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Abstract

Nonlinear dynamics of transverse beam motion has been studied experimentally at the VEPP-4M
electron-positron collider. Two aspects of nonlinear beam behaviour described in this paper are the
amplitude dependent tune shift and the phase space trajectories near nonlinear resonances. The

measurement results are presented and compared with the theoretical prediction.
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1 Introduction

Nonlinear dynamics experiments were performed at VEPP-4M storage ring in 1995-1996.
The main goals of these experiments were to study the essential aspects of the single par-
ticle dynamics (phase space distortion, amplitude dependent tune shift and the dynamic
aperture limitation); to find the way to control the nonlinear effects, and to check the
validity of theoretical prediction.

This paper concerns the first two topics: the phase space topology and nonlinear
detuning study. The motion of the beam center of mass was measured turn-by-turn
after excitation of the coherent betatron oscillations by fast kicker magnet. Two ways
of the phase trajectories plotting were examined: by two BPM stations with the /2
betatron phase advance between them and by single BPM. FFT applied to the coordinate
array provides a significant noise reduction and an increase of the phase space distortion
resolution. Amplitude-dependent tune shift was studied for both sextupole and octupole
perturbation. The experimental data agree quite well with the tracking simulation and

simple model prediction.

2 Hardware description

VEPP-4M storage ring is a 6 GeV racetrack electron-positron collider with a circumference
of 366 m. The study was performed at the injection energy of 1.8 GeV. The relevant
parameters of VEPP-4M at this energy are given in the Table:

Energy 1.8 GeV
Revolution period 1.2 us
Betatron tunes (h/v) 8.620/7.560
Natural chromaticity (h/v) -13.6/-20.7
Horizontal emittance 35 nm-rad
Rms beam bunch length 6 cm

Damping times (h/v/long.) 35 ms/70 ms/70 ms

To produce the coherent transverse motion, the beam is kicked vertically or horizontally

by pulsed electromagnetic kickers. The pulse duration is 50 ns for the horizontal kicker and



150 ns for the vertical one. The oscillation of the beam centroid and beam intensity are
measured turn-by-turn with a beam position monitor (BPM) for up to 8192 revolutions.
The rms displacement resolution is ¢, , ~ 70um in 1 to 5 mA beam current range.

The following sources of the magnetic field nonlinearity were taken into account for

the theoretical prediction:

1. 32 vertical and horizontal sextupole corrections distributed along the magnets in the

arcs (two families, DS and F'S).

2. Short sextupoles SES2, NES2 and SES3, NFES3 located symmetrically around

the interaction point.

3. Quadratic field component produced by the arc magnets pole shape (two families,

SSF and SSD).

4. Octupole correction coils incorporated in the arc magnets main coils (32 corrections,

two families, SRO and N RO).

The main parameters of the nonlinear elements mentioned above are listed in the Table:

Name No Length d*B/dx*
(om)  (Gfem?)

SSD 32 11139  -1.68
SSF 32 11131 1.11
SES2/NES2 4 20 9.25

SES3/NES3 2 20 -16.25
FS 32 34.2 5.24

DS 32 34.2 -9.25

Because of the high beta-function values (~120 m), the bulk of natural chromaticity of
the ring is produced by the final focus quadrupoles (~50% in horizontal plane and ~60 %
in vertical plane). Hence, we can expect that the influence of the SES/NES sextupoles

on the nonlinear dynamics is emphasized.

3 Phase space trajectories

There are two BPMs with the horizontal betatron phase advance ~ 7 /2 between them
available in the turn-by-turn mode at VEPP-4M. To study the phase space topology, we
were tracked the motion of the beam centroid in two ways: a) by using two BPMs and b)
by a single BPM station [2].

Let us consider the horizontal betatron oscillation at the BPM azimuth

z(n) = aB/? cos 2mnu,,

2'(n) = —a/B?a, cos 2mnu, + sin 2mnu,), (1)



where o, = —1/23.(s) and (3.(s) are the betatron functions and phase advance for nth

turn equals 27wnv,. This expression can be rewritten in the form
#'(n) = [2r/2(n) — azz(n)]/ B,

where z,/5(n) is the coordinate that would be measured by the BPM placed at the azimuth
which corresponds to the following conditions: (i) oy, 3, here are the same as for the
first BPM, (ii) the betatron phase shift between two BPMs is exactly /2. Introducing

the "angle-action” variables (.J;, ¢,) [1] and substituting (1) we can obtain

Jo(n) = (22 )5(n) + 2%(n)) /28, (2)
tan ¢,(n) = z2(n)/z(n).

One can see that a, is canceled from the expression for .J.(¢,) and phase curves demon-
strate a "mere” nonlinear distortion.
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Figure 1: Horizontal phase trajectory measured by two BPMs.

Under the first approach, the displacement z(n) and slope 2'(n) o z,/3(n) of the
kicked beam are measured by two BPMs at every turn n and pictured as a phase space
plot (Fig.1). A different o, at BPMs provides the additional distortion of the phase space.
Under the second approach when a single BPM station is used, we obtained the beam
displacement and slope from the same coordinate array by selecting the pairs of values
with nm /2 phase advance between them. In this case oy, (3, are the same for both values
in each pair and the expression (2) is valid. Applying FFT to the experimental data and
using few main harmonics to construct the beam slope and displacement, permits us to
reduce drastically the measuring noise and increase the resolution of the phase trajectories
distortion. Fig.2 shows the phase space curves near the resonance 3v, = 26 after FFT
for different kick amplitudes. Changing the sextupole strength or the distance from the
resonance, we can easily control the distortion (smear) of the phase trajectories. In the
vicinity of the resonance 3v, = m, we can obtain the phase trajectory J.(¢,) as a solution

of the following equation [3]

J, o~ — agmjf/Zcos?)gﬁx,
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Figure 2: Phase space curves near the resonance 3v, = 26.

where J, = const can be found from the initial value of the oscillation amplitude, and

As,, 1s the azimuthal harmonic of the sextupole perturbation

1 27
Agn = = | 5228 cos(3(6 — 1,0) + mB)db.
0

Here S(s) = (d?B.(s)/dz?)/Bp is the normalized sextupole strength. Fig.3 demonstrates
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Figure 3: Experimental and simulated phase trajectories.

the agreement between the measured horizontal phase trajectory and the predicted one.
The correspondence seems to be quite impressive.

Since the nonlinear perturbation contributes to the phase space distortion at a level
of 0.1 mm and less, for further noise reduction we use the data accumulation for the
same kick amplitude. For the main harmonic, 10 fold accumulation allows to reduce the

rms noise value from 10-20 ym to 4-6 pm. Such a high spectral resolution permits us



to calculate some parameters of the nonlinear system. For instance, we can estimate
nonlinear perturbation as

azm == (Jmax - szn)/(J3/2 - J3/2)

maxr min

We extracted the amplitude of the 31, = 26 resonance driving term from the measured
data and compared it with the calculated from the model Hamiltonian. The agreement
seems to be not bad: the experimental value is Az = —3.1 & 1.0 m_1/2, while the
theoretical one is Azqs = —2.0 m~1/2.

One more nonlinear resonance in our tune region is the resonance 4r, = 35 that is
excited by either octupole perturbation or sextupole perturbation in the second order
approximation. Fig.4 shows the phase space topology near and directly at the resonance
(two BPMs without harmonic decomposition). An attempt to control the smear of the
phase curves near the resonance 4v, = 35 by sextupoles failed. So, the most probable
explanation is that this resonance is driven by the relevant harmonic of the octupole

perturbation.
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Figure 4: Phase trajectories near and at resonance 4v, = 35. The plot at the resonance

does not use harmonic decomposition.



4 Amplitude dependent tune shift

Nonlinear detuning was studied with the same turn-by-turn technique. The coherent
beam oscillations were fired by several kicker pulses with different amplitudes, and tune
was extracted from FFT spectrum. The accuracy of the tune measurement is better than
Sv=2-1071,

For the Hamiltonian composed of nonperturbed part Hy and small perturbation H;
H(J,$,0) = Ho(.J) + Hi(J,¢0) (3)
where the perturbation itself consists of constant and oscillated parts
Hi(J,¢0) = Hi(J) + Hi(J, ¢,0)
the amplitude-dependent tune shift is defined as
Av(J) = dH,(J)/dJ.

For both octupole and sextupole types of perturbation, the nonlinear tune shift is
proportionate to the square of the initial beam displacement (Fig.5). A general 2D form of

the amplitude dependent tune shift can be expressed as (the second order approximation):

Amplitude dependent betatron tune shift
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Figure 5: Typical amplitude dependence of the betatron tune.

_ 2 2
Avg(az,a,) = Cral + Craa?,
) _ 2 2
Av,(az,a,) = Coraz + Cyal,

where C,,, depends on particular perturbative potential. The measured and estimated
coefficients values are listed in the Table

Crm - 10* Theory Experiment

(Cm—1/2) (Cm—1/2)
Ci1 0.1 9.0
Ci2 -0.6 -1.0
Co -1.9 -4.0
Cha -0.6 -1.0




The difference in theoretical and experimental C1; made us explore systematically
the horizontal nonlinearity of the ring. We used the difference between octupole and
sextupole induced tune shift to distinguish which one defines 'y in our case. For the
octupole potential, horizontal tune shift is independent of initial tune value and is written
as [4]

AVPN(J,) = L= (€ O(s)B2(s)ds + o J2), (4)
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where C is the machine circumference and O(s) = (d°B.(s)/dz®)/Bp is the eflective
octupole strength. On the contrary, sextupole induced tune shift depends on the initial

tune in a resonant way and near the resonance 3,9 >~ m can be written as

A2
A (s) 2~ —J, - _‘3m 2
v, (J) J - 36 CH—— +o(J3),
As, = 1 /27r 3328 cos(3(1h, — v,0) + mb)dh
48r Jo 7 ’ 7

where S(s) = (d?*B.(s)/dz*)/Bp is the effective sextupole strength and As,, is the az-
imuthal harmonic of the sextupole perturbation Hamiltonian.

The horizontal tune shift as a function of the initial tune value v,q around the resonance
3vz0 = 26 (Fig.6, upper) shows that the resulting nonlinear detuning is induced both by
sextupole and octupole perturbations. The first demonstrates typical resonant behaviour,
while the second produces constant "background” with the value of Av{?)/a? ~ 8 .10~
mm~2. The octupole correctors SRO and NRO can control the "background” value,
while the resonant behavior of the sextupole detuning component remains the same. And
vice versa, when we decrease the strength of the strong sextupole lenses in the interaction
region and compensate the chromaticity by the sextupole correctors in the arcs, we see
that it does not effect the octupole ”"background” but significantly reduces the sextupole
component (together with the resonance width), as shown in Fig.6 (lower).

The source of rather high octupole nonlinearity was not understood yet and a more
vigorous study is required. As a probable candidate we consider nonlinear errors in the
final focus quadrupoles. As it was shown in [5], the quadrupole edge fields can produce
rather large detuning, however, in our case the relevant contribution in €y coefficient is
ten times less than the measured one. Fig.7 shows C4; versus (3, value in the final focus
quadrupoles. This figure demonstrates the parabolic dependence according to (4).

Now, we consider the magnetic field expansion in the median plane of the quadrupole
lens [6]:

B, =Bz + $B5x5,
d"B,
dz™

Introducing the closed orbit distortion at the quadrupole azimuth z.,, one can write down

B, =

for the octupole field component

O X B5$30. (5)



Hor. betatron tune dependance of C11

20 ‘ — ‘
3Qx=26
15 B
N
£ 3
£ i
2 i
3 10 % | R
g % % %: dQx=0.026
=] H
= H
o |
5 L m
0 L L L : L L
8.6 8.62 8.64 8.66 8.68 8.7 8.72
Hor. betatron tune Qx
Hor. betatron tune dependance of C11
20 T — T
{3Qx=26
15 - .
N
£ H L
€ P
=] % +: I dQx=0.015 % %
A SR R
S % | [
— i H
a ! :
— i ;
© :
5 L m
0 L L L : L L
8.6 8.62 8.64 8.66 8.68 8.7 8.72

Hor. betatron tune Qx

Figure 6: Upper: nonlinear detuning near the resonance 3v, = 26, solid line — theoretical
prediction. Resonance width Ay, = 0.026; lower: same as upper but with the resonance

driving term reduced. Note that the resonance width is decreased in a factor of 2.
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Figure 7: Dependence of the (11 coefficient on the 3, value in the final focus quadrupoles.
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1.2

2 0.8
=4
=}
[}
=
s 0.6 ;
[
£
— /
i /
3] 0.4 .
0.2 %

0 5 10
Hor. orbit position in lens EL2 (mm)
Figure 8: Dependence of ('1; coefficient on the horizontal orbit deviation in the final focus

quadrupoles (arbitrary units).

To check this expression we generated a local COD bump at the azimuth of the final
focus quadrupoles and measured the horizontal detuning. Fig.8 shows ('y; versus the
horizontal orbit deviation. One can see that the nonlinear detuning depends quadratically

on the z.,, as it is predicted by (5).
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