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Abstract

The high order corrections to renormalon are considered. Each new type of insertions to the
soft(hard) gluon(photon) line generates the correction to renormalon of the order of ~ 1. However, this
series of corrections to the asymptotics although have no small parameter but is not the asymptotic
one. The summation of these corrections for UV renormalon may change the asymptotics by factor
N°. For IR renormalon the m-th correction diverges like (—=2)™. However, this divergency has no

infrared origin and may be removed by proper redefinition of IR renormalon.
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1. The running coupling constant seems to be an inevitable companion of any non-
trivial renormalizable field theory. In its turn the asymptotics of perturbation theory
for any quantity calculated in the theory with running coupling in general is determined
by renormalon [1, 2, 3, 4]. The renewed interest in this kind of asymptotic estimates
have been demonstrated in last few years [5, 6, 7, 8, 9, 10, 11, 12, 13]. It results even in
attempts [14] to use renormalon for calculation of experimentally measurable quantities.

However, the accurate determination of renormalon-type asymptotics appears to be
not so simple problem. It was recognized [8, 9, 10, 12, 17] that the overall normalization
of the renormalon could not be found without taking into account of all terms of the
expansion of, say, the Gell-Mann—Low function. However, the usual proof of this fact do
not refer on the direct counting of the Feynman graphs.

In the present paper we would like to estimate the role of the arbitrary high order
insertions to the dressed gluon line. It will be shown both by diagrammatic considera-
tion and by direct analytical calculation that each new type of insertions generates the
correction to renormalon of the order of ~ 1. However, the k-th correction to the asymp-
totics for large k is not expected to have any k! enhancement. Thus at least the series of
corrections to the amplitude of renormalon asymptotics is not the asymptotic series. The
summation of this series leads to the sufficient change of the asymptotics. We show that
for the UV renormalon taking into account of the high order corrections may change the
N-th term of the perturbation theory by the factor N (although with § unknown even
for QED). The m-th correction to the IR renormalon diverges like (—2)™. Due to that
the IR renormalon does not exist in the usual sense. We propose in the last section the
proper rearrangement of the series which allows to avoid this difficulty. The TR renor-
malon now will be associated with certain non-Borel-summable series but the coefficients
of this series themselves are the Borel-summable series in as.

It is a tradition now to consider the renormalon for QED. In this paper we will also dis-
cuss only the QED—type diagrams of the perturbation theory, without the self-interaction
of gluons. The heuristic way for extending this result for QCD may be given by the so
called 'naive nonabelization’.

The contribution of the diagrams with exchange of one soft gluon (photon) to some



“physical” quantity which accounts for the infrared(IR) renormalon has the generic form
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The Feynman graphs corresponding to this value are shown in fig. 1.  Similarly the
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Figure 1: The renormalon graphs with exchange of one gluon. The internal gluon line will be dressed in the

following figures.

exchange of very hard gluon(photon) generates the ultraviolet(UV) renormalon

Q*d*k

Ryy = /k O 2)
Now only the diagram of fig. 1a contribute. During the last two years it was understood
[12, 17] that the traditional UV renormalon (2) with exchange of only one hard photon
does not give the largest contribution to the asymptotics. The diagrams with exchange
of at least two photons turns out to be much more important. We will return to discus-
sion of this new UV renormalon later while now our consideration of the traditional UV

renormalon is of mainly methodological importance.
In (1,2) we have written down the effective running coupling constant a(k) = a.s¢(k),

which is trivially connected with the transverse part of the gluon propagator. The function
a(k) satisfies the RG equation:

9 he? b that 4., w=In (Q¥/k?) . (3)
dzx

It is to be noted here that we have fixed the renormalization scheme by considering the
effective charge. Thus our coefficients by, b3, ... are neither the free parameters, nor the
known, say, for M S scheme, by(MS), bs(MS) . At first stage one may neglect by, by, ...
in (3)
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Here we have chosen some convenient overall normalization of the renormalon. We will
consider now only the asymptotics of the perturbation theory and leave the issue of the
nonperturbative ambiguity of the integral (4) due to the Landau pole to the very end
of the paper. The integral (1) describes adequately the contribution of a certain chain
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of Feynman diagrams only for k& <« @ . It is seen from (4) that the main contribution
to the N-th order of the expansion comes from k*> ~ Q2%¢~N/2. Thus the renormalon
contributions to the first few terms of perturbation theory are completely irrelevant. On
the other hand, for sufficiently large @ a lot of terms of the expansion (4) come from
the region Adyp < k* « Q? where the effective charge is small and the perturbative
approach for calculation of a.sf (3) seems to be useful.

Very similar calculation for the UV renormalon (2) leads to the same result as (4) up
to trivial replacement — —by. This means on the one hand that the UV renormalon
asymptotics in general is much more important (in 2V times) than the IR one. On the
other hand one may see that depending on the sign of by the series associated with one
of the two renormalons should be non-Borel summable.

2. Before passing to straightforward but rather formal manipulations with the RG
equation (3) let us illustrate the role of complicated contributions to renormalon by the
explicit estimate of Feynman graphs. In this section we will consider only the IR renor-
malon. Generalization for the UV one is straightforward. The fig. 2 shows the chain of
diagrams corresponding to (4). We show only the QED—type diagrams without gluon
self-interaction. Fach of the N bubbles from fig. 2 generates the factor byag In (Q*/k?) in
the integrand of (1),(4). The difference between QCD and QED may be thought to be
hidden in the factor by, accompanying the single bubble.

by 0402 111(Q2/k2)

bg g In( Q /k
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Figure 2: The simplest chain of diagrams corre- Figure 3: The example of diagram with two—loop
sponding to the renormalization of the soft gluon line.  insertion into soft gluon line.

Each bubble generates the factor boag In (Q2/k2)

Now let us replace two of the simple bubbles by the more complicated diagram of fig. 3.
The two loop bubbles generate the factor bjad In (Q*/k*) in the integrand, which has one
power of large logarithm less (or one ag more) than the leading order contribution (4).
However, a large combinatorial factor NV appears due to a number of permutations of the

second order bubble among the simple bubbles, leading to

2 N=2 boOZO 2b1
Nblaoln (?i) [boaoln (?i)] — ( 5 ) N'b—2 ) (5)




Thus we see that taking into account one second order insertion into the soft gluon line
leads to the correction of the order of one to the trivial asymptotics (4).

Consider now the more complicated diagram of fig. 4 with dressing of the internal
gluon line of the second order bubble. To this end it is natural to write down explicitly

the last integration over internal momentum of the two loop diagram

Q2 2 nd 2 1 2 2 n
B S PR VTS

Thus up to the overall factor nl? the contribution of diagram of fig. 4 coincides with

Figure 4: The dressing of internal gluon line of the second order bubble by n simple bubbles.

that of fig. 3. Summation over n naturally leads to In(N). Taking into account a number

Figure 5: Three loop insertion with dressing of two internal gluon lines by the simple chains of bubbles. The

summation over n; and nz allows to compensate all extra a-s.

of large bubbles of fig. 4 allows to exponentiate the correction

N N
(6020‘0) Nlexp (%m(zv)) = (6020‘0) N% NI, (7)

0

This is the generally recognized expression for the IR renormalon. Our argumentation

up to this stage repeats the line of reasoning of the paper [7]. However, the argument of



the exponent in (7) was found with the ~ 1/In(N) accuracy and therefore the nontrivial
overall factor as well as the function of N, weaker than N7, may appear in (7).

Now let us consider the three loop correction (fig. 5 with ny = ny = 0). This contri-
bution generates the factor byaj In (Q?/k*) in the integrand of (4). Thus here we have
two extra ap which at first glance could not be compensated by one combinatorial N and
hence the diagram of fig. 5 seems to generate only the ~ 1/N correction to renormalon.
However, let us see, what happens if one dresses the internal gluon lines of the three loop

diagram. Now summation over the number of trivial insertions ny,ny gives:

2

N —ny —ng—2
2 ! 2 Nbgaoh'l (%) X(OzoN)Q . (8)

QQ
bQOzO In (ﬁ) Z (o

n1ms ny+ng+1

Here the factor (nq + ny + 1)_1 appears after integration over the internal momentum of
the large bubble, while (N — ny — ny — 2) accounts for the combinatorics. We see that
after dressing of all gluon lines the three loop (~ by) diagram generates the correction to
renormalon of the order of ~ 1. One can easily show that four loop (~ b3), five loop (~ by)
etc. diagrams generate the corrections of the same order of magnitude. Previously the
analogous proof of the importance of the high loop corrections was done by Mueller[15]
but this result was not published.

3. It is easy to integrate formally the renormalization group equation (3)

— 4+ ———In <g) — ca(a —ag) —es(a® —af) — ... = b, (9)

(o%s]

where, ¢y = by /by — b2 /b3 , c3 = (b3/bg — 2b3by b3 + b7/b3)/2, ... . For arbitrary k one has
¢k = (br/bo—...)/(k—1). This “exact” solution still is too informative for us. First of all,
most of the terms containing ag in (9), namely cyaq, czad, csap, ... will contribute only to

the ~ 1/N corrections to the asymptotics. Therefore we may write

(&7}

= 10
- boaor — (by/bo)ag In(a/an) — caaay — cza?ag — ... (10)
Let us introduce now the truncated running coupling
(&%)
oy = . 11

! 1-— boOéo.’L’ — (bl/bo)ao ln(ozt/ozo) ( )

Now one may again formally expand the exact a (10) in the series
oz:ozt<1—|—ﬁ2af—|—ﬂ3a§’—l— ) \ (12)

The explicit formulas for a first few coefficients 3 may be easily found. However we will
be interested only in the large-k asymptotic behavior of ;. Naturally for our definition of
the effective charge (3) the coefficients by, themselves form the asymptotic series by ~ k.

Due to that one easily finds the asymptotics of 3

ﬁkzs—go<1+0(%)) . (13)
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In the previous section we have shown diagrammatically that contributions to the
asymptotics from the high order terms of the RG equation (3) ~ by, bs, by, ... (or now
~ B2, B3, B, ... (12)) are not small. However, the contribution induced by the second (two
loop) term b;a® play an outstanding role due to the additional enhancement by In(N).
This is the reason for taking the truncated coupling a; (11) as the expansion parameter
n (12).

The expression (11) itself is the transcendental equation for function ay(ag) which
may be solved iteratively. In ref. [16] the IR renormalon asymptotics with a.s¢ in (1)
replaced by the only truncated a; (11) has been considered in details. This calculation
turns out to be surprisingly sophisticated. For any finite number of iterations in the
transcendental equation (11) the asymptotics contains some new functional dependence
on N compared to the usual IR renormalon (7). The generally accepted result is restored
only after performing the infinite number of iterations in (11). However we will skip
now the discussion of the role of the first few terms of the series (12) and concentrate
our attention on 3 with very large k. In this case it will be enough to make only one
iteration in (11) (namely In(az/ag) = —In(1 — bpapx) in (11)).

Consider first the UV renormalon. Moreover, let us restrict ourselves on the UV
renormalon for pure QED. The first important observation (see [12, 16]) is that the series
of corrections to renormalon generated by (12) although have no any reasonable small
parameter but also is not the asymptotic series. In order to show that it is so consider
for the moment the simplified version of (11,12) with by = 0 . Now one has immediately
for the UV renormalon (2)

m+1
_ Ydy = —b NN’L . 14
E [87)) / (1 —|— boyao) © y= an 0 ( bo)mm’ ( )

We see that though (3, themselves are determined by the UV renormalon and therefore
have the form 3,, ~ m”(—by)™m! the two most dangerous factors from the f3,,, the m!
and (—bg)™, have been removed from the series.

Up to now we have chosen rather arbitrarily the overall normalization of renormalon.
In order to go further in understanding the role of high order corrections to UV renormalon
chain we have to specify the normalization. Consider following ref. [12] (and almost every-
body others in the renormalon business) the correlation function of two electromagnetic

currents (see also the eqs. (1,2) of ref. [12] connecting this quantity with R+ .- _hadrons)
M, = i [ dec™ (01T {j,(2)3.(0)}0) = (. ~ 000" II(@?) (15)

We will be naturally interested in TI(Q?) in the Euclidean domain.
The simple calculation of the diagram fig. 1la for k£ > @) gives

M(Q?) = 1]22‘2 {m (g—Z) - %/a(k)ln (2_22) %} . (16)

Here the first term in brackets is the parton model prediction, while the integral is expected

to generate the asymptotic series of the perturbation theory. One may substitute into



(16) the one loop running coupling constant and easily reproduce the “traditional” (before
[12, 17]) UV renormalon [18].

The polarization operator II is trivially connected with the -function for the effective
charge (3)

2 dH n
w (M) e (7)
dQ #2=Q2
However, because we are interested only in the asymptotics we may find directly from the
equation (3) that
d

i) = (1 Dl (—boo (1+ 0(%)) . (18)

Thus for our purposes
ArII(Q%) = 3 bu[a(Q)]" (19)

Now we have to substitute the series for the effective charge a(k) (12) into the integral
(16) and expand the result in series in a(Q). The effective method which allows to find
the coefficients of such expansion was developed in [16]. First of all it is convenient to

introduce the new variables

a = —boozo ; /8 = —bl/bg . (20)
For QED by = —% , by = —iVT’; and g = ﬁ. With this new variables the truncated

effective charge in the first nontrivial approximation takes the form

1 a k?
_%l—ax—l—ﬂaln(l—am) ; x:ln<@) ' (21)

Q=

The contribution of the n-th term of the formal expansion (12) to the polarization operator

(16) is of the form

I, — n / “odr . 22
1272(—bo)™ Jo [1 —ax+ fBaln(l — a;n)] re ar (22)

Note that this is the n-th term of the expansion in the series in truncated running coupling
a(k) and it still contains the whole series in «(Q). As before we are looking for the N-th
term of the series in «(Q). Below we will see that the most important contribution comes

from n ~ N. The simple binomial expansion now gives

mo— —B, /[ a ]n+1 5 (n 4+ m)! [—/Baln(l — ax)]mxe_zd:c

1272(=bo)” J L1 — ax = mln! 1 —ax
—B, / a” (n4+m)! [—Baln(l —az)]™ _
= Tdz. 23
1272(—=bo)" J (1 — azx)"H! Z::O m!n! 1 —ax ¢ dr. (23)
Here in the second equality we have used that
1
a —1 (24)

1—a:1::1—a:1:
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and than have neglected the —1 (one may easily see that this less singular contribution
will lead to the ~ 1/N correction to the asymptotics).
For estimation of the N-th order of perturbation theory we will use the formula for

N-th term of the expansion of the integral in powers of a

Vialza bt ] v e

Here both m and k are supposed to be large. In order to derive (25) one has to use the

asymptotics of gamma-function as well as the trivial identity

()" = iy (52) (26)

e—0

Formula (25) allows now to calculate the N-th term of the expansion of (23) in series

in aév (aN)

Bn

B Fn (mam)l[ N T
L}y = 127r2(—bo)”a N!go (n+m)! mln! [nn—l—m] B
- 1 N Ba [NV
= —ﬁ(—boao) W <g> : (27)

Here we have neglected m compared to n in the argument of logarithm because effectively
m ~ In(N) while as we will see in the moment n ~ N. Combining together (19,27) and

the asymptotics of 85 (13) one finds the equation for by

1
37Tbo

1 b
— bV NP NI - "
(=bo) 2 (—bo)"nPn!

n<N n

by = (28)

Here 3 = —b,/b; = 9/(4N;) for QED. This equation is even further simplified after simple

substitution

bN = (—bO)NNﬁN!CN 5 (29)
c 1 c 1
- Bt h 55 00()
N ng;\, n(—3mby) Ny n;\, n ( + n

The solution to this last equation is evident ¢y = const x NN and for by one has
Nt
by = const(—bg)" N*Nr Y NI . (30)

So we arrived at the surprising result: taking into account all possible insertions to the
renormalon chain allowed to change the power of N in the asymptolics, which for many
years was thought to be determined by only the two terms of the Gell-Mann—Low (3-function
by and by .

The overall constant in (30) could not be found in closed form. In terms of the equation
(29) this constant is determined by the initial condition at N ~ 1. But for N ~ 1 the
equation (29) is no more valid as we have indicated explicitly by writing (1 4+ O(1/n)).
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This reduction to the initial value problem shows how one may reformulate the problem
of the overall normalization. Finally, the solution looks almost like tautology. One is

allowed to look for the renormalon asymptotics in the form
Ry = A, N°(=bo)"N! . (31)

Here n is the number of terms of the perturbation theory which were calculated explicitly
(n < N). The normalization constant A, may be found with only the ~ 1/n accu-
racy. This is the important difference between the renormalon and instanton [19] induced
asymptotics. For instantons not only the overall amplitude of the asymptotics is known
but also the ~ 1/N corrections to this asymptotics were considered [20].

However, one may consider the renormalon calculus only as a way to extend the explicit
perturbative calculations by one more approximate term. In this approach the equation
(31) still is quite informative. It means that after the explicit calculation of N terms
of perturbation theory one will immediately found the N + 1-st term with the ~ 1/N?
accuracy.

4. Our formula (30) for asymptotics of the coefficients by would be a nice new result
if published 2-years ago. However, as we have told in the introduction Vainshtein and
Zakharov in their preprint of April 1994 [12] have shown that the traditional UV renor-
malon (2) (fig. 1a) does not give the largest contribution to the asymptotics. They have
found a series of new diagrams (starting from two three-loop diagrams) which generate
the asymptotics much larger than (2). The authors of [12] have used the OPE in order to
find the contribution to polarization operator of these new diagrams (see Parisi [2], who
first proposed to use the OPE for renormalon calculus). Finally, the new result for T1(Q?)

reads

) Qi )

HUV(Q2) = const (a(Q) 76

with 4 for the QED case

3 2Ny +1\* 11 2N;+1
_ 2 —_ZurTo) 33
TTN, W( 6 >+4 6 ) (33)

Now it is easy to substitute the two loop running coupling (11,21) into (32) and find the
UV renormalon of the form (31) with

9
0=1 — . 34
T, (34)
However, it is clear that this result for § will be changed immediately if one substitutes
the all-loop a.fs into (32) and repeats the simple calculation which we have performed
in the previous section for TI(Q?)(16). The magnitude of the correction to § (34) now will
depend on the explicit value of the overall normalization of (32) which may be extracted

from [12, 17].
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On the other hand, if we are going to substitute the exact running coupling into (32)

we should also take into account all possible corrections to this formula

e r(B)) T Q%d*k
v (Q?) = const Gess 1 ma (k)T 35
@)= const [ (SN (14 5 m a0 L (3
If the coeflicients here behave like .
T ~ — (36)
m

for large m, taking into account of this series will change again the exponent § (34,31).
Moreover, if 7, grows faster with m than (36) it will be a catastrophe for asymptotics as
may be seen from (29). The eq. (36) is likely the upper bound for the coefficients of the
expansion (35).

Unfortunately we do not see now the clear way to estimate the asymptotics of the
coefficients 7, in (35). It is rather probable that 7, and a.;(k)**" will compensate each
other in the correction to §. Furthermore, the authors of [12] have demonstrated in their
conclusions that they are ready to meet any surprise from the high order corrections to
the renormalon. Therefore, even if such compensation do not take place and § (34) is
changed this result will not be in complete disagreement with [12].

Anyway, after one finds the new § from (35) the overall normalization of the UV
renormalon will be found with only ~ 1/n accuracy and only after the explicit calculation
of the first n terms of the series.

5. The IR renormalon have attracted much more interest during the last few years
than the UV one. This conclusion may be drawn even by simple counting of the number
of papers. It seems that most of the authors do not consider the UV renormalon as
renormalon at all.

The reason for such asymmetry is quite evident. In QCD the UV renormalon is Borel
summable while the IR renormalon is not. Physically this non-Borel-summability means
that depending on the details of chosen resummation procedure the obtained predictions
for observables will vary by some power corrections. Namely for the case of light fermions
and inclusive cross sections this correction will be of the form ~ (Agep/Q)*. There is
absolutely no way to find the amplitude of this nonperturbative ~ Q~=* contribution from
the perturbative renormalon calculus.

If there is no rigorous way to calculate the ~ (Agep/Q)?* correction one may try at
least to extract them from the comparison of theoretical prediction with the experiment.
Naively one may take say the experimental value of R.+.- _i4drons Subtract the parton-
model contribution and 2 — 3 known ~ a; corrections and look for the power corrections.
Certainly this procedure will not work. The more or less reasonable procedure is the

following: one has to calculate a huge number

2
N boa(Q)
terms of perturbation theory (N;g is the function of ) !) and subtract them from the
experimental ratio R(Q)). The rest will be the needed (A/Q)* correction.

Nir(Q) (37)
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The first problem (if not worry about the terrible analytical calculations) which will
encounter us upon performing this procedure is the UV renormalon. The series for UV
renormalon blows up at N = 1/(bya(Q)) — twice before the critical value (37). However
the way to avoid this problem seems to be rather clear. As we have seen (1,2) the UV
and IR renormalons originate from the very different region of variation of the internal
momentum in the diagram (% in the fig. 1). Naturally one may divide the integral into

two parts £ < () and k > () and than obtain the result in the form

N

=Y (~bpa)"Nl + > (Z;—Oa) NI . (38)
Uv IRN<Nig

Here the first series is much larger than the second one but allows the explicit(Borel)

summation. So one has to sum up exactly the series for the UV renormalon in (38) and

then subtract this resummed contribution from the experimental value of R +.~ _hadrons-

Our goal is to reach the best accuracy of the perturbative QCD ~ (A/Q)*. Therefore
the summation of the UV renormalon in (38) also should be done with ~ (A/Q)* accu-
racy. This is also not so easy to do because even the smallest term of the series for the
UV renormalon is of the order of ~ (A/Q)? — much larger than the accuracy we want.
For example if we simply substitute the 1-loop a(k) into say naive renormalon (16) the
accuracy of the resummed value will be O(a?) and so on. It is quite probable that in
order to sum up the UV renormalon with the (A/Q)* accuracy one still has to calculate
exactly about Nyp = 2/(bycr) terms of the series.

However, suppose that accurate enough summation of the UV renormalon in (38) has
been done. Let us see, what can we say about the IR-renormalon part of the polarization
operator in view of our experience of working with high order corrections to renormalon
chain? The corresponding contribution to II (15-19) now has the form of the integral (1).
Simply repeating the calculations (22-28) one gets

B
(50/2)”71261/6312!

bo \" ;
{ir}y = const (5()@) N2 /b ) > (39)
But 3, ~ b, now is determined by the first UV renormalon and thus 8, ~ (—bg)"n! .
Therefore we see that the sum of the multiloop corrections to the IR renormalon leads to

the correction of the relative order of magnitude

Y G~ D = (40)

n

The series of the corrections to renormalon is not asymptotic, but is ugly divergent. It
looks like some interference of the IR and UV renormalons.

Nevertheless, as we will see now the divergency itself of the series (40) is not con-
nected with the infrared physics. As we saw in (4) the N! in the leading contribu-
tion to the IR renormalon appears simply due to the N-th power of the large logarithm

2V = In(Q?/k?)N. Therefore as we have told after the eq. (4) this trivial renormalon
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contribution falls down into the infrared momentum region like k? ~ Q%2 On the
other hand, as we have seen in the section 2 for high order corrections to the renormalon
chain the same N! appears not only due to the power of logarithm but also due to the
more and more complicated combinatorics. This change in the origin of the N! would not
be taken into account if the series of corrections to renormalon was convergent. However,
for divergent series of the kind of (40) one should naturally to reformulate the method
of calculation of IR renormalon in order to be able to control from what distances each

contribution came. To this end let us rewrite the renormalon (1) in terms of the series in

the powers of In(Q?/k?)

k2dk?
7r(Q) ~

01 a(k)
st (@) i

= Y Q) Fulo(Q) gt (41)

n

Now all the high order corrections to renormalon chain are hidden in F,(«). The func-
tion F,(a) itself may be expanded in the asymptotic series. But it would be the Borel
summable series.

In the previous two sections we have tried to show that there is a lot of open questions
concerning the UV renormalon. Therefore, now we will illustrate only by the simple toy
example how the functions F,(«) (41) will be found after one solves all this “ultraviolet
problems”. Suppose the running coupling a(k) in (41) is described by the simplest Borel

int egral
(8} k = / e — yd (]{ b()(]{ 42

2 172
&(m):$,r—ln @ , y=1In )
1-— bQOéol’ k‘Q kQ

Here &(x) is simply the one loop running coupling for the momentum k. The trivial

expansion in the series over x now gives

P, = /0 - : <y (43)

1 + boagy)™*!

Of course this F,(ap) may be expanded in the asymptotic series in ag. For very large
number n the integral in (43) is even further simplified. For example for the last F,-s
which one is allowed to work with (with n &~ Njg (37)) the expression (43) reduces to

almost trivial result Fy,. = 1/3.
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