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Abstract

The effect of radiative damping of transverse oscillations of positrons in planar
channel of a crystal is considered in realistic conditions when multiple scattering of
positrons on atomic electrons is taken into account.
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1 Introduction

An influence of the radiation reaction on particle motion in a system with a strong transverse focusing is
now under active study (see [1]-[3] and references therein). One of a possible realization of such system is
the planar channeling of positrons, where positrons are moving in the superstrong microscopic focusing
field formed by crystalline planes. Existence of phenomenon of radiation damping of transverse oscillation
of positrons in was found nearly two decades ago [4].

2 Damping of a transverse energy

In [4] motion of particle in oscillatory transverse potential well U (z) = 5 Was considered under influence

of the force of radiative braking as it is given in [5]. The set of equations was derived:

. . g . .
where z is the transverse coordinate, y = — is the Lorentz factor of the positron,
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a= —6, below we will put ¢ = h = 1.
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Averaging over particle oscillations in a channel (over ”fast” variables) one obtains
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where ¢, is the transverse energy of the particle. This set contains ”slow” variables only. It coincides
with the set obtained in [3] by two different methods and given in terms of v and J, = e /w, where
w = /k/m is the oscillation frequency.
Solution of this set (see [3]) is
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. If one introduce so called multipolarity parameter

2
where g9 = 7@'(0)7(0)
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0= QPng, where v is a mean square of the transverse velocity (when ¢ < 1 the radiation is dipole,
when ¢ > 1 the radiation is of magnetic bremsstrahlung nature, the case ¢ ~ 1 is intermediate one

e (t)y(1)

and many harmonics of radiation is essential), then ¢ = and gg is the initial value of this

parameter.



When at < 1, one has
1 (0)
6J_(t) = 1/5 3 V(t) = 4/5 3
R (1) R (1) (4)

Rl(t) = 1—|— ggoat,
so that the transverse energy and total energy initially damp with power laws in the case when gg > 1.

However, exponential damping factor in the transverse energy becomes more important for longer time
(distance). When at > 1, one has

er(0)e™ ~(0)
6J_(t) = 1/5 3 V(t) = 4/5°
52 Ry (5)
R2 =1+ gQOa

Exponential damping factor in (3), (5) can be written in the form exp (—!/l,), where ! is the length
of the way of the particle in crystal. The characteristic damping length {, for plane (110) in different
crystals is given in Table 1 along with distance between planes d,; and depth of the potential well Up.
Note that the length [, is quite close to the standard radiation length L,,4 in corresponding media and
only for diamond [, is a few times shorter than L,.4.

Form of the transverse potential for planar channeling of electrons is very different from oscillator
potential and atomic nuclei are situated in the middle of the channel, so that multiple scattering of
electrons is amplified comparing with amorphous medium. The transverse potential for positrons is more
similar to oscillator one and positrons in channel are moving mostly far from atomic nuclei, so that
multiple scattering of positrons is diminishing comparing with amorphous medium. So, only the case
of channeling of particles with positive charge is interesting from the point of view of damping of the
transverse oscillations of a particle moving in a planar channel. Although in real crystals the planar
potential is quite different from the oscillator one and a spread of frequencies of motion of a positron in
a channel is order of one [6], nevertheless consideration of damping in the oscillator potential is a very
useful model importance of which is connected with existence of the exact analytical solution.

3 Damping process with multiple scattering included

The only interesting situation is the case when positrons are moving far from the crystalline planes, when
the main scattering process is a scattering on atomic electrons. Connected with this scattering increment
of the transverse energy is (see [6], Sec. 10):

Aei e A}

Al 2 ALY (6)

where 92 is the mean value of the square of z-component of the angle of the multiple scattering of
a positron. An interaction of a positron with atomic electrons can be split into two parts. The first
contribution into the square of angle of the multiple scattering gives scattering on electrons situated
inside planes forming planar channel in which positron is moving. The maximal momentum transfer
follows from a condition that positron should not go out of the channel and minimal momentum transfer
is defined by maximal remoteness of positron from atomic plane:

1
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where Up is the depth of the transverse potential well in which channeling occurs, dp; is the distance

. 1 h . 2eU
between neighbor planes, A\, = — = <—> is the electron Compton wavelength, g, = 2.
m me

region ¢ > ¢min One can consider scattering as a scattering on free electrons and its cross section is defined,
within logarithmic accuracy, by local density of atomic electrons n(z) depending on positron coordinate
z(1/q < dpi). So, we have for the square of angle of the multiple scattering following expression:

In the

Iy dmas
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where a = €2 = 1/137, ¢% = ¢2 + qg. Note that ratio qr;” and consequently the square of angle of the

min
multiple scattering does not depend on a particle’s mass. Now we compare the square of angle of the
multiple scattering of relativistic protons moving in a planar channel with expression for ionization losses

(stopping power) in a corresponding amorphous medium:

oe 4o’ ngm 2vmm 1
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2™ is the plasma frequency, nam is the mean

€ .
where ypr = U M is the proton mass, and wi =

m
density of electrons in an amorphous medium. Taking into account that
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and comparing eqs.(7)-(8) with eqgs. (9) - (10) we find that

AY?2  m [de n(z)
Al S92 (E)m P (11)

Use the expression (11) for calculation of the dechanneling length for protons with energy 10 GeV < e <
200 GeV moving in (110) or (111) channels in Si gives a result which agree satisfactory with experimental
data [7].

The contribution of electrons situated outside planes which are forming the channel under considera-
tion (contribution of long distances, > dp;) into mean square of the angle of multiple scattering has a
form

1/dpl
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The total contribution of the both short and long distances into the increment of the transverse energy is

A 2 104
S =7 (i () e 0n) w
Ratio 7. of contribution of long distances to contribution of short distances is given in Table. When high
energy particle (Ywo > Imaz, Imaz ~ Z2-10 eV, wo ~ V7 10 eV,y > Z3/2) traverses an amorphous
medium, density n(z) should be substituted by ngm. So, the sum of contributions of the both short and
long distances into mean square of the angle of multiple scattering has a form

A92 27 1 2ra’? q>
f = ngm | ] 2 42 l = am 10 22 14
N (n (4mawdy) +1n dglwg) e em T2 (14)
Tonization losses of a high energy particle per unit length are
de g2 AV?  2ma? @2 e _
(ﬁ)m = 20m AL T Memin s (15)

The last expression coincides, within logarithmic accuracy,with known formula for ionization losses (see,
e.g., [8]).

For the oscillatory potential U(z) = kxz?/2 (which describes either averaged characteristics of one-
parametric potential, or a motion of the particle near a bottom in any potential well), one has from the
Poisson’s equation

(2) k 2U, y
n(z) = — = = const.
4ro Wadil

To proceed with inclusion of multiple scattering into set of eq.(2), we use eqs.(12) and (13) and the last
equation, which are self-consistent for the oscillatory potential. Besides, when one uses egs.(12) and (13),
it is necessary to substitute ¢2,,, — 2ee (or g, — p), since in the case when increment of the transverse
energy Ae; > £ in one interaction act (time of scattering is much shorter than the period of motion)
one can not describe motion in the terms of classical trajectory.
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TABLE Parameters of the potential for the plane (110)
and characteristics of damping and antidamping processes

Crystal | T(K) | dpi, 107 %c¢m | Ug, eV | lo,em | A o n | re
Cy 293 1.26 23 2.3 1.7 9 6.8 | 1.1
Si 293 1.92 23 5.5 26 1106|7315
Ge 293 2.00 40 3.4 321111 75|16
w 293 2.24 130 033 |41 | 11.8 | 7.7 |17

Furthermore, an analysis below shows that within adopted accuracy (logarithmic accuracy) one can
put in equations of motion that ¢ = 1 in an argument of a logarithm. As a result we obtain

. a b

6L+a6L+m6L'y——:0,

. a Y (16)
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where
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Values of A (expression for A is valid for crystal structures fcc(q),bcc) for some crystals are given in
Table.
It is convenient to rewrite the set (16) in terms of functions y(¢) and
r(t) = e, (t)y(t) in which the set is simplified considerably:
<)
bar® ., _ 0,
q Am (17)
;}/ + —yr = 07
m

r+ar+

It is seen that the first equation of this set contains function r(t) only and this is a differential equation
with separable variables, solution of which is straightforward. With found function r(t) one can integrate
the second equation of the set (17). Solution of the set can be presented in the form

B 2r(t) B 4G(1)
oft) = m EF(t)G’
4e, (0 4 2
) = S e (20— 1t (18)

where

5 5
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G(t) = Pr(n—1) + B2(n+ 1)e™™™, n= m

The value of the parameters for some usable crystals is given in Table. When the multiple scattering is
turned off (n = 1), one returns to the solution (3).
Now we will proceed with qualitative analysis of the set (17) which we rewritten in the form:

(19)
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do | +i—25—0

ar (20)

ﬁ+7—0,

where T' = at, we introduce

OOIM
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Parameters fy for some usable crystals are shown in Table. So, in this analysis we take into account that
£ is logarithmically depend on energy. When gy > 1 and T' < 1 one can neglect terms g — 23 in the first
equation (20) since value of g is still large at 7' < 1. Then we have set

do  50° dy | ve
aats =% gt3 =0 (22)
solution of which is (0) (0)
EL Y Q0
ex(l) = — 5= 1) =—%— o= ,
Ry3(1) R*(1) Ra(T) (23)

Ri(T)=1+ ngT
It coincides with (4) where multiple scattering is neglected.

1
When T' ~ _ﬁ from (23) one has that ¢ ~ /3. In this situation all terms in the first equation in (20)

is of one order and multiple scattering is turned on. In this case with a good accuracy we have § ~ ;.
With further increase of T' function g tends to its stationary value

dos 59?

4
=0, o+ -29=0, o=z (VI+5h-1). (24)

dT
Note, that for crystals we considered (diamond, Si, Ge, W) for plane (110) one has g; ~ 5 and one
can neglect dependence § on g, (8 ~ f). In this region of T' the total energy decreases exponentially
276L
m

remains

¥(T) o exp(—ps;T/2) and the transverse energy increases exponentially since the value ¢ =
constant.

. 5 . . .
In the opposite case when gg < 1 value of ¢ + 592 remains small compared with 23 until 7' ~ 1//3.

In this case one can neglect damping effects (terms o g, ¢?) and function g varies only due to multiple

scattering:

dos In o

— 268014+ —) = 25
dT 60( + C ) 0’ ( O)

where C' = 25 for diamond and C' = 31 for W. Solving this equation by the method of successive

approximations we find after the first step

o(T) =~ 26,T <1 + IHWOT;I %) 1) + 0o (26)
At 0o < T < 1/\/B, o(T) ~ 25T is independent of the initial value gg and (with logarithmic accuracy)
is defined by value B;. With T increase the function ¢ attains value of the order of /3 and one has
to take into account all the terms in set (20) and we have situation discussed above: ¢ — g, the total
energy decreases exponentially, while transverse energy increases exponentially.

So, we have shown that with logarithmic accuracy (this is just the accuracy we could calculate 3) one

can neglect by the dependence of 5(g) and put 8 = fy.
T
Solutions (18) of the set (17) are illustrated also in Fig.l and Fig.2. The ratio L ((0))
€1

given in Fig.1. The curve 1 in (a), (b) and (c) present the case n = 1 when the multiple scattering is
turned off. These curves show damping of the transverse energy and coincide, naturally, with results of
[3]. However, the multiple scattering changes the situation drastically. For low gy the transverse energy is
increasing from the very beginning, while for gg = 100 the transverse energy first decreasing but starting
from T' ~ 1 it ceases decrease and begin to increase. So, under this condition decrease of the transverse
(1)

7(0)

vs T = at is given in Fig.2. Here one can see that in absence of multiple scattering the total energy first
decreasing (for high gg) and than tends to some constant, while the multiple scattering causes unlimited
decrease of the total energy. So, the behavior of curves in figures illustrates numerically the results of
the above qualitative analysis.

vs T = at 1s

energy is possible in a very short interval of T = at and only when gg is enough high. The ratio

4 Behavior of a positron beam as a whole

Using the results obtained we can analyze a behavior of a positron beam entering into the oriented
crystal at different energies. At low energy the condition gg < 1 is fulfilled for all the particles of the
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values of parameter gg.

vs T = at for different

Fig.1. Ratio

(a) For pg = 0.1 curve 1 is for = 1 when the
multiple scattering is turned off; curves 2,3,4
are for n = 1.5, 2, 3 respectively.

(b) Same for gy = 1.

(c) Same for pg = 100 but curves 1,2,3,4 are
for n =1, 2,3, 5 respectively.



YT /Y(0)

0.005

Y(T) /Y (0)
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Fig. 2. Ratio 7((0)) vs T = at for different
v
values of parameter gg.
(a) For pg = 0.1 curve 1 is for = 1 when the
multiple scattering is turned off; curves 2,3,4
are for n = 2, 3, 5 respectively.

(b) Same for gy = 1.

0.001

(¢) Same for gg = 100.



beam (go < gp < 1). In this case positrons quit the channel during a time which is much shorter than
the radiation damping time (~ 1/a) and in this case one can neglect radiation damping. Indeed, the
characteristics dechanneling time t4 is (see eqgs.(25), (26))

ﬁoamz EUO Op 1
g1 = tg = U, tyg = = —.
+ e ¢ 0 T Boam?  20Bga a

(27)

At high energy when g, > 1 the initial distribution of positrons over go for oscillator potential has a
form (see eq.(9.24), [6])
o on 1

dN(0o) = — . 28
SRR =
Let us consider a fraction of positrons with go < 1. This portion of positrons is small:
/ 1
N <1)= [ dN(e) = —. (29
0 o

This is particles moving well inside a channel with energy £; < L« Uy. As one can see from the above
P

analysis, during a time ¢ ~ all the particles of this group acquire a value g ~ g;, while the energy

av/Po
of particles diminishes slightly. Later on the transverse energy increases

gL~ UO&exp(gsat/Q) (30)
P

and during a time ¢ ~ In g, positrons of this group go out of channel. So, the total dechanneling time

osa
of this fraction 1s
1 5In g, 1

NCRR T EnIr

The main fraction of positrons possesses large go ~ g,. In it positrons first loses energy during a time

tg ~

(31)

1
t~ with some decrease of ¢ :
av/Bo
~7(0) Uo
B 4/5 " €1 ~ 1757 (32)
Op &p

and then dechanneling takes place during a time ¢ according to

UO 2 h’l Os
ey~ Fexp(gsat/Q) ~Uy, t~ 9d 5 (33)
P
The total dechanneling time for this fraction is
1 | 1
ty ~ = % (34)

+ —.
VB 2(V1+458—1)] a
The analysis above was performed in frame of classical electrodynamics. As it is known ([6]), quantum

el . . .
effect govern by the parameter y. = —(;. Since quantum effects in radiation are turned on rather early,

value x. > 0.1 can be considered as a boundary of quantum region. From this estimate one has that
quantum effects become significant starting from energy € ~ 60 GeV in tungsten and ¢ ~ 600 GeV in
silicon. We neglect also a diffusion of the transverse energy in scattering process. Both these effects could
be considered in a consistent way using distribution function of channeled particles only.

5 Conclusion

An idea to use particle channeling in oriented crystals in accelerator technique is very attractive one.
However, it appears that even in ideal conditions there is the damping of transverse oscillations without
loss of the total energy only in the case gy < 1, otherwise particle loses its total energy along with damping
of transverse oscillations. Inclusion of the interaction of the channeling particle with atomic electrons
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deteriorates the situation drastically. Damping of rather limited scale is possible only in the case gg > 1
in a very narrow interval of time. Otherwise we have antidumping: the transverse energy is increasing
while total energy is decreasing. Furthermore, we don’t take into account scattering of positrons on
fluctuations of a planar potential, which can contribute essentially when positrons are moving close to
atomic planes, and connected with this scattering radiation.

Acknowledgments. We are grateful to V. M. Strakhovenko for useful discussions. The authors
are indebted to the Russian Foundation for Basic Research supported in part this research by Grant

95-02-04608.

References
[1] Z.Huang, P.Chen and R.D.Ruth, Phys. Rev.Lett. 74 (1995) 1759.

[2] Z.Huang, P.Chen and R.D.Ruth, Proceedings of the 16! IEEE Particle Accelerator Conference and
International Conference on High Energy Accelerators, Texas, 1996, p.3326.

[3] Z.Huang, P.Chen and R.D.Ruth, Nucl. Instr. and Meth B 119(1996) 192.
[4] A.G.Bonch-Osmolovskii and M.I.Podgoretskii, Sov.J.Nucl.Phys 29(1979) 216.

[5] L. D. Landau and E. M. Lifshitz, Classical Theory of Fields 4th English Ed., Pergamon Elmsford,
New York, 1975.

[6] V.N.Baier, V.M.Katkov and V.M.Strakhovenko, Electromagnetic Processes at High Energies in Ori-
ented Single Crystals, World Scientific Publishing Co, Singapore, 1997.

[7] V.M.Biryukov, Yu.A.Chesnokov, N.A.Galyaev et al., Nucl. Instr. and Meth B 86 (1994) 245.

[8] Review of Particle Physics, Phys. Rev. D 54 (1996) 132.

11



