin[2ky 2] — Oz2[2] — 0, y(2]}, (30)

we’ll get, that the vector-potential of considered undulator radiation field of

the fi- { harmonic at observation small angles, relative to the undulator axis
(0.4 << 1/%.), mainly contains only one component:

& —aypsin(k, z), (29)

Ax(t) =~ Re {-—j%{ explik Ro — iwt)ayo [Jo(X) = J1(X)] - Iz} : (31)

Cilp

where

L
_iff
T

0 —oo0—

x exp {i [wtg + +[k((1 = 286)/77 + 07 + 0y + 20/ Buz + 26 + Y0/ Puy + ')/
[2 = ku)z — O:2(z) - Syy(z)} } dtadmgdygdm{}dyﬁdé{,dz ‘ (32)

o %ﬂl is argument of Bessel functions of zero Jo(X) and first J;(X)

orders. Taking into account (4) and having made replacements of variables

th =to + 6yD/c = to + [6o + Asin(wto)]D/e, 8 = 6o + Asin(wio), (33)

from (32) we get

L
- %ff f / f ] fﬂ(xﬂsyujmﬁ,yﬁ,tﬁu,tu}x
0 —co—oo—

x exp {i [wto — sin(wto)(Xo + kzA/y2) — 8o Xo/A + [k((1 — 260) /
/72 + 02 + 6] + +x5/Buz’ + 2§ + o’ /B2y +¥*) /2 — ku] -

— Op2(z) — 0y,y(2) }dtgdmgdygdm'ﬂdy{’]dégdz ; (34)

where Xg = —kDA is the parameter of beam bunching at the undulator
input. For the initial beam with the distribution function, independent on

time, after integrating over {5 we’ll get
4004004040400

—-;—ﬂjiifiifﬂmmyuaﬁﬁs%réﬂ}x

xJ1(Xo + kzA/~Z )exp{ —bp Xo/A+
+[((1 g Qéﬂ)/TE + 9;-2; +9: + 17[]/[3“,; + mf:l * yﬂ/ﬁug Y y[l )/2 o ]z'_'
— 0.2(2) — 8y9(2)| } dzodyodztdysdbodz . (35)
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Then, expressing the radiation magnetic field as

Heoy = tkAyy , (36)

we write an expression for the angular distribution of coherent radiation
power:

dP HZ . A2 ., . {Ikayo[Jo(X) - Li(X)]}?,, 1
E;]— ~= E‘;’{:Rﬂ ~ _-fi;{:k R = Sﬂ'ﬂ |Iz| ' {3?}
The total power of coherent radiation can be expressed as
Pel 2, (38)
where
% 2
Z, = {kaun[Jn()éic J1(X)]} ]Uzigdﬂ (39)

is effective impedance of the undulator. For small values of the transverse
emittance, the energy spread and the energy modulation of the electron beam,
when

kLAY < 1

and for all electrons of the beam along the undulator with 0 < 2z < L

kz(—2680/72 +25/B3. + 25 + Y3/ 8oy + 0 ) /2 — 0 Xo/ A —0-2(2) - Oyy(z) K 1,
the expression (34) takes the form

L

[ explitk(1/22 +6%)/2 - koJz}as

0

| L:0| = J1(Xo)

sin(kL6? /4 — k)
kLO2 /4 —

= J1(Xo)L i (40)

where 62 = 02 + 6}, k = [ku - ﬁ—%] L/2 = kL02/4 is resonance detun-
ing of the undulator, and #; is observation angle, which corresponds to the

wavelength A in angular dependence of the spontaneous undulator radiation
spectrum '
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Au
A= *2;'2'(1 + K*/2++%63)

and after subsequent integration over solid angle we get (with x > 1)

e ,
/ ,o|2dQ = 47 J2(Xo)L/k f ’”“az( ) de m an2J2(Xo)L/k. (1)

In this case with

472
k ~ 42
Al + K?/2) 94)
the maximum effective impedance of the undulator is expressed as
— (X 2 '
e 2{n K[Jo(X) — 11 (X)]J1(X0)} (43)

c(l1+ K2/2) :
where ¢ = L/)\; is a number of undulator periods. For K » 1 and
max([J;(Xo)] & J1(1.84) = 0.582

Zuo ~ ¢ - 196 Ohm . (44)
The expression (39) can be rewritten in the form

[ |L:}2dQ
AW

Having made replacements of the variables { = z/L and £ = kL8%/4 we’ll
rewrite the expression (40) in the form

Zy % Zyo - 0.47 - (45)

1

ol = J1(Xo)L - /exp{i{{—m]ﬂ(}d{ | (46)

Let’s note, that at slow changing of the undulator detuning x = k(¢) along
its axis

de| Ay

St 1 47
7| T <1 (47)
with £ > 1 the Z,g value is constant, since the integration over solid angle
(41) is approximately reduced to a certain integral of the form

11
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[ | [ exvico) - explip(lac| de =2 (48)

-0 |0

for arbitrary real function F({). Such slow changing of the detuning & with
the motion along the undulator axis can be caused by the decrease of elec-
tron beam energy, owing to the radiation losses, which are not limited in this
case by maximum possible quantity of the relative radiation losses of elec-
tron energy (~ 4—1§) for the conventional oscillator FEL with homogeneous
undulator.

Instead of using the well-known tapered undulator for the removal of
limitation of radiation losses in the oscillator FEL, another variant of the
electron FEL radiation outcoupling can also be useful. For instance (see
Fig.2a), an achromatic bend can be removed from the electron outcoupling
scheme at Fig.1, but instead of it, we can essentially detune the additional
undulator-radiator (at high detuning x > 1 the electron beam inside the
radiator practically doesn’t interact with intraresonator radiation from the
master FEL undulator) and an additional intraresonator mirror with the
opening, that let pass the main mode of intraresonator FEL radiation. The

Intraresonator Outcoupled
/FEL Radiation FEL Raciation ~~={]
£ A
;.r :_-_-__"":',_,..H-"‘
A= — FEL Master Oscillator L | FEL Power Radiator [—1H
Q S Spes Undulator ] Undulator S
1 Tﬁ
Intraresonator Outcoupled '| LT '
/"'FEL Radiation FEL Radialion =~
- ,-ff -l--":_': :::_
b i £ _J0K Master Oscillator PEL Power Rodiatores=={OK Master Oscillatorf —F S — :E
f& = Undulater | """"E"“ Undulator % Undulater 2 3 =

4

Fig. 2. The schematic diagram of the "cone” electron radiation outcou-
pling from the oscillator FEL (a) and the oscillator OK (b).
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own gain coefficient of the detuned undulator should not exceed the value
of radiation losses in optical resonator, which are regulated by change of
the opening aperture of the intraresonator mirror. It will be necessarily to
optimize the intraresonator radiation losses in the master FEL saturation
regime in order to get maximum power of coherent radiation, which was
emitted in a form of empty angular cone from the undulator-radiator and
outcoupled by the intraresonator mirror. Such ”cone” outcoupling seems also
attractive, when the undulator-radiator is used as dispersive section in master
oscillator optical klystron (OK), i.e. between its two main undulators (see
Fig.2b). In this case an electron beam in the oscillator OK saturation regime
comes to the OK undulator 2 input, having the beam bunching parameter Xy
(see expression 34), which essentially exceeds its optimum at Xgop: = 1.84
(see expression 44). Thus, the optimal beam bunching takes place inside of
the undulator-radiator (the OK dispersive section), its effective impedance
will therefore be the highest and where the greatest part of the OK coherent
radiation will be outcoupled from the OK optical resonator.

The quantity of the effective impedance Z, of the undulator-radiator can
be much lower than Z,o, due to the emittance and the energy spread of
electron beam, the influence of whose we’ll study further. Let’s study the
beam with the gaussian function of the electron distribution

1

! !
z P e Op) = ' X
fo(zo, Yo, %o, Yo, bo) @) ez, 0,

( &2 Br2g + 2052020 + Y:25 Py yo + 2ayYoyo + Tyyg)
X exp | — - - :
202 2e; De,

(49)
where o, is the relative dispersion of electron energy spread; ¢,y are trans-
verse emittances of the electron beam; oy y, Bz y, 7r,y are Twiss parameters
for transverse phase ellipses of the electron beam at the undulator mnput.
Having omitted details of integration (35) over the energy spread, the trans-
verse coordinates and angles in the electron beam, we’ll write its final result:

L
I, = jFr(z)Fy(z)Fﬂ(z) exp{iz[k(1/v2 + 02 + 62)/2 — k.]}dz, (50)
0
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where
Fx(z) - F(ﬂtis:ﬂ! f’:n@m?’:: I) -

kzﬂgEz -
2N {' T o Pl

{(‘Tﬁuz — ikze; [Puz)sin(z/Pus) — ax m(z/ﬁux)]zl} /
1-— lkzﬁ'g(ﬁfﬁug + ‘f.'l:) (kZE;fﬁuz)

| /1= ikzes(B/ B2, + 7z) — (kz€z/Buc)? ; (51)

Fy(z) g F(&;.,s,,ay,,@y,-yy, z)'
Pz} = Jl(Xu + kzﬁ/ﬁ)exp{ [(Xo+ kzA /v, )cre/ﬁ]E/?} (52)

Let’s study the case of small transverse emittances, when Fy yz)=1lis
carried out along the whole undulator (0 < z < L). Then we can approxi-
mately write the integral (50) in the form

L
L 2 fF (z) exp{ikz(6’ —02)/2} dz, (53)

0

and the following integration over solid angle in the form

L L oo

j’lf”‘zdﬁ#r./_/[ﬂ: 2)F.(z,) exp{ik(z—z)(8% - 02)/2}dzdz,d6*. (54)
000

For high undulator detuning (x >> 1), using that

f exp(ikz)dz = 27é(k),

we’ll get the expression

L
fu,,ei?dnmam?/kfff(z) dz,
U

which maximum value for infinite long undulator is reached at Xo = 0 and

forms

14

[ 1. a0 s @rr. /o [rearmen-erde.  55)
0

Taking into account, that

max [ f J2(EA o) exp(—,s?)dg] ~0.148 with A/o~254,  (56)

0

from (45) we’ll get the expression for the undulator maximal possible impedance
at the energy spread of the electron beam:

Zue = 6.830hm/e, . (57)

Accordingly to (44), at Z, > 196 Ohm the effective number of the undulator
radiating periods can be defined as

Je = Zye/196 Ohm = 0.035/0..

Let’s note, that when using the magnetic system with positive value of lon-
gitudinal dispersion (signopposite to the undulator dispersion value) for the
electron beam bunching at the undulator input, the maximum impedance
of the infinite undulator is reached at —Xg 3> 1 and is twice as much the
quantity (57).

Let’s study the case of small ‘electron energy spread, when

F.(2) = max[J:(Xo)] = J1(1.84) = 0.582

is carried out along the whole undulator (0 < z < L). Then the integral (50)
can be approximately rewritten as

L
I, ~0.582- f F,(2)Fy(z) exp{ikz(6* — 63)/2} dz. (58)
0

Let’s consider the long undulator with equal horizontal and vertical focussing
and the electron beam with matched beta-functions at the undulator input:

Qpy = 0; 13.1:.3; = Pu; Teg = 1/8. . (59)
From (51), supposing £; = ¢, = ¢, we’ll get

15




292 £
Ro(2)- Fy(2) = b |- gy | / (L =ikl (60)

Passing on to the dimensionless variables I, z, €, @, fg:

Iz:kE/)@"" I;e; kZE/ﬁ-*'* z; ke — ¢ g ‘32/2“" 32; -f—ggfﬂ HHE} (ﬁl)

from (58) we’ll get for the infinite long undulator

L.(c,0%,6%) = 0.582 f exp [— ( 1"32_9;) +iz(6* — 33)} /(1 —iz)*dz. (62)
0
Having defined the function
F.(e) = max[Fe(e,03)] over 9 (63)
where &
Fo(e,03) = %flfu(s,eg,eﬁ}ﬁdﬁﬂ, (64)
4 .

and returning to dimensional variables we’ll get from (45) an expression for
the undulator maximal possible impedance at the transverse emittance of the
electron beam:

_ B Fe(ke)
Gue P Xi® © hE

Accordingly to (44), at Z,, >> 196 Ohm the effective number of the undulator
radiating periods can be defined as

- 76.9 Ohm. (65)

By Fe(ke)
Ge _;Zu,{lgﬁ Ohm = 0.39 - 3\ TRE
The calculated curve of the function Fy(ke) is given at Fig.3.

Now we’ll study the influence of the values of the transverse emittance
and the energy spread of the electron beam on the quantity of the undulator
effective impedance (45) in particular, for the finite length undulator without
horizontal focussing with high vertical focussing (L/8s > 1). We’ll consider
the beam with the matched vertical beta-function at the undulator input:

16

0 0.5 1.0 1.5 20 K&
Fig. 3. The calculated curve of the function F,(ke).
a0y =0; By=fui Y =1/f (66)
In this case from (51), supposing €, = gy = ¢, we'll get
k%028,
F = & = yMu LR
y(z) exp l 2(1 & IkZE/,ﬂu)] /(1 !k‘E/JSH)? (67}

k202

R =exp{ - [+ S22 iR,

where 2o, fr0 are position and quantity of the minimum of the beam hori-
ziontal beta-function along the undulator, respectively. Passing to the dimen-
sionless variables I,, z, zo, Bu, B0, €, Oz 4, 00, A, o.:

P z e .. " Bu Bz
Iz/L Iza T e E_"'zﬂa f_*ﬁu; “EE_*ﬁ:rﬂ;

E.'Lﬁg 2—}!’?5 Sal L [k i _l.. i - — LTA2 :
Jy/ K u 2‘:{;‘? +‘3u‘+ Eﬁzﬂ L—A.Lﬁﬂfg—l'!‘?é;
4wqA

ke — €;

/V2—a.,
(69)

1l dngo,
1+ v2(0% + 2¢/Bu +¢€/Bro) 1+ y2(0F + 2¢/Bu + €/ Bzo)
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where the dependence of the mean longitudinal velocity of the electron beam
on its transverse emittance is taken into account in last three replacements,

let’s rewrite the expression (50) into the form:

£ E

1
I, = ﬂ/F,(z}Fy(z]Fg(z) exp {iz (93 +0; — 05— B 25,:[,)} dz, (70)

where

Hf,, By

1 —ize/Pu e

Fy(z) =exp [— } /(1 —ize/Bu),

Fa(e) = exp { ~0e [ﬂm—(z—iz—“f-]} et s T8

Bro — 12€
FE(E) = Jl(}:[: <+ &z)exp{—u[(}fg + Lﬁz)ﬂ'ﬁfﬁ]z} )

and we’ll write down the expression (45) for the undulator effective impedance
in the normalized form:

(73)

o=+ 00

zu/_zuﬂmm-[f \I,|*d6,de, .
0

0

(74)

For the undulator of powerful IR FEL on the base of CW race-track
microtron-recuperator [9], which is being constructed in Budker Institute
of Nuclear Physics, with 8y/L = 129e¢m/360cm=0.358 we give at Fig.da
two calculated dependencies (74) of the undulator normalized impedance
Zu | Zuo on the dimensionless emittance ¢ of the beam with o, = 0 (at optimal
quantities 8y, B0, z0) and on the dimensionless energy spread dispersion o
of the beam with ¢ = 0 (at optimal quantities Xo, A). Here the decrease of
the undulator impedance by half of its maximum is observed at

A
g 50.22— 2 0.32 pm for A & 10 um

i

or at

V2

0. 7 0.5 — = 0.14% for ¢ = 40.
4mq
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Fig. 4. The calculated dependencies thl?ﬂ unduiaatnr nﬁ%ﬂized impedance
Z“{TZ“D; (a) on the dimensionless emittance £ of the beam with o. = 0 (at
optlmal quantities 6, Br0, 20) and on the dimensionless energy spﬁread dis-
persion o, ‘nf the beam with ¢ = 0 (at optimal quantities X, A); (b) on
the dimensionless angle of the undulator detuning 62 with the d:imm;sion less
€ = 0.2 and o, = 0.5 (at optimal quantities 8¢, 29, X, A).
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The calculated dependence (74) of the normalized impedance Z,/Zy,0 on
the dimensionless angle of the undulator detuning 63 with the dimensionless
e = 0.2 and o, = 0.5 (at optimal quantities B, 2o, Xo, A) is given at
Fig.4b. One can see, in this case the undulator impedance at the ”cone”
outcoupling (shown above at Fig.2) at the dimensionless angle 63 ~ 8 of the
undulator detuning will make up about 70% of its maximum (at 63 = 3), so
this ”cone” variant of the electron radiation outcoupling is also quite possible.
With 62 = 8 the calculated normalized angular distribution of the coherent
undulator radiation power at € = 0.2 and o, = 0.5 is given at Fig.5.

| 1.883€-0004
()7 (5) oo
[
L 0.8
G.6
L 0.4
16 g
Bx,r_

Fig. § The calculatéd normalized angular distribution of the coherent
undulator radiation power at ¢ = 0.2 and o, = 0.5 with the undulator de-

tuning 62 = 8.
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