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Abstract

Photon splitting in a very strong magnetic field is analyzed for energy w < 2m. The amplitude
obtained on the base of operator-diagram technique is used. It is shown that in a magnetic field
much higher than critical one the splitting amplitude is independent on the field. Our calculation is

in a good agreement with previous results of Adler and in a strong contradiction with recent paper
of Mentzel et al.
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Virtual creation and annihilation of electron-positron pairs is known to induce non-
linear self-action of an electromagnetic field. Photon splitting in an external field is one
of corresponding processes of nonlinear QED. Observation of a photon splitting is still a
challenge for experiment.

Theoretical study of this process has a rather long history. Photon splitting in a
constant and uniform external field was considered in the beginning of 70th in [1-4],
where earlier paper, containing errors, were cited. In [1],[3] the process was considered
as a possible mechanism for production of linearly polarized photons in a pulsar field
(assuming the field H ~ Hy). At low photon energies (w < m, m is the electron mass, we
set i = ¢ = 1) the splitting process can be analyzed by using the Heisenberg-Euler (HE)
effective Lagrangian. In the weak field limit (H < Hy), where Hy = m*/e = 4.41 - 10"*G
is the critical magnetic field, the first term of expansion of HE effective Lagrangian can be
used and the hexagon diagram contributes only. This was done in [1],[2]. The polarization
selection rules, especially with allowance for dispersion, were also obtained in [1], see also
textbook [5], Sect. 129, 130 where the problem is given in detail. The comprehensive
investigation of the process under consideration was carried out by Adler [3]. For w < m
and an arbitrary field strength the matrix element of the process was found as a result
of the application of the full HE effective Lagrangian. At the same time, the allowed
transition amplitude was calculated for the general case of an arbitrary field strength
and photon energy below pair creation threshold (w < 2m). A Green’s function of the
electron in an external magnetic field in the Schwinger proper-time representation was
used. Although the expression for this amplitude turned out to be very unwieldy for
application, the amplitude was calculated also numerically in wide interval of magnetic
fields 0 < H < Hy for w = m as well as for w < m. In [4] photon splitting was considered
in a crossed field E 1 H, F = H, using likewise the electron Green’s function in the
proper-time representation. Another form of the photon splitting amplitude in a magnetic
field in a general case was obtained in [6] using similar approach for the Green’s function

calculation. Later, photon splitting in a constant and uniform electromagnetic field for



arbitrary values of both field invariants was considered in [7]. The operator diagram
technique developed by Katkov, Strakhovenko and one of us [9] was used. As a result,
the solution of this technically quite cumbersome problem was substantially simplified.
The amplitudes obtained in particular case of zero electric (or magnetic) field were found
to be noticeably compact than those obtained in [3]. The results of [7] for w <« m and
H <« Hy agree with those of [1]-[3]. In [7] we performed numerical calculations for the
case w > m, because we were interested in another possibility: photon splitting in electric
fields of single crystals at high energies [8]. It is worth to note that in all mentioned paper
relativistic covariant and gauge invariant formulation of QED was used.

Recently, photon splitting was considered once more [10]. That was motivated by new
astrophysics achievements. In this calculation a non-covariant perturbation theory and
Landau gauge were used. The results of this paper as well as its subsequent application
[11] are in a strong contradiction with all previous results. Matrix element of photon
splitting is found in [10] in the form of very cumbersome threefold infinite sum. There is
a series of short-comings in [10]: a) a low energy limit and weak field limit are not found
from general expression; b) the authors of [10] suppose that their approach is applicable
for H = Hy, but the result of calculation with the full HE effective Lagrangian for w < m
is not reproduced; c¢) photon dispersion in a magnetic field is not taken into account;
d) the study of cut off influence on summation with respect to Landau level numbers is
not sufficient because the expression considered contains strong cancellations. Adler [12]
criticized strongly papers [10] and [11] and suggested to make the independent calculation
of photon splitting amplitude.

Because of the potential astrophysics implications of the process (see e.g. [13]) we
perform the numerical calculation and analysis of the expression for photon splitting
amplitude obtained using another formulation of QED in external field [7]. We consider
the most interesting region w < 2m and arbitrary H.

Let photon with energy w splits into two photons with energies w; and w,. There is
only one allowed transition in a magnetic field [1] with respect to photon polarizations:
B — CC in notations of [7] or L—|||| in notations of [1]. Putting electric field £ =0 in
general representation for photon splitting amplitude (eqs.(2.16)-(2.18), [7]) we have for

allowed transition:
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where
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Here a = €* = 1/137, 212 = wio/w, o = sind, 9 is the angle between direction of
magnetic field and momentum of the initial photon. To derive (1) we rotated the contour
of integration over each variable:  — —iz, {1 3 — —ity 5. This transformation is valid for
any w < 2m. As a result, the integrand in (1) doesn’t contain oscillating trigonometric
functions. So, it is convenient for numerical calculation. It is easy to show that the
amplitude 7' is symmetric with respect to interchange of final photons (w; <> w;). By
virtue of gauge invariance the amplitude T' x wwywy if w — 0 and also T" — 0 if w; — 0 for
any w. That means that there are very strong compensations in (1) and this circumstance
should be taken into account under numerical integration. To overcome the difficulties it
is convenient to perform subtraction in the integrand of (1): e*® — e°® — 1 for the first

c®o ¢® _ 1. The sum of the subtracted terms is

term of GG (proportional to 1/x) and e — e
equal to zero.

For w < m the main contribution to the amplitude is given by the domain of variables
where ¢® < 1, ¢®g < 1. Then expanding the corresponding exponents and keeping linear
in ¢ terms one can take the integrals over ¢; and ¢5. The result coincides with the photon
splitting amplitude found with the use of full HE effective Lagrangian (eq.(22) in [3]).

For w ~ m the integrals in (1) are calculated numerically. Without loss of generality
one can put ¢ = 1. In Fig.1 the dependence of the amplitude T" on the final photon energy
is shown for H = Hy/2 (a) and H = Hy (b) at different energies of the initial photon.

The amplitude T is normalized on Tg:

13 (47ra)3/2 w? (H)3
Ty=—

315 72 m2\H
For w/m = 0.1 the result coincides with a very good accuracy (better than 107%) with

the result obtained from the full HE effective Lagrangian.

The total probability of allowed transition vs w = w/m is shown in Fig.2, where

w\?® / H\® B
Wo = T3 /(9607w) = 0.116 <E) (?) em™!,
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Figure 1: The dependence of photon splitting amplitude on the final photon energy
(21 = wy/w) for H = Hy/2 (a) and H = Hy (b) at different energies of the initial
photon: w/m = 0.1(1), w/m = 1.5(2) and w/m = 1.9(3). The amplitude 7" is normalized

on Ty given in the text.



Curve (1) corresponds to H/Hy = 1 and curve (2) to H/Hy = 1/2. Although the prob-
ability varies by many orders of magnitude in the interval of parameters considered the
essential part of the variation is absorbed by Wy. The function Wy is nothing but the
photon splitting probability given by hexagon diagrams at w <« m. Therefore, Fig.2 shows
the influence of higher order corrections with respect to w/m and H/Hy. The probability
found with the use of full HE effective Lagrangian also proportional to (w/m)°. So, the
intersection points of the curves with ordinate axis coincide with the probability Wyg
found in this approximation. One can see from Fig.2 that the probabilities W and Wxg
are essentially smaller than Wy at H ~ Hy. At the same time, W/Wgyg grows appre-
ciably at w — 2m. Therefore, the exact photon energy-dependence should be taken into
account. Our numerical results agree (within a few percent) with obtained that by Adler

in paper [3] where the case w = m was considered.
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Figure 2: The dependence of total probability W (in term of Wy) on photon energy
(w=w/m) for H = Hy (curve 1) and H = Hy/2 (curve 2). The probability Wj is given
in the text.

The behavior of the amplitude T in a very strong magnetic field H > Hj is of evident
interest from theoretical point of view. In connection with this problem it is necessary to
consider the selection rules for photon splitting in a strong field. Using the expression for
eigenvalues of the photon polarization operator in a magnetic field found in [9], eqs.(3.33)-
(3.35) we obtain that ny =14 /67 and n, =o H for H > Hy and ny > n| for any H.
This means ([3, 5]) that there is only one allowed transition, which we considered above,
for any field H.

For H > Hy we found that the amplitude T' is independent of magnetic field and can
be evaluated in analytic form. The main contribution to two-fold integral in (1) is given by
the domain # ~ H/Hy and x —t; ~ 1. For threefold integral in (1) the main contribution
comes from two domains: © ~ H/Hgy, ty ~ H/Hy, x — 1ty ~ 1; and @ ~ H/Hy, t; ~ 1,
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ly ~ H/Hy. Performing the corresponding expansion, we obtain

24mA [
T(H> Hy) =T 7? i arctan | ——2
W Ly /4m? — Wi 4m? — w?
(3)
4 Wy ; w1 w
————=  _arctan —
wiy/4m? — Wi dm? — wi 4m? ]
where
_ (47roz)3/2 w?
VT o g2

The amplitude calculated using the full HE effective Lagrangian at H > Hj is
Thg = Tiwiwy/w?. The dependence of the amplitude 7" in this limit on the final photon
energy (z;1 = wi/w) is shown in Fig.3 for different energies of the initial photon. For

strong field and w — 2m one can see in Figs.1 and 3 a tendency of plato formation in the
middle of the distribution.

H>>HO0

Figure 3: The dependence of the amplitude 7' on the final photon energy for H > H, for
different energies of the initial photon: w/m = 0.1(1) , w/m = 1.5(2) and w/m = 1.99(3).

Thus, we performed the calculation of photon splitting amplitude using the exact
formula valid for any magnetic field H and w < 2m. If w < m then our results coincide
with the amplitude obtained from the full HE effective Lagrangian. We obtained that
in a very strong field H > Hy the amplitude doesn’t depend on a magnetic field. We
found that the refractive index n, > n) for any H. So, there is only one allowed transition
L—|||l. Therefore, a photon cascade could develop only if magnetic field changes it’s
direction (on distances much larger than the formation length of photon splitting). The
results of our calculation are in a good agreement with that obtained by Adler [3] and in

a strong contradiction with recent paper of Mentzel et al [10].
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