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Abstract

Bremsstrahlung of photons from highly relativistic electrons is investigated. The
cross section of the processes, which is suppressed due to a multiple scattering of
an emitting electron in dense media (LPM effect) and due to photon interaction

"next to leading

with electrons of a medium, is calculated with an accuracy up to
logarithm” and with the Coulomb corrections taken into account. Making allowances
for a multiple scattering and a polarization of a medium an analysis of radiation on
a target boundary is carried out. The method of consideration of radiation in a thin
target under influence of the LPM effect is developed. Interrelation with the recent

experiment is discussed.
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1 Introduction

When a high-energy electron emits a soft photon via bremsstrahlung, the process occurs over a rather long
distance, known as the formation length. If anything happens to an electron or a photon while traveling
this distance, the emission can be disrupted. Landau and Pomeranchuk were the first who showed that
if the formation length of bremsstrahlung becomes comparable to the distance over which a multiple
scattering becomes important, the bremsstrahlung will be suppressed [1]. Migdal [2], [3] developed a
quantitative theory of this phenomenon. Side by side with the multiple scattering of emitting electron
one has to take into account also an influence of a medium on radiated electromagnetic field. Since long
distances are essential in the problem under consideration this can be done by introducing dielectric
constant £(w). This effect leads also to suppression of the soft photon emission (Ter-Mikaelian effect, see
in [4]). A clear qualitative analysis of different mechanisms of suppression is presented in [5],[6]. More
simple derivation of the Migdal’s results is given in [7].

The next step in a quantitative theory of LPM effect was made in [8]. This theory is based on the
quasiclassical operator method in QED developed by authors [7], [9]. One of the basic equations (obtained
with use of kinetic equations describing a motion of electron in a medium in the presence of external field)
is the Schrodinger equation in external field with imaginary potential (Eq.(3.3),[8]). The same equation
(without external field) was rederived recently in [10]. The last derivation is based on the approach
results of which is coincide basically with the operator quasiclassical method. In [11] a new calculation
approach is developed where multiple scattering is described with the path integral treatment.

New activity with the theory of LPM effect is connected with a very successful series of experiments
[12] - [14] performed at SLAC during last years (see in this connection [15]). In these experiments the
cross section of bremsstrahlung of soft photons with energy from 200 KeV to 500 MeV from electrons with
energy 8 GeV and 25 GeV is measured with an accuracy of the order of a few percent. Both LPM and
dielectric suppression is observed and investigated. These experiments are the challenge for the theory
since in all the mentioned papers calculations are performed to logarithmic accuracy which is not enough
for description of the new experiment. The contribution of the Coulomb corrections (at least for heavy
elements) is larger then experimental errors and these corrections should be taken into account.

In the present paper we calculated the cross section of bremsstrahlung process with term o« 1/L |
where L is characteristic logarithm of the problem, and with the Coulomb corrections taken into account
(Section 2 and Appendix A). This cross section is valid for very high energies when the LPM effect
manifest itself for a photon energy of the order of an energy of the initial electron. In the photon
energy region, where the LPM effect is ”turned off” | our cross section gives the exact Bethe-Heitler cross
section (within power accuracy) with Coulomb corrections. This important feature was absent in the
previous calculations. The polarization of a medium is incorporated into this approach (Section 3). The
considerable contribution into the soft part of the investigated in the experiment spectrum of radiation

gives a photon emission on the boundaries of a target. We calculated this contribution taking into account
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the multiple scattering and polarization of a medium for the case when a target is much thicker than the
formation length of the radiation (Section 4). In Section 5 we considered a case when a target is much
thinner than the formation length. In this case the cross section has multiplicative form (probability of
radiation times cross section of scattering for the given impact parameter). In Section 6 a case of an
intermediate thickness of a target (between cases of a thick and a thin target) is analyzed, polarization
of a medium is not included. In Section 7 a qualitative picture of a spectral curve (an effective thickness
of a target, position of a minimum) is discussed. In Section 8 we compare the theoretical curve for
the intensity spectrum with the data. Although agreement between experiment and theory is rather
satisfactory, an additional analysis should be done to obtain information about an accuracy of agreement

between experimental data and theory.

2 The LPM effect in an infinitely thick target

As well known (see, e.g. [16], Sec.93) the formation length of radiation is (in this paper the system
h=c¢=11is used) /

lc::;—zc, C=14~%?% ¢ =c—w, 7:%, (2.1)
where ¢ is the energy of the initial electron, w is the energy of radiated photon, & is the angle between
momenta of the photon and the initial electron. We consider first the case when the formation length is
much shorter than thickness of a target [(l. < ). In this case the spectral distribution of the probability
of radiation per unit time is given by expression (2.18), [8] (see also [9], Section 7.4)

(oo}

w? . &2
= awRe/dTeXp [W%(o, T)— 1 (1 + ET2> V(0, T):| , (2.2)
0
9 1 . . .
where o = ¢* = 37 functions ¢, (po, ) satisfy an equation
Jou b
%n D Agu(x,7) = n(2(0) ~ B(0))eulx.7) (2.3
with the initial conditions
vo(x,0) =d(x), ¢(x,0) =—iVi(x). (2.4)

Here n is the number density of atoms in the medium, x is the coordinate in two-dimensional space
conjugated to the space (two-dimensional) of radiation angle ¥, X(x) is the Fourier transform of the

scattering cross section:

2
B 9 ) _wm _we _
Y(x) = /d dexp(ixd)o(9), a= o b= - (2.5)
For a screened Coulomb potential we have
47%2 Zzaz x
o(¥) = (02 4 092 Y(x) = dr—5— o — K1 (x01), (2.6)

1
where 3 = ——, a; is the screening radius (a; = O.81aBZ_1/3, ap is the Bohr radius), K is the modified
ase

Bessel function. As we will show below, the main contribution to the probability is given by

1 1 Ac
-~ > =V = ;
@ v asy
1 h\ . .
where Ao = — = | — ] is the electron Compton wavelength. Expanding
m me

K (29,) as a power series in 2¢; and introducing new variables

1
t= %T, o= \/gx = ;x, (2.7)
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we obtain for the spectral distribution of the probability of radiation

/dte [R1¢0(0,t) + Rapy(0,1)], (2.8)
0
w? e ¢
where Ry = —, Ry = — + —, and the functions ¢, now satisfy an equation
e € €
39%

it = ("= iV(@) b P=-iVg, Vi(e)=—Qe*(Iny"¥
0’ 2rnZ%a’ee’

(2.9)
—HnZ—I—?C—l), Q= —

C =0.57T7...

m

with the initial conditions ¢g(0,0) = §(@), (0,0) = pd(), the functions ¢ and ¢ in (2.8) are rescaled
according with the initial conditions (factors 1/4% and 1/43, correspondingly). Note, that it is implied
that in formulae (2.2),(2.8) subtraction at ¥ = 0 is made.

The potential V(@) (2.9) corresponds to consideration of scattering in the Born approximation. The
difference of exact as a function of Za potential V(@) and taken in the Born approximation is computed

in Appendix A. The potential V(o) with the Coulomb corrections taken into account is

2
Vi) = _Qg2(1n7279§+1n% +20—1+2f(Za)) 210,

2
= Q¢ (m»ﬁa% +1n % T 20),

where ¥ = ¥y exp(f — 1/2), the function f = f(Za) see in (A.10).
In above formulae g is space of the impact parameters measured in the Compton wavelengths A,
which is conjugate to space of the transverse momentum transfers measured in the electron mass m. An

operator form of a solution of Eq. (2.9) is

vo(e,t) = exp(—iHt)po(0,0) =< elexp(—iHt)|0 >, H =p*—iV(e),

2.11
o(.1) = exp(—ilt)peo (0, 0) =< ol exp(—iH)p|0 >, (2.11)

where we introduce the Dirac state vectors: |g@ > is the state vector of coordinate g, < 9|0 >= d(g).
Substituting (2.11) into (2.8) and taking integral over ¢ we obtain for the spectral distribution of the
probability of radiation

dW 2a

- Im< 0|R: (G™' = Gg') + Rap (G = G5') p[0 >, (2.12)

where

G=p?’+1—iV, Go=p*+1. (2.13)

Here and below we consider an expression < 0[...|0 > as a limit: lim x — 0,
lim x’ — 0 of < x|...|x" >.

Now we estimate effective impact parameters g. which give the main contribution into radiation
probability. Since characteristic values of g. will be found straightforwardly at calculation of (2.12),
we estimate characteristic angles ¥, connected with g, by an equality o. = 1/(y9.). The mean square
scattering angle of a particle on the formation length of a photon I, (2.1) has the form

VAL ¢ 4Q C

2 _
97 = = nlcln72192_ 2C

(2.14)

When 92 < 1/4? the contribution in the probability of radiation gives a region where ¢ ~ 1(J. = 1/7),
in this case g. = 1. When ¥ > 1/~ the characteristic angle of radiation is determined by self-consistency

arguments:
G_4Q ¢ 49 G

9?2 ~ 92 ~ =—=1In , —In
YT Y @

1
=1, 4Qo*In ——— =1. 2.15
v*91e? (2.15)



It should be noted that when characteristic impact parameter g. becomes smaller than a radius of nucleus

R, the potential V(@) acquires an oscillator form (see Appendix B, Eq.(B.3))

V(o) = Qo <ln ;—% - 0.041) : (2.16)

Allowing for estimates (2.15) we present the potential V(@) (2.9) in the following form

1
V(o) = Ve(o) +v(e), Velo)=4q0°, ¢=QL, L=In——,
7?3507

2 2 (2.17)
v(o) = L <2C’—|— In f?)

L

The inclusion of the Coulomb corrections f(Za) and -1 into In¥3 diminishes effectively the correction
v(@) to the potential V;(g). In accordance with such division of the potential we present propagators in

expression (2.12) as

G l'-Gyl =G -G '+ G -Gyt (2.18)

where

Ge=p'+1-il,, G=p'+1-iVe—iv
This representation of the propagator G~! permits one to expand it over ”perturbation” v. Indeed,

with an increase of ¢ the relative value of the perturbation is diminished (7 ~ f) since effective impact
c
parameters diminish and, correspondingly, the value of logarithm L in (2.17) increases. The maximal

value of L is determined by a size of a nucleus R,
az 2 _
R ~ 21In A2 =214, (2.19)

Lmaz = 1n

where a;2 = as exp(—f 4+ 1/2). So, one can to redefine the parameters a; and 9; to include the Coulomb
corrections.

The matrix elements of the operator G2 could be calculated explicitly. The exponential parametriza-
tion of the propagator is

Gt = i/dte‘“ exp(—iH.t), H.=p>—iqo* (2.20)
0

Below we will use matrix elements of the operator exp(—iHt)

< 04| exp(—iHct)|@y >= Kc(04, 05, 1)- (2.21)

The function K.(g;, 0,,1) satisfies the Schrédinger equation (2.9) over each of two (symmetrical) variables

0, and @, with V = go? and the initial condition
Ke(e1,02,0) = d(0s — 01)- (2.22)
We will seek a solution in the form (see also [8])
Ke(er, 05,1) = exp [a(t) (0] + 03) + 26(t) 0104 +7(1)] .

Substituting this expression into (2.9) we find a set of equations for «, 3,y

& =4ia’ —q, B=4diaf, 4 =dia. (2.23)
The initial conditions for this set follows from definition (2.21):
tli>H10 < 0,|exp(—iHct)|@y >—=< 0| exp(—iHot)|0y >=
L/Cppew (i(2s - 01)p — iD%t) = —— exp ile:—e) (2.24)
(2)2 28 4t 4t '

= I{O(Q%Ql:t):




where Hyg = p%. From (2.24) one has the initial conditions at ¢ — 0

?

e B(t) — —i, v¥(t) = —In(4mit). (2.25)

at) = i

The solution of the set (2.23) satisfying these initial conditions is

1w

i
)= Zeothwt, Bt) = ——o—
a(?) g comrh Alt) 4sinh vt’

(t) = —In(sinhvt) +In ﬁ, (2.26)

where v = 2\/5. As a result, we obtain the following expression for the sought function

v w 2
K. t)= ———— — | (6% + 02) coth vt — 2.27
(o1, 0,1) 4misinh vt xp { 4 [(91 +g3) cothv sinh vt 9192] } ( )

Substituting formulae (2.20) and (2.27) in the expression for the spectral distribution of the probability
of radiation (2.12) we have

dW.  «
dw 27y

[ 1 1 1 1 (2.28)
] = dte™ " —— ) =2 I —
@) V/ ¢ [Rl <sinhz z) ik <sinh2 z 22)]’
0

where z = vt. This formula gives the spectral distribution of the probability of radiation derived by

7Im ®(v),

Migdal [2]. However, here Coulomb corrections are included into parameter v in contrast to [2].

1

We now expand the expression G~' — G-! over powers of v

G ' -Gt = GIH(—iv)Go + G (=) G (—iv)Go + .. (2.29)

Substituting this expansion in (2.18) and then in (2.12) we obtain decomposition of the probability of

< (2.28) and the first
w
term of the expansion (2.29) gives the Bethe-Heitler spectrum of radiation, see below (2.40). At @ > 1

radiation.Let us note that for

the expansion (2.29) is a series over powers of —. It is important that variation of the parameter g, by
a factor order of 1 has an influence on the dropped terms in (2.29) only.

In accordance with (2.18) and (2.29) we present the probability of radiation in the form

AW dW. AW, dWs
—— = + + +

dw dw dw dw (2.30)

d c - .
The probability of radiation ;V is defined by Eq.(2.28). In formula (2.12) with allowance for (2.18)
w

there is expression

—i < 0|G7 =G0 >= /dt1/dt26_i(“+t2)/dngc(O,g,tl)v(g)

o0

77 (2.31)
x K¢ (0,0,t2)+ / / / i(tittatts) /d2g1/d 02K:(0, 01,%1)
0

xv(01) K. (Q1,Q2at2)v( 2)Kc(02,0,13) +

d
where the matrix element K. is defined by (2.27). The term g
(linear in v) in (2.31). Substituting (2.27) we have

d 2 2 1 1
W _ —aRe/dtl/dt e t1+t2)/d2gv(g) 1
dw w2y

2 sinh vt; sinh vi,

in (2.30) corresponds to the first term

(2.32)
4¢%0
v2sinh vty sinh vts

2
—— (coth vty + coth l/t2)] [R1 +

X exp [—
v



where v = 2\/5. Substituting in (2.32) the explicit expression for v(g) and integrating over d?p and
d(t; — t2) we obtain the following formula for the first correction to the probability of radiation

dWwy « ) _ 7 dze™it .
= —mlm F(v); F(v)= / hZs [R1f1(2) — 2iRaf2(2)],

0
fi(z) = (ln o2+ lnz, —Insinh z — C’) 9(z) — 2cosh zG(z),

N g(2) _ o (2.33)
fa(z) = g <f1(z) 5 ) ,  9(z) = zcosh z — sinh z,
G(z) = / (I—ycothy)dy, t=1t1+ty, z=vt
0
As it was said above (see (2.15), (2.19)), 0. = 1 at
[V =vi=4QL1 <1 (¢=QL1). (2.34)

If the parameter |v| > 1, the value of g, is defined from the equation (2.15), where ¥; — 92, up to
0c = Rn/Ac. Then one has

T
_;z

1
Ine?+1InZ = = In(e*4QL) =il oMQL=1. (2.35)
) 2 4 4
It follows from (2.35) that expression (2.15) for 2, which we chose a priori, corresponds to the mean
value of ¢?. From the above analysis we have that the factor at g(z) in expression for fi(z) in (2.33) can

be written in the form

(In g2 4+ In Z —Insinhz — C) = (Inved(1 — vp) — z% — Insinh z — C), (2.36)
)
where .
8mnZ a‘ee
vi = v|* =49 =4QL(¢.) = ————Lle), (2.37)

Y(x) is the Heaviside step function. So, we have two representation of |v| depending on g.: at g, = 1 it
is |v| = v, while for g, < 1 it is |v| = vp.
When a scattering is weak (v; < 1), the main contribution in (2.33) gives a region where z < 1.
Then
2, 28

N P .
fi(z) = =(C +In(it) 3 + §2° = (3 = C = In(it)), (2.38)

1
—Im F(v) = gim v (Ry— Ry), L— L.

The corresponding asymptotes of the function ®(v) (2.28) is

1/2

<I>(I/) ~ F (Rl + 2R2) , (|V| < 1) (239)
Combining the results obtained (2.38) and (2.39) we obtain the spectral distribution of the probability
of radiation in the case when scattering is weak (Jv| < 1)

dw dW. dW,  « 1
do ~ dw + dw 27r721m [q)(y)_ F@)

2L
a 20 1 1

= — |\Ry | L1 — = 2R, | L —
2m23[1<1 3)+ 2<1+6)]

_ 42 [“’_2 <1n (1832_1/3) _ é B f(Za)) (2.40)

Im2w | g2
6/2 _1/3 1
+2 <1 + 6—2) <ln (1832 ) + 35— f(Za))

where L is defined in (2.19). This expression coincide with the known Bethe-Heitler formula for proba-

3

bility of bremsstrahlung from high-energy electrons in the case of complete screening (if one neglects the
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contribution of atomic electrons) written down within power accuracy (omitted terms are of the order of
1
powers of —) with the Coulomb corrections, see e.g. Eq.(18.30) in [7], or Eq.(3.83) in [17].
v
The integral in the function Im F'(v) (2.33) which defines the first correction to the probability of

radiation (2.33) can be transformed into the another form containing the real functions only

1
\/51/0

o0 [e.0]
7
/ 3 )sinsz + —g(z) cos sz | , / 3
sinh” z 4 sinh” z
0 0

y { [d(z) _ §g(z)] (sin sz + cos s2) + Tg(2) (cos sz — sin )}

1
—Im F(v) = Dy(vo)R1 + —D2(V0)R2; s =

(2.41)

d(z) = (Inved (1 — vg) — Insinh z — C)g(z) — 2 cosh zG(z),

where the functions g(z) and G(z) are defined in (2.33). The form (2.41) is convenient for numerical
calculations. Note, that parameter s in (2.41) is two times larger than used by Migdal [2].
At vo > 1 the function F(v) (see (2.33) and (2.36)) can be written in the form

/ Smh2 R1f1 ) — QZRQfQ(Z)] (242)
0

Integrating over z we obtain

_r o o2 T
~Im F(v) = TR+ (1n2 C+ 4) Ro. (2.43)
Under the same conditions (v 3> 1) the function Im ®(v) (2.28) is

Im ®(v) = gRl + %RQ. (2.44)

Wi is defined by

w

Thus, at vg > 1 the relative contribution of the first correction

Caw, 1 0.451
= W = 300 (m2-c+7) = T

aj,
where L(g:) = In N

In the above analysis we did not consider an inelastic scattering of a projectile on atomic electrons.

The potential V(@) connected with this process can be found from formula (2.10) by substitution Z? —
7,91 = 9. = 0.153¥; (an analysis of an inelastic scattering on atomic electrons as well as the parameter

Y. can be found in [17]). The summary potential including both an elastic and an inelastic scattering is

1 2
Vie)+ Ve(e) = —Q(1 + 5)92[11172193 +ln% +20

+Z;+1< ve Qf)} ) (2.46)

= —Qefg2(ln'y202f + ln —+ QC)
where

1 1

1
Qef:Q<1+Z)’ ey = U1 exp [H—Z(Zf(aZ)—l.SS)—§ .

3 An influence of the polarization of a medium

When one considers bremsstrahlung of enough soft photons w < wg7, one has to take into account the

effect of a polarization of the medium. In a dense medium the velocity of a photon propagation differs
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from the light velocity in the vacuum since the index of refraction n(w) # 1

2
wg 5 Amna

nw)=1- — 0= N

Eo1 k? 1wl
2wl 0= T ;—5(1—5)—§w—2~ (3:1)

Because of this the formation length diminishes as well as the probability of radiation (see [4], the

qualitative discussion may be found in [6]). For analysis we use the general expression for the probability
of radiation, see Eq.(2.1), [8]. The factor in front of exponent in this expression (see Eq.(2.2), [8]) contains
two terms A and B, the term A is not changed and the term B contains combination

K2 woy

k
——~q — = — 3.2
v w +n 272 ) Ko w ( )
and its dependence on kg (term of the order 1/4%) may be neglected also. With regard for the polarization

of a medium the formation length (2.1) acquires a form

247 2
== [1—}—72792—1— ('Vwﬂ) ] . (3.3)

So, the dependence on wy manifests itself in the exponent of Eq.(2.1), [8] and respectively in the exponent
of (2.2) only:

k
a— 225 (1——1})2&&5&, k=1+ k. (3.4)

E—w

Performing the substitution ¢ — @ in formula (2.7) we obtain for the potential (2.17)

2
- \/E~ Q K
K

V(@) =de’, i=QL(¢), Q= L(g.)=1n 12935.7" (3.5)

~2
~ q0 o
o)== < * n4g~c2>

Vi) = 7@ =0z (1 (=) ~20) = V@) + @) o= lel = o

The substitution (3.4) in the expression for the probability of radiation (2.8) gives
Ri = Ri, Ry — Rok = Ry (3.6)
The value of the parameter g in (3.5) is determined by equation (compare with Eq.(2.35))
46.*QL(g.) =1, for 4QL(1)> 1. (3.7)
In the opposite case g. = 1 and this is possible in two intervals of the photon energy w:
1. for kg <« 1 when the multiple scattering and effects of the polarization of a medium are weak;

2. for kg > 1 when effects of the polarization of a medium become stronger then effects of the multiple

scattering (vp < k).

In an intermediate region we substitute g2 — o’k in Eq.(3.7). After it we obtain the equation for g,
which coincides with Eq.(2.35), see also (2.37):

1

A vo(ee), volec) =4QL(¢c). (3.8)
Thus, for g. < 1 we have
- ~ - 1 1 140 ~ .
=\/4QL(o.) = = —=—, L(oc) = L(oc),
Vo QL(¢dc) T dn T w (¢c) = L(ec) (3.9)

while for vy < 1 we have




The spectral distribution of the probability of radiation (2.40) with allowance for polarization of a medium

have the form W )
a ~ ~
—=——-Im |®(7P) — — F(v)|, 3.11
= ™ |90) - 3757 0) (3.11)

where

&)(RlaRQ) = q)(Rl,RQ), F(RlaRQ) = F(R1:R2)J

We consider now the case when an influence the polarization of a medium manifests itself in the conditions
of the strong LPM effect (v 3> 1). This influence becomes essential for low energy photons, when the
mean square angle of the multiple scattering (2.15) on the formation length of a photon becomes smaller
than w?/w? (170 ) <1, &2> 1). Indeed, in the case ¥y > 1(vy > k3) one can use asymptotes of
functions ®(v) and%(y) at vg > 1 (see (2.42), (2.44)), we have

aw o« o(1 + 7)

4]

(87
i R = R 1
R B T A A (3.12)
0.451 - a ~
f: — s L ~c IL c Ih’l 52 .
(o) (0c) = L(oc) 32,2

In the opposite case vy < k3, the characteristic momentum transfer in the used units (¢.) are defined
by value k3(g2 = 1), one can use asymptotic expansions (2.38) and (2.39) and we have for the spectral

distribution of the probability of radiation

dW 16 Z%a®n 1 4 72020 1
o = 3o\t fZe) ) = e Ly + 5~ f(Z 3.13
dw 3 m2wk? ( pt 12 £ a)) 31 my? ( » T+ 12 f( 0‘)): ( )

where f(Za) is defined in (A.10), L, =In (183Z_1/3.%0). The results obtained agree with given in [4]
where calculations are fulfilled within logarithmic accuracy and without Coulomb corrections. It is seen
that a dependence of spectral distribution on photon energy (wdw) differs essentially from the Bethe-
Heitler one (dw/w), the probability is independent on density n.

The formula (3.13) is applicable only up to value kg = A¢/ R, or if w > wp, where

R,
Wp = —woY aZl/S'ywo; % > aZl/S%. (3.14)

Ac

For example, for electrons with energy ¢ = 25 GeV and gold target (wg = 80 ¢V') one has wp ~ 125 KeV.
For w < wp one has take into account the form factor of a nucleus (see Appendix B). In this case the
argument of the logarithm in (3.14) ceases its dependence on photon energy w. In the limit w < wp the

spectral distribution of the probability of radiation is

dw 4 VALK (

dw ~ 31 my?

as
In — —0.02 3.15
0 - 002) (3.1

4 A target of a finite thickness

In the case when a finiteness of a target is essential the probability of radiation is defined not only by the
relative time 7 = t5 — t; as in Section 2. The used radiation theory is formulated in terms of two times
(see eqs.(2.1) - (2.3) of [8]). Proceeding from this formulation we can obtain more general expression
which takes into account boundary effects. With allowance for polarization of a medium we have for the

spectral distribution of the probability of radiation

[e's] to
d 4
—w = —aRe / dtz / dtl €XP (—i}t(tg)tz + ZILL(tl)tl)

dw w

(4.1)

o0 — 00

X [7“1900(0,152,151) — iTQVQD(O,tQ,tl)],
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where
la lwm

p@) =9(-)+ 9T —-t)+ vIQI(T —1t), T = 5= e (42)

€
2
r = 7“2:1—}—6—2, k =1+ kg,

g2’
here [ is the thickness of a target,

Ko is defined in (3.2). So, we split time interval (in the used units) into three parts: before target
(t < 0), after target (¢ > T') and inside target (0 <t < T). The functions ¢, (0,%2,%1), @u = ¢u(¥0,®)
satisfy the equation (2.9), but now the potential V' depends on time

ag;u =H(t)p,, H(t)=p>—iV(0)g(t), g(t)=I)I(T —t);

pole,t1,t1) = (), (ot t1) = pd(o).

Using an operator form of a solution of Eq. (4.3) (compare with (2.11)) we can present the probability
(4.1) in the form

(4.3)

ta
d
%:—Re/db / dtyexp (—ip(ta)ta +iu(t1)t1)

e T ta (4.4)
X <0|7“15(t2,t1) + 7‘2pS(t2,t1)p|0>, S(tz,tl) = Texp —Z//H(t)dt s

where the symbol T means the chronological product. Note, that in (4.1) and (4.4) it is implied that
subtraction is made at V. =0, pu(t) =1 (x = 1).

Integrals over time in (4.4) we present as integrals over four domains:

3.0t ST, 12 2T

4.1 <0,ty > T

in two more domains ¢; 3 < 0 and ¢; » > 7" an electron is moving entirely free and there is no radiation.
We consider in this Section the case, when the thickness of a target L is much larger than formation
length Iy (3.3) or (v + )T > 1. In this case domain 4) doesn’t contribute. The contributions of other

domains are

0 o]
1 1
I ~ / dtl/dtzexp (i(t1—mfg))exp(—thQ)exp(iHotl):—H+Km,
? t02 [e%s)
:/dt2/dt1 exp (—i(H + £)(t2 — t1)) T/drexp —i(H + k)T) (4.5)
0 0 0
T 1 1
— [ rd —i(H = Iy~ —
/7‘ Texp (—i(H + k)7) ZH+K+(H+K) 3 Tt 101 r
0

where Hg = p?. The term in Is: —iT/(H + k) describes the probability of radiation considered in

previous Sections. All other terms define the probability of radiation of boundary photons *. So, making

'Radiation of boundary photons in an inhomogeneous electromagnetic field was considered in [18].
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mentioned subtraction we have for the spectral distribution of the probability of radiation of boundary

photons
d 4
% - §Re<o|r1M+r2pMp|o>, M =M + MP + My,
P P
) B ’
Vo e+ R) P41, (H+rR)(p2+1)
O, 1 (4.6)
v (H1+ k)2 (p?+ 5)2’ .
Mo =

T PR PR
For a convenience here we made the subtraction in two stages: first
(in M‘(,l), M‘(,2)) we subtracted terms with V' = 0 and second (in M) we subtracted terms with both
V=0and k = 1.

We consider important case when both the LPM effect and the polarization of a medium are essential.
We will calculate the main term with V(o) = V.(g), see (2.17). Needed combinations are

1 1
0|—————10
H+rp2+1

_/dtl/dtzexp(—i(h +l€t2))/dQQKc(O,g,tg)Ko(g,O,tl)’
0 0 i,
. et K 1 (4.7)
<O ‘m 0> = —/tdtexp(—mt)lxc(o,(),t), (0| My|0) = yt
T 7 1 9

M, e d 2 2M — | .y

Wl Mapl0) (QW)Q/ Pp e = [( ff—l) r ]’
0

where the functions Kg(g,, 0;,t) and K:(@,, 0,,t) are defined in (2.24) and (2.27). Substituting into
(4.7) the explicit expressions for these functions, calculating the vector derivatives as indicated in (4.6)

we have for contribution of the first term in (4.7)

dw? T T
d—b = ——7’2 Re V2/dt1/dt2 exp (—i(t1 + xta))
w
0 0

1 1
X [ - ] (4.8)
(sinh vty + vty cosh 1/t2) (I/t1 + I/tz)

2
= ——ar2 Im V/dlfl/dtz exp (—i(t1 + t2)) [
0 0

1 1
tanh ity + vt Dty + vty |’

W

where 7 = v/k, the second term in the square brackets is the subtraction term in accordance with (4.6)
(the term M‘(,l)). For practical use it is convenient to write the probability (4.8) using real variables.

After some transformations it can be written as

00 t
dwél) 2a 1
= — dt —1 t int d
dw w2 / exp(—1) (cost + sint) / = y + stanh (y/ks)
0 0 (4.9)
1
t—y+y/e|
where s = ——, parameter vq is defined in (2.37). Repeating the same operations with the second term

V214

13



in (4.7) (this is the contribution of the term M‘(/z) in (4.6)) we have

dw® o . [ 1 1
e - 2 tdt exp (—ixt) | —s— — ——
70 T2 Re v / exp (—ikt) Sah?o )
= ir Re Oodz ex (—zi) = l 4.10
T omw P v/ |sinh?z =z (4.10)
0

1
irz/dz exp (—§z) cos 5z [ < _]’

-
TwW sinh“z =z
0

where z = vt, 5§ = Uy = vg/k. The contribution of the term My in (4.6) is calculated in (4.7)

dwéS) @ 2
dw —E{Tl—i—rg |:<1+m) 11’1."{—2:|} (411)

The complete expression for the spectral distribution of the probability of radiation of boundary photons,

1
V20

in the case when both the LPM effect and the polarization of a medium are taken into account, is

dwy 3 d'wék)

dw dw
k=1

(4.12)

We  consider now  the  limiting case  when LPM  effect is  very  strong
(7o > 1). In this case we find for probabilities in formulae (4.9) and (4.10)

dwgl) 2u [ Ink w2 1 T ]
=—ry|lnpg —C — + + Inpg+1-C+ — |,
dw W 0 k=1 8/20y 20 ( 0 4) (4.13)
dw£2) 2 .

-2, [1—1n21>0+0—

dw Tw

Substituting asymptotes obtained and (4.11) into (4.12) we have

dwp o {
=—qr+nr

dw Tw

9 2
1111/0—1—6'—11r12—|—£ K7r——|—hll/0+1—cz
Vo 24 4

}. (4.14)

As one can expect, the probability of radiation at v 3> 1 + x2 depends on the polarization of a medium
in the term o 1/vqg only.

In the opposite case 7y < 1(vg > 1), the probabilities dwgl), dwéz) o 7§ and probability of radiation
of boundary photons is determined by the polarization of a medium. Just in this case radiation of

boundary photons is known as the transition radiation:

dwy, dwlg?’) o 2
— = — 1+ —— | Ink—2| ;. 4.15
dw dw W rt + k—1 e (4.15)
In the case of weak LPM effect v; < 1 (see (2.34), w < €) we have
dwy, o 2,
—_—~ — -— . 4.1
dw mw < 21 Vl) (4.16)

In this case what we calculated as the boundary photons contribution is actually correction (very small)

to the probability lcil—zv (2.40) which in this case has additional (suppression) factor 1 — gyf which
follows from the decomposition of the function Im ®.

The LPM effect for the case of structured targets (with many boundaries) was analyzed recently in
[19]. The radiation of the boundary photons with regard for the multiple scattering was considered in [20]
(for w < ¢), the polarization of a medium was added in [21] and [22]. Our results, which are consistent
with obtained [21], are presented in more convenient for application form and the Coulomb corrections
are included. In these papers the probability of radiation of boundary photons (under condition of
applicability of Eq.(4.14)) was analyzed also to within the logarithmic accuracy (see Eq.(20) in [21] and
Eq.(15 in [22])). This accuracy is insufficient for parameters connected with experiment [12]-[14]. For
example, for ¢ = 25 GeV and heavy elements the value vy equates k for vy ~ 20. One can see from

Eq.(4.14) that in this case Invg is nearly completely compensated by constant terms.
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5 A thin target

Finally we consider a situation when the formation length of radiation is much larger than the thickness
l of a target (a thin target, I, >>1). In this case the radiated photon is propagating in the vacuum and
one can neglect the polarization of a medium.

Operator S(t1,t2) (4.4) we present in the form

2]
S(ta,t1) = Texp —i/?—l(t)dt = exp (—iHots) L(t2,t1) exp (1Hot1);
t1

(5.1)
E(tQ, tl) = €Xp (ZHotQ) S(tQ,tl) €XP (—iHotl).
Differentiating the operator L£(f2,t1) over the first of arguments we obtain
OL(t,t . .
# = —exp (iHot) V(0,t)S(t,t1) exp (—iHot1) = =V (0 + 2pt, 1) L(t, 11), (5.2)

where V(0,t) = V(0)g(t) (see (2.9), (4.3)). The formal solution of this equation with the initial condition
L(t1,t1) = 1 has the form

2]
L(ta,t1) = Texp —/dtV(g+ 2pt,t) |, (5.3)
t1
where T means the chronological product. This solution is exact. Now we take into account that we are

considering a short characteristic time contributing into integral (5.3), or more precisely

2 1
I<le==, T<3, 5.4
ac R (5.4)

where [, ¢ are defined in (2.1). Since the main contribution give p ~ /(,

t<T:l—a,
- 2

o~ 1/3/C, pt € 1/+/C ~ o ,where p is characteristic mean value of operator |p|, one can neglect by the

term 2pt in (5.3), so that
ta

L(ta,t1) ~ exp —/dtV(g,t) . (5.5)

t1

In the probability of radiation enters the expression (cp (2.12), (4.4))
(0 |exp (—iHota) (L — 1) exp (iHot1)| 0)

- /d2g (£ — 1) (0 |exp (—iHots)| @) (@ |exp (iHot1)] 0). (5-6)

Using an explicit form (2.24) of the matrix element (0 |exp (—iHo?2)| @) and neglecting terms of the order
~ T(l/l;) one obtains starting from (4.4) for the spectral distribution of the probability of radiation

0 [ee]
dwyp, e /dtl/dtg/ 9
= — | —[d
dw In’w s T 0 (r1 + rap1p2)
—o0 0
2

X exp [— i(ta—1t1)+ z% <% — %) ] (exp(—VT) —1) (5.7)
= % d*o [r1K§ (o) + oK1 (0)] (1 —exp(—VT)),

where p; (p2) is the operator p = —i'V acting on the function of @?/t; (0?/t2), K, is the modified Bessel
function. Here we took into account that in our case contribute domain [¢1], [t2| > T and t; < 0,72 > 0
since in domains t; 2 < 0 and ¢; 2 > 7" an electron is moving entirely free and there is no radiation. In
implicit form the factorization contained in (5.7) is presented in [23]. If

V(e = 1)T < 1 one can expand the exponent (the contribution of the region ¢ > 1 is exponentially
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damped because in this region Ko 1(g) x exp(—g)). In the first order over VT using the explicit expression

1
In2— —;
(n C+6),

2 1
KZ(0)In go*do = 3 <ln2 - C - —)

for the potential (2.10) we have to calculate following integrals:

| =

K3 (o) In oo’do =

12

0\80\8
=
x

Substituting these integrals one obtains in this case the Bethe-Heitler formula with the Coulomb correc-
tions (2.40).

We analyze now the opposite case when the multiple scattering of a particle traversing a target is
strong (V(¢ = 1)T > 1, the mean square of multiple scattering angle ¥? > 1/4%). We present the
function V (o)T (see (2.9), (2.10) and (2.19)) as

Z2 2 l 4 2 2
Vie)T = 22 <ln o —20) = Ag*In X = 4¢° <lnX—2t —In 9—2)
T ¢ ¢ T (5.9)
4 27 Xt Xt >
:kg2<1——h’1—); AoyIn= =1, L;=In= ~In ,
Le ot fet g Ng

where g; is the lower boundary of values contributing into the integral over p. Substituting this expression

into (5.7) we have the integral

2
27 | odoK?(0) {1 — exp [—kg2 <1 L In Q—2)] } =nJ. (5.10)
Le o}

0\8

In this integral we expand the exponent in the integrand over 1/L; keeping the first term of the expansion.

We find

o0

J=Ji1+J2, 1= 2/[(12(9) [1—exp (—ko®)] ode

0
o]

= Qk/dgg?’ [Ko(e)K2(0) — Ki(0)] exp (—ke?), (5.11)
0 o0
2% [ o’
Jo = I I&lz(g) exp (—kgz) In —293dg
t 9;

0

In the integral J; we performed an integration by parts. In the integrals in (5.11) it is convenient to
substitute z = ko? then

(5.12)

Expanding the modified Bessel functions K, (z) at # < 1 and taking the integrals in the last expression

we have
1 1 C
J=h+l=(1+—=|(ndk-C)+ — -1+ —,
VAL

k=""nl (L +1-20).

m

In the term with K2 in (5.7) the region ¢ ~ 1 contributes. So we have
Js = 2/1{3(9) (1 —exp(=VT)) odo ~ 2/1{3(9)9@ =1 (5.14)
0 0
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Substituting found J and Jz into (5.7) we obtain for the spectral distribution of the probability of

radiation in a thin target at conditions of the strong multiple scattering

d-
Weh = i(rl—}—T’QJ). (515)

dw W

The logarithmic term in this formula is well known in theory of the collinear photons radiation at scat-
tering of a radiating particle on angle much larger than characteristic angles of radiation ~ 1/v. It is
described with logarithmic accuracy in a quasi-real electron approximation (see [24], Appendix B2).

The formula (5.7) presents the probability of radiation in the case when the formation length /. > L.
It is known,see e.g. [7], that in this case a process of scattering of a particle is independent of a radiation
process and a differential probability of radiation at scattering with the momentum transfer q can be
presented in the form

dW, = dw,(q)dw,(q, k), (5.16)

where dw;(q) is the differential probability of scattering with the momentum transfer q which depends
on properties of a target. The function dw,(q,k) is the probability of radiation of a photon with a
momentum k when an emitting electron acquires the momentum transfer q. This probability has a
universal form which is independent of properties of a target. For an electron traversing an amorphous

medium this fact is reflected in formula (5.7). Indeed, passing on to a momentum space we have

adw : B )
dwr(Q,k) - m dgg [Tlfﬁg(g) + 7’2[&%(@)] (1 — exp(—zqg))
adw
2 s (2] () =
1 ) 1 p2 92; 2 1
Fuls) =1 n(z+V1+e )’ Fa(a) = Lln(ﬁ 1”2) 1
zV1 + 22 V1 + 22

Remind that ¢ is measured in electron mass. The probability of radiation in this form was found in [21].

For a differential probability of scattering (here we consider the multiple scattering) there is a known

formula (cp (2.5), (2.6) and (2.9))

dw,(q) = Fy(0)d%, Fi(q) = Lﬁ%wﬂ4whmF%@m

1
(2

(5.18)
m@:n/ﬁmvww@mmwmx

where o(q) is the cross section of single scattering.

Using the formula (5.17) one can easily obtain to within logarithmic accuracy expressions (5.15),(4.14).
Both a radiation of boundary photons and a radiation in a thin target may be considered as a radiation
of collinear photons (see e.g. [24]) in the case when an emitting particle deviates at large angle (95 >

1/v,4>1). Using (5.17) at > 1 we find

dw,(q) ~ C::f:d [r1+72(Ing* = 1)];
/dzqd'wr(q)Fs(q) = O;Cf:d {7’1 + 72 (lnq_2— 1)} (5.19)

For a thin target value of ¢2 is defined by mean square of multiple scattering angle on a thickness of
a target !, and for boundary photons is the same but on the formation length {;. However, if we one
intends to perform computation beyond a logarithmic accuracy, the method given in this Section has
advantage since there is no necessity to calculate Fi(q) and in our approach a problem of calculation of

the Coulomb corrections is solved in a rather simple way.
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6 A target of an intermediate thickness [ ~ [,

It appears that used in Section 4 approach permits one to consider an important case when [ ~ [..
According to the partition of integrals over time in formula (4.4) into four domains we can write the
probability of radiation as
dw . dw dw 4o
n n
o _ , =R ( Ji0) J<2>). 6.1
dw dw dw w C\Tn t 2l (6.1)

n=1

The integrals in 17(11’2) we compute on the assumption: v > 1, T 1, vgT ~ 1, k = 1. Since integrals
in 17(11) don’t contain the logarithmic divergence, only the domain 4 contributes. In the domains 1-3
(1)

one of the integrals in I
dwy 23 x T < 1. So, we consider Lgl)

contains an integration over an interval 0 < ¢ < 7T and due to this reason

0 [el¢]

M= / dt1/dt2 exp(—i(t1 +12)) (0| exp(—i(Ho(ts — T))) exp(—iHT)
x exp(iHot1) — exp(iHo(ta — tl))|0> = /dtl/dt2 exp(—i(t1 +t2 + 7)) (6.2)

X/d291/d2g2[(0(0,gl,t1) [[{C(Q1:g2aT)_[{O(QDQZ:T)] [{0(92101t2)-

Here a calculation of integrals over g, and g, may be performed e.g. in a such way:

e an integral over relative angle between g, and g, gives Jo(3g1¢2) where Jy(z) is the Bessel function,

1
8 =0.= # and B = By = — for the first and second terms in the square brackets in the
. 2sinh vl 2T
right-hand side of (6.2),

e the remaining integrals over g; and gs can be found in tables.

So, we have

17T |

I(l):—,/dt/dtex —i(ty a4+ T)) | N(ty,ts) — ————— |,
4 A 1 2 P 1 2 )) (1 2) i+ iat T (63)
0 0 ’

v
(1 + v2t1ty) sinh vT + v(ty + t2) cosh vT"

N(t1,t2) =

For vy > 1 the contribution into integral the term with N(t1,%2) is of the order of 1/vg and this term
may be neglected. With allowance for 7" < 1 we find

i 1
= —— dt dt — t t
in / 1/ zexp (=it +12)) 7=
0 0

1 [de PRSNG|
T T8mi )z Y= | ¢ T anm

0 -z 0

where x =) + 12, y =t1 — ta.

The contribution of the domain 4 into the term with ry (L(IZ) in (6.1)) contains two additional operators

p (see (4.4)) which result additional factor — Qtl iz in the integrand. Integration over the relative angle
1l2
between o, and g, gives here Ji(B0102) and subsequent evaluation of integrals is similar to those for

(6.3). We find

1

1
dn (t1 +t2 + T)?

:—4 /dtl/dtQGXp —1 tl —|—t2+T)) Nz(tl,tQ)_
T
0 0
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The contribution into the integral with N2(t1,15) gives a domain
t1,t2 ~ 1/vg < 1. Since T <« 1 as well, we can put an exponent in this integral equal to 1. So the integral

1s

(0] (0] (o] (o] 1
/ 1/d 2ty 1) = /dff/dy , , 2
% g (Eere (6.6)

=2In—- =2IncothvT,

where & = vt1, y = vty, a =sinhvT, b = coshvT. The second term in (6.5) is calculated as (see (6.4))

s [ e it a1 G = [
o 0 0 (6.7)

. t T
~ [ dte™" —1~-C—-InT—-1+1i—
/ e (t+T) n —1—22,
0

where ¢t = t; + t5. Putting together (6.6) and (6.7) we have

1 :21ntanhyT—C—lnT—1—|—ig. (6.8)

For computation of I{z) = I:(f) we will use Eq.(4.8)

oo T
2
=2 /dt /dt ' !
- 1 2exp (—i(ty + 1)) | —————
4 2 0 (l/t1+l/t2)2

_— ! ] (6.9)

(sinh vty + vty coshvis)

Integrating by parts over ¢; with regard for exp(—it2) ~ 1 we have

’ 1 1
12 ~ / dty |— = ———————
1 e 2 vty cosh vts sinh vis

(6.10)
v 1 1
— | dt dt —it — .
+47ri / ! / 2exp(—it1) [y(tl +1t2)  coshviy(sinh vty + vty coshvis)
0 0
The second of these integrals is proportional to 7" and can be neglected. The first integral gives
| 1 vT
7@ 2 2y ) A1
! 3 a7 " tanh o T (6.11)
For a calculation of I£2) we use formulae (4.5) and (4.10)
2 7 1 1
9~z /dt [7 - —]
2 47 (t-1) sinh?vt  (vt)?
_ (6.12)
v 1 1 sinh vT
=1 dt [coth vt — E] = Eln T
0
Combining all the contributions of four domains we obtain finally
d'_w = 24: 4—aRe (rlf(l) + 7‘2[(2)) = iHe [r1 + (In(ysinhvT) — 1 — C) ry] (6.13)
do = w n n Tw ' ’
In the used units (7" = al/2) the formation length (2.1) is (see also (2.5) and (2.15))
al 1 1
t. = = == 14
2 Cc ge vy +1 (6 )



In the case of thick target (T > t., T > 1) we have from (6.13)

dw o al vy ol aal a €
—~ — 1 —1-C—-1n2 —ry—, — = — = ———|. 15
Tw [r1 + (Inwo C—In2)rs]+ Tw r2\/§, mw  2mw  2my?el (6.15)
This formula gives the probability of radiation at vy > 1 (see (2.28), (2.44)) where the contribution of
boundary photons (4.14) is included.
In the case of thin target voT < 1 but when vZT >> 1 we have from (6.13) the probability (5.15)
without term o< 1/L¢. So we have (v3T = 4k)
dw @ [r1 + (In(rgT) — 1 — C) o] (6.16)
dw = 7w 0 ' ’
Note, that when the value of the parameter vg is not very large, the accuracy of the formulae (6.15) and
(6.16) may be insufficient. In this case one have to compute the next terms of the expansion, as it was
done in Sections 4 and 5 (see (4.14) and (5.15)). The same is true for (6.13). A detailed analysis of the

probability of radiation in the targets of an intermediate thickness will be carry out elsewhere.

7 A qualitative behavior of the spectral

intensity of radiation

We consider the spectral intensity of radiation for the energy of the initial electrons when the LPM

suppression of the intensity of radiation takes place for relatively soft energies of photons: w < w, € e:

_ 1671 22%a> 9 Ay
=z nh Ao

(7.1)

VO(WC) = 1, We

see Egs.(2.9), (2.14), (2.15) and (2.37). This situation corresponds to the
experimental conditions.
A ratio of a thickness of a target and the formation length of radiation (2.1) is an important charac-

teristics of the process. If we take into account the multiple scattering and the polarization of a medium
then the formation length (3.3) has the form

272 2]t
y= 2 [z (22)] (2
w w
this ratio may be written as
w w Wy
Bw) =T+ &) =Te |—+/—+ ,
w w ww
; ¢ ¢ ) ¢ ; (7.3)
w 71'
= W’ Wp = Wo7, TC = T((.dc) ~ ELrad,

fw L .
where we put that vg ~ ,/—. Below we assume that w, > wp which is true under the experimental
w

conditions.
If f(we) = 2T: < 1 then at w = w, a target is thin and the Bethe-Heitler spectrum of radiation, which
dI
is valid at w > w, <# = const) will be also valid at w < w, in accordance with Eqgs.(5.7) and (5.8)
w

since 4k = 2T = T. < 1. This behavior of the spectral curve will continue with w decrease until photon
energies where a contribution of the transition radiation become essential.
If B(we) > 1 (T > 1) then at w > w, a target is thick and one has the LPM suppression for w < we.

There are two opportunities depending on the minimal value of the parameter 5.

4 1/3 2/3
ISR CI :w,,< “P> B~ 2T <Z—p> . (7.4)

2 We We c
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If 8,, < 1 then for photon energies w > wy it will be ws such that

w
Blws) =1, wa 5 (7.5)

[+
and for w < wa the thickness of a target becomes smaller than the formation length of radiation so that
for w < wy the spectral distribution of the radiation intensity is described by formulae of Section 5.

Under these conditions for 4k = v2T' = T, > 1 the spectral curve has a plateau

dl 2
o= %J = const (7.6)

in accordance with (5.13). Such behavior of the spectral curve (first discussed in [21]) will continue until
photon energies where one has to take into account the polarization of a medium and connected with it
a contribution of the transition radiation.

At B, > 1 a target remains thick for all photon energies and radiation is described by formulae of
Sections 2 and 3. In this case at w € we (vo > 1) and w > (wp/wc)l/?’ wp (Vo > k) the spectral intensity
of radiation formed inside a target is given by Exp.(2.40) and (2.44) and the contribution of the boundary
photons is given by (4.14).

Since a contribution into the spectral intensity of radiation from a passage of an electron inside of a
target (ox T') is diminishing and a contribution of the boundary photons is increasing with w decrease,

the spectral curve has a minimum at w = wy,. The value of w, may be estimated from equation (see

(2.44) and (4.14))

d [ vyT /2 K vol' (k- 1)
— [ 2 4w+ Z)=0, XL ~14——7
( REEDY yo) NG NG (77)

2(; 1/2 2
Tc:<w) \/E—}—F—J:E, x:w—p.
4 w

When a value of T is high enough, the solution of Eq.(7.7) doesn’t satisfy the condition vy > & and in
this case the equation (7.7) ceases to be valid. For determination of wy, in this case we use the behavior of
the spectral intensity of radiation at £ > vy. In this case a contribution into radiation from inside passage
of a target is described by (3.13) whilst the radiation of the boundary photons reduces to the transition

radiation and its contribution is given by (4.11). Leaving the dominant terms (v27T is w-independent) we

d I/gT v2T T. 3
i B T | =0, 2= -1 m= — m ™~ —wp. 7.8
dw ( 3K + nﬁ) " 3k o 30 ¢ TCWP (78)

Since the value 72/12 ~ 0.8 is of the order of unity, the solution of (7.7) at
Km > vg differs only slightly from w,,. Because of this, if the condition
27, (wp/wc)2/3 > 1 is fulfilled, the position of the minimum is defined by Eq.(7.7).

have

8 Discussion and conclusions

Now we consider the experimental data [12]-[14] from a point of view of the above analysis. It is shown
that the mechanism of radiation depends strongly on the thickness of a target. So, we start with an
estimate of thickness of used targets in terms of the formation length of radiation. From Eq.(7.3) we

have that 9l ]
T >9 at

T, =
Qlpgd Lrad

> 2%.

The minimum value of the ratio of a thickness of a target to the formation length of radiation is given
by Eq.(7.4) (8m =~ QTc(wp/wc)z/B). For defined value of 7. this ratio is least of all for the heavy ele-

ments. Indeed, the value of w, = woy depends weakly on nucleus charge Z (wo = 30 + 80 eV'), while
Amy?

we = — - o Z%. Furthermore, the ratio wp/w, decreases with energy increase. Thus, among all targets
ra

with thickness | > 2%L, 44 the minimal value of 3, is attained for the heavy elements (W, Au, U) at
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the initial electron energy ¢ = 25 GeV. In this case one has w, ~ 250 MeV, w, ~4 MeV, 3, > 2.5.
Since the parameter T is energy independent and the ratio wp/w. « 1/e, the minimal value 8, > 5 is
attained at the initial electron energy ¢ = 8 GeV for all targets with thickness | > 2%L,,4 which can be
considered as thick targets.

As an example of obtained results we calculated the spectrum of the intensity of radiation in the
tungsten target with thickness | = 2% L,qq4 at the initial electron energy ¢ = 8 GeV and ¢ = 25 GeV'. The
characteristic parameters of the radiation process for this case are given in the Table. We calculated the
main (Migdal) term (Eq.(2.28)), the correction term (Egs.(2.33),(2.41)) taking into account an influence
of the polarization of a medium according to (Eq.(3.11)), as well as Coulomb corrections entering the
parameters vy (Eq.(2.10)) and L(g.) (Eq.(2.36)). The contribution of an inelastic scattering of a projectile
on atomic electrons (quite small for the heavy elements) is not included although this could be done using
Eq.(2.46). We calculated also the contribution of the boundary photons Eq.(4.12). Here in the soft part
of the spectrum w < wy(wq ~ 2 MeV for ¢ = 25 GeV) the transition radiation term (4.11) dominates in
(4.12), whilst in the harder part of the boundary photon spectrum w > wq the terms depending on both
the multiple scattering and the polarization of a medium (4.9) and (4.10) give the main contribution; for
€ =8 GeV we have wg ~ 700 KeV . It is seen that we have for the boundary photons spectrum a smooth

curve which eliminate difficulties mentioned in [14].

Table: Characteristic parameters of the radiation process
in tungsten with the thickness | = 2%, .4

¢ (GeV) | we (MeV) | wp (MeV) T, w1 (MeV) | B | wm (MeV)
25 228 3.93 21.25 1.6 2.7 2
8 23.35 1.26 21.25 0.76 5.7 0.5

All these results presented separately in Fig.2 as well as their sum (curve 5). Note, that for energy
€ = 25 GeV in the region of the minimum of the spectral curve 5 where the ratio of the target thickness
to the formation length is minimal (5, ~ 2.7, see Table) it may be that the target is not thick enough
to use the formulae for a thick target. For a comparison with experiment we extract some data from
Fig.7 of [14]. The theoretical curve gives the spectral distribution of the intensity of radiation (in units
2a/7) without adjusting parameters. Data from [14] were recalculated according with procedure given
in it. One can see that agreement between the experiment and theory is rather satisfactory but far from
being perfect. However, one has to take into account that the theory of LPM effect in all previous papers
had the logarithmic accuracy and did not contain Coulomb corrections. These shortcomings did not
permit to pass to the Bethe-Heitler formula with acceptable accuracy and led to some difficulties in data
processing. Both these shortcomings are overcome in the present paper. So, in our opinion, it is quite
desirable to handle the experimental data using the formulae of this paper.

The measurements in [14] were made also using gold target with thickness | = 0.7%L,44. For this
Bm (25) = 0.7,

(see Section 6). We want to stress once more that for estimation of an effective thickness one have to use

case one has T, ~ 6, Bm (8) = 1.5, so we have here a target of an intermediate thickness

the formation length with regard for the multiple scattering and the polarization of a medium (see (3.3)
and (7.2)). A detailed calculation for this case will be published elsewhere.
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Figure 1: The functions Dy 3(vg) (Eq.(2.41)) vs parameter vg.

A Appendix
A potential V(p) with the Coulomb corrections

It is well known, that for heavy elements the Coulomb correction to the cross section of bremsstrahlung
of high energy particles (correction to the Born approximation) is quite sizable, see e.g. Eq.(18.30) in [7].
The Coulomb correction (order of one for heavy elements) is subtracted from the ”large” logarithm and
if an accuracy of calculation goes beyond logarithmic one, one has to take into account this correction.
For tungsten (Z = T4), gold (Z = 79) and uranium (Z = 92) in the case of complete screening the
relative Coulomb corrections to the standard Bethe-Heitler cross section are respectively -7.5% , -8.3%
and -10.7%.

We consider the problem using eikonal approximation (see e.g.Appendix E in [7]). An amplitude f(q)

and a cross section of scattering in this approximation have the form:

fla) = o [ deexpl-iae)S(e). Sle) = exp(~ix(e)) - 1
oo (A1)
x@)= [ Ule.s)ds dola) = |f(@)"d"s

where (z, 0) are the longitudinal and transverse coordinates respectively, U(g, z) is the potential. Re-
peating a derivation made in Section 2 (eqgs. (2.3)-(2.9)) but with the cross section (A.1) we find for the
potential V()

Vie)=n [ (1-expliae)) Fla)Pd’s
(A.2)
- n/d% (S(%)S" (x) — S(x + €)5" (x)).

Since the potential V(g) was calculated above in the Born approximation, we can calculate here the

difference of the potentials calculated in the Born approximation Vg (@) and in the eikonal approximation
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Figure 2: The intensity of radiation w% in tungsten with thickness [ = 0.088 mm in units 27&,
((a) is for the initial electrons energy ¢ = 25 GeV and (b) is for ¢ = 8 GeV). The Coulomb
corrections and the polarization of a medium are included:

—curve 1 is the contribution of the main term (2.28);

— curve 2 is the correction (2.33), (2.41);

— curve 3 is the sum of the previous contributions;

— curve 4 is the contribution of the boundary photons (4.12);

— curve 5 is the total prediction for the intensity of radiation.
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AV (o) = Va(e) — V(o) =n [ d*z {exp lix(o+ x) —ix(z)] — 1

+ (e +x) —x@) };

7 7z ,
X(I) / dz—aexp <_L) =27akK (i) , = V2?4 IZ,
r a

k] aS

(A.3)

where Ko(z) is the modified Bessel function. Because the eikonal phase enters (A.3) only in the combi-
nation x(@+ x) — x(z) in the interesting for us region # ~ ¢. Since Kg ) is large only if z/a, < 1 it
as

is evident that main contribution into integral (A.3) gives the region z ~ ¢ < a,. In this region one has

2

x(e+x)—x(z) = €ln(g+ _p

, E=Za. (A.4)

So, in the expression for AV(g) enters only one dimensional parameter ¢ = lg, where 1 is the unit vector.

After substitution of variables x — gx we have

AV (o)

=2m0°€* f(€), |
116 = s [ o | (YT 1y e ) (a5

Changing variables y = % and then z = y + 1 we have
f(é) = 27r1€2 /% [z%f —1+ %hﬂ zz]. (A.6)

Integration over azimuthal angle gives

7 do _2m(1+ 2%)
0/ ( = . (A.7)

22 —2zcos¢ + 1)? |22 — 13

Changing the variable z? = u, splitting the integration interval into two parts:

(0,1) and (1, 00) changing in the second interval v = 1/u we obtain

1
1 du(1l + u) £2
0
Integrating by parts and changing once more variable u = e™¥ we find
1 7 e Ydy o 9

0

Integrating once more by parts and using the standard (Gauss) representation of the Euler ¢¥-function

we have finally

AV (o)

=210*(Za)? f(Za),
(A.10)

J(&) = Re[p(1 +i€) = 4 (1)] = & Z E gz

The obtained function f(£) is the known Coulomb correction to the Bethe-Heitler cross section of

bremsstrahlung, see e.g. [7], Sections 17,18.
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B Appendix

An allowance for a form factor of a nucleus

When g, < R, (see (2.15), (2.16)) one cannot consider the potential of a nucleus as a potential of a
point charge. A contribution into the multiple scattering gives a momentum transfer ¢ < 1/R,,. Because
of the same reason the phase qg in expression (A.2) for the potential V(g) is small ¢o < g./R, < 1 and

one can expand the potential. As a result we obtain

V(o = "L [laswPa="L [ 1vsePas
no? no? (B.1)
=" [ (Vx) e = T [ (al)’ e,

where q(x) is the classical momentum transfer on a straight-line trajectory with an impact parameter
x. As one can see from (B.1), the mean square of the momentum transfer is the same the in eikonal
approximation, in the Born approximation and in the classical theory. The Coulomb correction in this
case vanishes.

Considering a nucleus as an uniformly charged sphere with the radius R,,, we have

ale) = 26% [£1<1 (ﬁ) 9(0—Ry) + ¢ (é—;) ¥ (Rn — 9)], (B.2)

0 Qs Qs

go(r):l—\/l—:b—i—r\/l—r.

Substituting the expression obtained into (B.1) we find the potential V() under conditions considered

[ee] 1

2 - dx
/qz(g)dzgz‘”fz a_sz‘f <£) 9d9+/w2<x)

n 0

(o) ) 500

=4nZ%a? ln%—i—g—?(C—l—ln?) ;

V(o) = n&%ng? [m (;—Z) — 0.0407].

If one uses standard representation of nuclear form factor (see e.g. [17])

1 ) _ R

Fq) = T ear %= % R,=12-10"13AY3¢m, (B.4)
0
then one obtains
2(g)d%0 = 4nZ%a> 0% 6 — 2| ~ drzZa? [1n % _ 0908 (B.5)

2
. . a . . .
Taking into account that In —=- ~ 20 we see that the difference between different models of nucleus is less

than 1 % . "
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