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Abstract

New minimization strategy 1s suggested for non-smooth functions. Main el-
ement of this strategy is a combination of Simplex method and modified
Newton’s one. Probability of reaching the ”true” minimum point is highly
increased by successive minimization runs from different starting points.

This algorithm is implemented in Fortran-77 in subroutine COMBI. Com-
parison of minimization results obtained with COMBI and MINUIT programs
1s performed on the set of functions with complicated profile.
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1. Introduction

Function minimization is a very typical problem in data processing in high
energy physics experiments. For interactive work with data the code MI-
NUIT [1] is generally used, providing very good convergence to the minimum
point of function and nice service (statistical errors evaluation, contour plot,
fixing and releasing some of the function parameters etc.) User manual of
MINUIT has a special warning that this program ”...is not intended for the
repeated solution of identically parametrized problems (such as track fitting
in a detector) where a specialized program will in general be much more
efficient ...”.

Trying to apply some new approach for kinematic reconstruction of events [2]
to the experimental data of SND-detector [3], the author encountered this
very problem: what general purpose minimization code can be used? Despite
the mentioned warning the program MINUI'T was used first. The trouble was
that sometimes a message like ”...arithmetic fault, floating divide by zero
... was issued from one of MINUIT subroutines. Tt was very difficult to over-
ride this trouble, and if SIMPLEX mode was used instead of MIGRAD then
troubles disappered but minimum was found with less probability and hence
selection efficiency was significantly decreased. These circunstances gave rise
to the search of some minimization strategy, which would be reliable enough

(as compared to MINUIT) even is slower than MINUIT.



2. Description of the new algorithm

The main idea of this new algorithm is to combine two well-known algo-
rithms: SIMPLEX [4] and Newton’s method (which is rarely used for func-
tion minimization because in general case it does not provide convergence to
the minimum point; one of the possible implementation is discussed in [5]).
This combination proved to be rather efficient, but nevertheless rather often
minimization is stopped far from the ”true” minimum point. In order to in-
crease the probability to find ”true” minimum point several minimizations by
SIMPLEX method are performed from different start points. Achieved min-
imum points of differents minimization runs are stored in an array, and the
information about these minimum points influences on the choice of the next
start point and is used to make a decision when to stop the minimization.
At any moment not more than four results of previous minimization runs are
stored, and extra minimum points are rejected by a special rule.
Here is a brief description of the algorithm.

2.1. Start of new SIMPLEX minimization

The choice of the starting point of the new SIMPLEX minimization depends
on the number of SIMPLEX run:

1. The starting point of the first SIMPLEX run is supplied by a user in
the input parameters.

2. The starting point R4t of the second run of SIMPLEX minimization
is derived by the following rule:

R; - Ry

Ritart = R jum ™ - 1 1
tart 2 + R; p><|R2_R1| (1)

where R 1s an initial point supplied by the user and Rs 1s a minimum
point found by the first SIMPLEX run, Rjymp 1s a variable which for

the second run is set to
Rjump = 0.01 x |R2 — R[4+ 0.1,

and for all successive runs is varied according to results of the current
minimization. If the new minimization result is better than any previous
one, then R;,n,, is increased by a factor of 3, otherwise it is divided
by 2. The latter assures the convergence of the algorithm.



3. For all other SIMPLEX runs the starting point is chosen along the
”parabolic” curve

Rstart =Ro-(14+t) =Ry -t +1(t+1)e (2)

where R is the best minimum point of all the previous SIMPLEX runs,
and R, 1s the most distant minimum point to Ry of all points, stored
at this moment in the array of minimum points (”history” array). The
vector e is orthogonal to the vector (R; — Rz2) and provides minimum
sum of squared deviations of this curve from the minimum points R;,
stored in the ”history” array:

> [Ri—Ry—ti- (Ry—Ry)]ti - (ti + 1)
©= 2t + 1) )

where

(Ri — Ro)(R1 — Ry)

t; =
(R1 — R2)?

If the absolute valuee of this vector exceeds the current value of Rjump
or |R; — Rg| then the length of this vector is shortened to the least
of these two values. If there are only two minimization results and
thus there 1s an uncertainty in the definition of the vector e then it is
set to zero. Parameter ¢ in formula (2) is chosen so that the distance
|Rstart — Ro| is equal to Rjymp.

The initialization SIMPLEX step H; is set to Rjump x 0.1 (for the first SIM-
PLEX run Rjymp is set to unit).

2.2. Initialization of SIMPLEX

First, the initialization step in each coordinate x; is set to h; = H,, then the
preliminary descent along this coordinate is performed by function evaluation
at the points z; £+ h;. If the function value in some direction 1s less than
that at the initial point, then A; is multiplied by 1.5 and the function check
1s proceeded from this new point. Since the function value at the points
x; = h; 1s greater than that at the point x; the preliminary descent along this
coordinate 1s stopped and h; is divided by 2.

Thus, we obtain an improved starting point Rg;q+ With n coordinates
z;,t =1,...,n. Then we construct a set of (n+ 1) points which we shall call
further as simplex. One point is the starting point Rg¢qr¢, all other points are



obtained increasing all coordinates by h; in turn. Among these (n+ 1) points
there 1s one with the lowest value of function. This point will be called the
"best point”. Similarly there is the ”"worst point” with the greatest value of
the function. SIMPLEX minimization is performed by successive change of
the worst point to a new better one.

2.3.  Choice of a new point for the simplex

Let us denote the points of the simplex as R;, the best point as Rpes; and
the worst one as Ry, ors¢. First, the ”center of gravity” R. is calculated:

R.=~ Y R (4)

n
R; #Rworst

Now four new points in turn are tested as a replacement for the worst point.
If any of these points has a function value less than that of the worst point,
then the worst point 1s replaced by this new point, and the new best and
worst points are determined.

New points are searched along a straight line going through the center of
gravity and the worst point, defined by a parameter p:

R:(l-l—p)XRc_pXRworst (5)

The first point is tested at p = 2, the second one at p = 1. If none of
these points is better than the ”worst” point, then the function is evaluated at
p = —0.5. The parabolic interpolation by the least squares’ method is done for
the four points: three new points with different p and the ”worst” point. At
the minimum point of this parabola the function is also evaluated and the final
decision 1s made. If one of these points is better than the ”worst” point in a
simplex, then the latter one is replaced, and the new ”worst” point in simplex
1s determined. If the replacement is impossible, then initialization parameter
H is multiplied by 0.2 and simplex initialization is repeated around the best
point of the simplex (jump to 2.2).

In parallel with simplex minimization all points and the function values
are used to estimate the minimum point by the modified Newton’s method.

2.4. Modified Newton’s method

The base of the Newton’s method 1s reconstruction of the quadratic form
coefficients in the n-dimensional space using function values in N, = (n +
1)(n + 2)/2 points. Since the coefficients of the quadratic form are obtained,



one can derive the minimum point R, and predict the minimum function
value f,.

Since we often deal with functions strongly differing from the quadratic
form and the chosen points are not optimal for the evaluation of quadratic
form coefficients, it 1s more reasonable to use least squares method for the
approximation of the function surface with the quadratic form with much
more points than Ng.

In this algorithm all the successive points and function values during sim-
plex minimization are used to store the appropriate sums for the least squares
method. If the number of used points exceeds (3Nq + 5) then the coefficients
of the quadratic form are evaluated, which are used to predic the minimum
point R, and minimum function value f,. The stored sums are reset to zero.

If the actual function value at the predicted point f(R,) is less than the
best function value of the simplex, then we go to 2.2 to start a new simplex
around R,.

2.5. End of simplex minimization

To stop the simplex minimization a user defined parameter ¢ is used (desired
accuracy). Simplex minimization is stopped if the difference between the
function values at the best and worst points of the simplex is less than 5 -
1073 x e.

The results of simplex minimization are stored in a special array (”history”
array). The number of remembered results is limited to 4, so when the
number of minimization results exceeds 4, the new result substitutes one of
the previous ones. This substitution is always done if a new minimum value
is less than all previous minimum values. Otherwise substitution is done if
a distance from the new minimum point to the global minimum point is less
than that of any minimum point. This most distant minimum point is deleted
from the array.

In a case when the new minimum point is the most distant point from
the global minimum, the substitution is not done, but the parameter R;ym,
1s multiplied by 0.5 so that the next minimum point is more likely to be close
to the global minimum.

This leap size Rjymp 1s multiplied by 3 if the new minimum point is
better than all previous points and the distance from the new minimum to
the previous one is greater than 0.5R;ymp. This can help to move along the
”valley” with an increasing step.

Simplex minimization runs are repeated according to 2.1 while Rjyp,, is
greater than 10713 and the difference between the ”worst” minimum value



in the array of minimum points and the achieved global minimum value is
greater than 0.01e.

2.6. End of global minimization

As 1t was mentioned, the minimization is usually stopped when the difference
between the minimum values in the ”history array” becomes less than 0.01¢.
But sometimes an estimation of the minimum point R, by Newton’s method
is considered to be good enough to be the global minimum. It occurs when
the difference between the estimated minimum function value f, and actual
function value f(Ry) is less than 0.01 - e.

Minimization is also stopped if the number of function evaluations exceeds
the user defined limit. In all cases the best point 1s output as a minimum
point.

The subroutine COMBI performing minimization according to this algo-
rithm was written in Fortran—77.

3. Test of the algorithm

For program debugging and test of the algorithm the following functions of
two parameters were used:

file,y) = [(x—y)2—4]" +100- [6(2? + y?) + 8zy — 4]

. fl 13_1
min fi(z,y) =0 = { flg—l, 1;

o, y) = 100- [y — 0.0122 +1]” + 0.01 - (z + 10)?
min fy(z,y) = f2(=10,0) =0

Ja(x,y) = 100 - [y — cos a:]2 +(y—z — 1.5m)?
min f3(z,y) = f3(—1.57,0) = 0 ~ f3(—4.712388980385, 0)

fa(z,y) = 100y* + 0.01 - |z + 10|
min fa(x,y) = f4(—10,0) =0

f5(z,y) = 100 - | + 10| + 0.01y?
minfg,(:n,y) = f5(—=10,0) =0

fo(z,y) = 100y/[y = 0.012] + 0. 01|x+ 10|

mmfg(:n y) = fs(—10,1) =



fr(z,y) = 100 /|25 4+ xy| + 100 - \/|z + exp(y) — exp(5) + 5]
min f7(z,y) =0 = { J7(=5,5)
Y =Y= £(142.574, —0.17535)

fs(z,y) = 1000 - [y* + =* — 800] + |y + « + 40|
min fg(z,y) = fs(—20,—20) =0

Folz,y) = 1000 (x — 5y — v?)* + [y + = + 9|
minfg(x,y) — f9(_6’ _3) =0

fro(e, y) = 1000 (22 + 20|z| + v — 270)” + |3z + y + 30|
. N fl()(_77 _9)
min fiole,y) = 0= { F10(=9,-3) =0

Ji1(z,y) = 1000 sin2($ —y) + (z + 5)2 +(y+ 5)2
min fi1(2,y) = fi1(—=5,-5) =0

fiz2(z,y) = 1000z + 5 — pcos p| + 1000y + 5+ psinp| + p
where p = \/(z 4+ 5)2 + (y + 5)?
min fi2(2,y) = fi2(—5,-5) =0

fiz(z,y) = p+100sin? (10p — ),
where p=+/(z 4+ 3)2+ (y — 0.5)2, = =3+ pcosp, y = 0.5 + psin g
min fi3(z,y) = f13(—3,0.5) =0

fra(z,y) = 1000|y — 0.00123) + |y + = + 11]
min fi4(z,y) = f14(=10,-1) =0

fis(z,y) = 1000|y + =% + 10z — 25| + 0.1 - |y + 10z + 75|
. [ fis(=10,25)
min fi5(z,y) = 0= { F15(10, —175)

fi(,y) = 1000 - |(y + = — 10)(3y — & + 10)(3z — y + 10)| + |y + « + 10|
min fi6(z,y) = fi6(=5,—-5) =0

fiz(x,y) = 1000 - \(y+2x— 10)(3y—:c—|— 10)(3z — y + 10)| + |y + = + 10|
. —5,-5

(y

(=

(

fis(z,y) = 1000- ‘ y+152+80)
I’l’lll’lflg(:lj,y) = 0 = { flz 9.

—212—100)(100z+y—100)|+|y+ 172490
5,—5)
28916, —128.91566)



fro(w,y) = 1000 |y — & + 10| + 0.1 - |y — x — 62]

, o F1e(9,71)
minfufen) =0={ P00

foo(z,y) = 1000 (y — b — 9)° +0.1- (4y + = + 6)?
min fao(z,y) = f20(=2,-1) =0

As one can see, all functions have a minimum value equal to zero. The
initial point was always x = 1,y = 1, inmitial steps were equal to 0.1. While
using COMBI the required accuracy of function minimization was equal to
0.01, a search for minimum by MINUIT program was performed at default
conditions (MINUIT release 95.03 was used at VAX/3600 station).

Table 1 demonstrates the achieved minimum points from the main MI-
NUIT algorithms and COMBI with a limit on the number of function calls
equal to 10°. The remaining distance to the real minimum point r(®) from

2
the estimated one r equals Ar = , /> (ri — T,EO)) . The ” Abend” instead
K
of the results of minimization means that no results were obtained because
of some error message, something like 7. . . arithmetic fault, floating divide by
zero ... .

First of all, these results show the well-known fact that the Minuit modes
MIGRAD and MINIMIZE work much better than the modes SEEK and SIM-
PLEX, therefore let us compare only MIGRAD or MINIMIZE with COMBI.
For all 20 functions in Table 1 COMBI successfully found the minimum point,
whereas Minuit has reached the minimum point in 6 cases. On the other hand,
in these 6 cases COMBI used for the search 2 to 10 times more function eval-
uations than Minuit (the last function is extremely simple and is used only
to test the correct work of the modified Newton’s method).

It 1s interesting of course to check the algorithm with functions of more
parameters. Table 2 demonstrates similar minimization results for twelve
different functions F; of 4 variables. It i1s more difficult to construct some
interesting functions in the 4-dimensional space, so the first 10 functions
F;(x1,...,xs) were constructed of the former 2-dimensional functions fr(x, v)
in the following way

Fi(e1,...,x4) = fai—1(x1, x2)+ f2i(®3, ®4)+ f2i—1(x1, x2)" f2i(x3, 4)
(6)

The function number 11 1s defined as follows

Fi1(xq, @2, @3, ®4) = p+ 100 sinz(l()p — w1 — 2¢p2 — 3p3) (7)

10



Table 1: Results of minimization of 20 two-dimension functions f;(x1,x2) by COMBI
algorithm and MINUIT. Ar is a distance to the "true” minimum point, IN¢q4; equals the

number of function evaluations, which were used to reach a minimum point

fmin
AT/Ncal
Function MINUIT command COMBI
Number
SEEK SIMPLEX | MIGRAD | MINIMIZE
1 5.8-10"° | 5.0-10"% | 16.0 16.0 7.4-10"1
0.0/21265 | 0.2/32 1.5/45 1.5/45 0.1/550
5 2.5-10"* | 0.86 1.7-10°° | 1.7-107° | 4.0-1078
0.0/36631 | 9.3/87 0.0/280 0.0/280 0.0/1801
5 6.9-10"° | 9.8 9.77 9.77 2.4.1032
0.0/31298 | 3.3/48 3.1/99 3.1/99 0.0/10038
3.6-10"* | 4.6-10"7* | 100.1 7.7-10"°
4 Abend
0.0/21320 | 0.0/33 11.0/46 0.0/551
. 5.5-10~%* | 0.18 989.0 2.2:107°% | 1.5-107°
0.0/15100 | 0.7/47 9.9/56 0.0/210 0.0/522
0.56 0.22 0.28 0.22 3.8-10"°
6 11.1/12014| 19.0/103 19.1/146 19.1/223 0.0/27643
- 26.5 0.21 1309.0 1287.5 3.8.10"°
0.0/51453 | 0.0/138 20.4/97 20.4/202 0.0/54474
78.7 69.3 68.6 68.6 6.2.10°
8 56.0/22053| 52.6/77 52.4/190 52.4/190 0.0/16405
9 1.8-107* | 1.8 54-10"° | 5.4-107° | 3.4-10"7
0.0/23639 | 1.4/216 0.0/598 0.0/598 0.0/4621
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Table 1: continued

.fmi'n.
A’P/Ncal
Function MINUIT command COMBI
Number
SEEK SIMPLEX | MIGRAD | MINIMIZE
0 57.5 60.4 8.7.-107% | 87.107% | 1.1.107°
18.4/24941| 19.9/65 0.0/5222 0.0/5222 0.0/51504
11 5.2.-10"* | 8.1-107% | 1.0-107%° | 1.0-107%°® | 5.7.10!2
0.0/24105 | 0.1/55 0.0/35 0.0/35 0.0/353
5.44 10.1 13.9 13.9 1.0-10-°
12 5.3/24218 | 10.1/72 13.9/125 13.9/206 0.0/14308
13 4.4-10"2%2 | 4.4 5.1 5.1 1.7-10"1%
0.0/26914 | 4.4/32 5.1/60 5.1/60 0.0/54158
14 10.2 22.0 26.2 21.7 25.10°
9.2/22110 | 20.1/55 19.8/112 19.8/229 0.0/8512
s 9.9 9.6 9.6 9.6 2.6-10"°
26.4/17720| 26.8/60 26.8/159 26.8/159 0.0/20075
6.4 8.0 4.8 4.8 1.1-10-©
16 4.7/18445 | 6.3/81 3.8/187 3.8/187 0.0/15449
26.0 24.1 15.0 15.0 1.4-10-7°
17 11.3/17425| 19.0/84 11.2/156 11.2/191 0.0/31227
15 11903.8 107.8 110.9 107.3 26-10 5
8.5/25779 | 8.5/90 8.1/95 8.1/145 0.0/40544
6.4 6.4 6.4 6.4 3.6-10-°
19 54.3/16197| 54.2/58 53.8/179 53.8/179 0.0/18054
20 1.4-107% | 7.0-107% | 8.4.107%° | 8.4.107%% | 2.4.107 %!
0.0/14165 | 0.0/62 0.0/45 0.0/45 0.0/24
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where

p=+/(xg1+1)2+ (x2 +1)2 + (23 + 1)2 + (24 + 1)2,
V(2241)? +(x3+1)%+ (24 +1)2

w1 = arclg pr—— \
w2 = arclg V(@ 41+ (za+1)*

- ‘3’52+1 ?
p3 = arctg:zi}

minF11 = Fll(_]-, —1, —1, —1) =0
The last function Fj3 1s a quadratic form:

Fia(w1, @2, @3, ®4) = (#1+ @2 + @3 + @4 + 4)%+
+100 . (ZB]_ — 21132 —I— 31173 — 4ZE4 — 2)2+
+100 . (iBl + Lo — 2133 — 21114 — 2)2+
+100 - (&1 + 22 + 223 — 324 + 2)2

(8)

with min F12 = Flz(—]_, —1, —1, —1) = 0.

The limit on the number of function calls was set to 10° for all algorithms
except for the random search SEEK of MINUIT program, where parameter
mazcalls was set to 10%. A starting point for minimization was always equal
to (1,1,1,1). Here the program COMBI found the ”true” minimum point in
8 cases from the total of 12 functions. Minuit found the minimum point in 3
cases (the failture of COMBI was always followed by that of Minuit). In those
cases when both programs failed, the minimum function value of COMBI
was usually considerably lower than that of Minuit. Again, for successful
minimizations Minuit works (4 <+ 10) times faster than COMBI.

The table 3 shows results of the minimization of 8 functions R; of 8 pa-
rameters. The first 6 functions are constructed from the previous 12 functions
of 4 parameters:

R’i(wla seey wS) = FZi—l(wla L2,IL3, 334) + Fz,;(il?5, Ley Ly, Zl‘.g) (9)
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Table 2: Results of minimization of 12 four-dimension functions F; by COMBI algorithm
and MINUIT. A7 is a distance to the ”true” minimum point, N.q; equals the number of

function evaluations, which were used to reach a minimum point

Fm'in
A’I‘/Ncal
Function MINUIT command COMBI
Number
SEEK SIMPLEX | MIGRAD | MINIMIZE
1 8.9.10"2 | 5.74 16.0 16.0 3.1.-10 1%
2.9/32235 23.6/129 1.5/476 1.5/476 0.1/3814
5 0.15 10.97 5.3:10° | 5.3-107° | 9.2-10"°
13.7/19275| 10.8/75 0.0/1049 | 0.0/1049 | 0.0/3939
1434.1 0.298 0.312 0.195 2.3.10-°
3 15.9/11803| 21.0/184 | 18.9/279 18.8/408 0.0/36570
4 2.5-1077 | 8.8-107% Abend Abend 1.2-10"%
29.1/43114| 53.3/276 0.1/84782
370.4 1099.8 60.8 60.8 6.4-10-°
5 18.9/37398| 24.4/148 | 19.5/1318 | 19.5/1318 | 0.0/100009
. 449.5 809.4 438.1 5.15 8.9.10 2
9.4/17312 | 13.2/200 | 9.8/181 5.0/488 0.0/47901
61.6 125.4 171.7 116.5 3.2
7 11.4/17268| 19.7/338 | 20.5/193 20.5/338 3.2/24986
< 1.2-1077 | 1.2-1077 | 92.6 90.9 78.1
28.0/33588 | 28.1/266 | 27.5/326 27.5/519 58.2/40931
1.6-107° | 2691.6 107.8
9 12.5/11319| 20.4/310 Abend Abend | g 5 /80885
101.8 3143.7 801.7 6.56 6.61
10 54.1/29667| 56.4/192 | 54.8/388 54.2/650 56.3/18726
1 4.04 3.99 1.2-107% | 1.2.:107% | 1.2.-1078
4.0/10276 | 4.0/32 0.0/6823 | 0.0/6823 | 0.0/88470
12 0.138 9.2.10°% | 1.7.107%° | 1.7.10~%° | 3.3.10~ "
0.0/29407 | 0.0/164 0.0/93 0.0/93 0.0/47
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Table 3: Results of minimization of 8 eight-dimension functions R; by COMBI algorithm

and MINUIT. A7 is a distance to the "true” point of minimum, N.4; equals the number

of function evaluations, which were used to reach a minimum point

Rmin
A’P/Ncal
Function MINUIT command COMBI
Number
SEEK SIMPLEX | MIGRAD | MINIMIZE

) 14.0 28.7 16.0 16.0 2.0-10-75
16.5/14584| 26.2/268 | 1.6/1798 1.6/1798 0.0/29573
2.3.10%% | 1.9.107"" 78.4

: 60.6/66877| 61.4/564 | “Pend Abend 58.1/10034(
13875 1430.9 54346.3 53523.4 112.1

3 23.6/223_577 25.2/97?r7 34.5/1313 | 33.0/3086 | 20.4/108464
1.3-10 1.2-10 219.9

1 30.6/21796| 32.3/592 Abend Abend 1 35 4/10060]
2.8-107° | 1.0-107° 1828.7

° 54.9/16458| 255.1/100000" P9 Abend 57.7/100799
5.67 13.3 1.0-10°2 | 86-10"%* | 2.9

6 4.4/57156 | 4.6/268 0.0/11929 | 0.0/12813 2.9/101047

- 19.9 1.8-10F5 | 1.69 1.69 1.66
16.7/40834| 16.7/1502 | 16.9/1943 | 16.9/1943 | 16.6/34378

g 39.6 114.5 98.10° 9.8.10"° 292.10°
0.6/17793 | 1.2/427 0.0/240 0.0/240 0.0/136
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One more function is defined by the following formula:

R; =1000 x [(ml + 1 — pcos(5p))°

+ (x2 + 2 — psin(5p) cos(6p))? +
+ (3 + 3 — psin(5p) sin(6p) cos(7p))* +
+ (24 + 4 — psin(5p) sin(6p) sin(7p) cos(8p))? +
+ (w5 + 5 — psin(5p) sin(6p) sin(7p) sin(8p) cos(9p))* +
+ (26 + 6 — psin(5p) sin(6p) sin(7p) sin(8p) sin(9p) X
x cos(10p))? +
+ (x7 + 7 — psin(5p) sin(6p) sin(7p) sin(8p) sin(9p) X
x sin(10p) cos(11p))? +
+ (xg + 8 — psin(5p) sin(6p) sin(7p) sin(8p) sin(9p) X
X sin(10p) sin(11p) cos(12p))2} + 0.1p
(10)

where

8

p= > (xi+1i)?

=1

And the last function 1s a quadratic form:

Rg = ($1+$2+333+334+$5+336+337+1138+8)2+
+200 X (1 — @2 + 2®3 + 224 + 2@5 + 226 + 27 + 225 + 8)° +
+150 X (w1 — 2@ + 3w3 — 3w4 + 325 — 3w + 227 — 2w + 8)7 +
+300 X (w1 — 3@y + 203 — 2@4 + 4w5 + 2w6 + w7 — 3w + 8)° +
+100 X (®1 — 4w3 + ®3 + by — 625 + Twg — 87 + 9xg + 8)° +
+100 X (#1 + 2@; — 3@3 + 4w4 — Sas + 66 — Ter + 8ws + 8)° +
+400 X (1 + 3wy — 4w + 324 — 225 + @6 + w7 — 4w + 8)° +
+250 X (w1 + 4wy — Bws — 4wy + 3w5 — 2wg — w7 + ws + 8)°
(1)
In this check there is only one function where both programs had suc-
cess, but since 1t 1s an exact quadratic form very convenient for COMBI,
we can’t use it to compare the convergence time. The only case when Mi-
nuit performed successful minimization (function number 6) appeared to be
very difficult for COMBI. Minimization stopped due to a function calls limit.
If this limitation is removed, then COMBI reaches a minimum point after
347813 function evaluations (that is 30 times more than Minuit). Among the
other four variants where COMBI stopped by Ngq; limitation, waiving this
limitation has not helped. So the final score of searched minimum points for
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8 dimensions is: 3 found by COMBI (without limit on Neggqi) and 2 found
by Minuit for 8 different functions. When both programs failed to reach the
“true” minimum point, estimation of COMBI was usually much better than
that of Minuit.

All these test functions look artificial and exotic. So the last trial of
the algorithm is performed with a function typical for data processing in
high energy physics experiments. Let us fit the "experimental data” with a
resonance curve defined by a simple formula:

N p®(W)T2 M2
p*(M) - [(W? = M?)? + T2 M]

p(W) = +b (12)

where

W/2)2 —m?2, W > 2m

Here we have 5 free parameters: M, I', m, N,,, b. Let us choose such ”true”

values for them: M = 1020, T = 4, m = 490, N,, = 1000, b = 10.

Then for 21 energy points W; = 1010,1011,1012,...,1029,1030 let us

calculate the ”experimental” numbers of events: n; = p(W;). For the

first test let us use the fractional number of events that provides the known

minimum value of the likelihood function and optimal parameters estimation.
The log-likelihood function can be used in the following form:

(

21

> [p(Wi) — n; + niIn(n;/ p(W;))]

=1

L=<X 10% (14+2m — M), if M < 2m (13)
1010 x (1 —b), ifb < 0

109 X (1 — p(Wy)), if any p(Wi) < 0

\

The Table 4 shows the results obtained with different minimization pro-
grams. Starting point is always M = 1015, I' = 3.5, m = 450, N, =
900, b = 1. Initial steps are equal to 0.1.

The table 5 presents results of the fit, when the ”experimental” data are
smeared according to Poisson distribution. Of course here we do not know
the ”true” minimum point and minimum function value.

In order to test the program with two times greater number of free param-
eters let us do the simultaneous fit of ”experimental” data with three decay
modes of the resonance. Let the ”true” values of the resonance parameters
be M = 1020, T = 4, m; = 490, N,,; = 1000, b; = 10, ms = 490,
Np2 = 1000, by = 10, m3 = 0, N,,,3 = 500, b3 = 20. After evaluation
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Table 4: Results of minimization of log-likelihood function with different minimization
routines. Number of "experimental”’ events are equal to average value of events with
"true” parameters of the resonance curve

Minimization MINUIT COMBI
routine SEEK | SIMPLEX | MIGRAD | MINIMIZE

min L 6.60 11.92 | 3.7-10=" | 3.7-10° | 3.7-10°°

Number of

PON walls 85466 160 352 352 769

M 1020.0 1020.0 1020.0 1020.0 1020.0

T 4.3 4.5 4.0 4.0 4.0

m 486.9 487.3 490.0 490.0 490.0

Ny, 922.8 900.1 1000.0 1000.0 1000.0

b 5.7 1.2 10.0 10.0 10.0

Table 5: Results of minimization of log-likelihood function with different minimization
routines. Number of "experimental” events are smeared around the average value and
rounded

Minimization MINUIT COMBI
routine SEEK | SIMPLEX | MIGRAD | MINIMIZE

min L 28.724 32.511 21.919 21.919 21.919

Number of

FON calls 100001 191 275 275 871

M 1019.96 1019.96 1019.98 1019.98 | 1019.98

T 4.263 4.367 4.032 4.032 4.032

m 493.06 491.90 491.49 491.49 491.48

N 920.87 900.40 999.53 999.53 999.52

b 2.42 1.38 2.11 2.11 2.10
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of all expected average ”experimental” number of events, let us ”smear” them
in accordance with Poisson distribution. Results of the minimization of the
likelihood function over 10 free parameters are shown in Table 6 (parame-
ter mg is fixed at the known value 0). The starting point is M = 1015,
I' = 3.5, my = 450, N,,,1 = 900, b1 = 1, my = 450, N,,2 = 900,
b =1, N,,3 = 600, b = 1. Initial steps are equal to 0.1.

Table 6: Results of minimization of log-likelihood function with different minimization
routines. Number of "experimental” events of the three decay modes of resonance are
smeared around the average value and rounded

Minimization MINUIT COMBI
routine SEEK | SIMPLEX | MIGRAD | MINIMIZE

min L 114.97 108.926 41.115 41.115 | 41.115

Number of 31187 275 764 764 2810

FCN calls

M 1020.09 1019.97 1019.97 1019.97 | 1019.97

T 4.159 4.312 3.941 3.941 3.941

ma 450.80 491.53 492.39 492.39 | 492.38

Ny 906.57 900.03 1010.37 1010.37 | 1010.36

b1 7.47 1.00 4.44 4.44 4.43

Mo 454.71 488.55 490.69 490.69 | 490.68

Ny 904.86 899.94 971.17 971.17 | 971.15

b 9.52 0.95 10.62 10.62 10.61

Nos 5%6.52 599.96 500.05 500.05 500.06

bs 7.97 0.99 21.60 21.60 21.60

4. Conclusions

Minimization strategy suggested in the present paper can be an alternative
to the Variable-metric method in the cases when a minimized function has
no derivatives or has a very complicated profile.

The main feature of this strategy is a combination of Simplex method
and modified Newton’s one. The probability of finding the ”true” minimum
point is increased by successive minimization from different starting points
until the function values in the found minimum points coincide within the
desired accuracy. This algorithm is implemented in the code COMBI, written
in Fortran.

For smooth functions the time of convergence of COMBI to the minimum

19



point is close to that of the MIGRAD algorithm of the well known program
MINUIT.

The general purpose minimization routine COMBI was designed for use in

event, processing, so it has no such a brilliant service for interactive work and
writes no messages to SYS$OUT float. Tested on thousands events from the
SND detector [3], it has demonstrated very reliable work without arithmetic
faults of the computer.

I would like to thank E.V.Pakhtusova and S.I.Eidelman for fruitful dis-

cussions.
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A. Simple test program

The following simple test program was written to demonstrate how to use

subroutine COMBI:

Test of minimization routine COMBI:
Combined Simplex algorithm + modified Newton’s method
INP RAS, Novosibirsk, Russia, September 10, 1997
A.D.Bukin

O o0 a0 0 o0 0

implicit none
integer *4 NPAR,NCAL,ISG(2)
real *8 Fmin,X(2) ,DFM
integer i
external TesFun
c NPAR is a number of the function arguments
NPAR=2
c DFM is a desired accuracy
DFM=0.01
c Ncal is a limit for the number of function evaluations
Ncal=100000
do i=1,NPAR

c ISG(i) is a flag of variable parameter:

¢ ISG(i)=1 means that parameter is variable

¢ ISG(i)=0 means that parameter is fixed

ISG(1)=1
¢ X(i) is initial value of parameter
X(i)=1.
end do
print 10,DFM,Ncal, (i,X(i),ISG(i),i=1,2)

10 format(t5,’Test of minimization routine COMBI:’/
t5,”’ //
> Desired accuracy DFM=’,f8.3/
> Limit for the number of function evaluations=’,i5//
’ Par.No.’,t10,’: Init.Value’,t25,’: Minim.flag’/
1x,36(’-’),t10,7:°,t25,7:°/
2(i5,t10,7:7,£f8.2,t25,7:7,18/))

call COMBI(TesFun,NPAR,X,ISG,DFM,Ncal,Fmin)

print 20,Ncal,Fmin,X

20 format(’ Minimum searched after’,i6,

> function evaluations’/
> Minimum function value Fmin=’,1p,d10.3/

* O K K H ¥
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* > found at the point X1=’,0p,f8.3,’, X2=’,£8.3)

subroutine TesFun (NPAR,F,Xp)
implicit none

integer *4 NPAR

real *8 F,Xp(NPAR) ,x,y,r,W
parameter (W=5.d+0)
x=Xp(1)+3.4+0

y=Xp(2)+4.d+0

r=sqrt (x**2+y**2)

F=r+1.d+1% ((x-r*cos (Wxr) ) **2+ (y-r*sin (Wkxr) ) **2)
return

end

include ’COMBI.FOR’

The profile of the minimized function used in this example (drawn with

PAW code [6]) is shown in Fig. 1.
The output listing of the test program is the following:

Test of minimization routine COMBI:

Desired accuracy DFM= 0.010
Limit for the number of function evaluations=100000

Par.No Init.Value Minim.flag
1 1.00 1
1.00

Minimum searched after 28993 function evaluations
Minimum function value Fmin= 2.214D-06
found at the point X1= -3.000, X2= -4.000

In Fig. 2 one can see the development of minimization. The path from
starting point to the estimated minimum point for every Simplex minimiza-
tion run 1s shown with an arrow. Dashed line connects the end of every arrow
with the beginning of the next arrow. The stopping points for MINUIT pro-
gram are shown by special symbols. In the modes MIGRAD, MINIMIZE and
SIMPLEX the program stopped almost near the start point making the deci-
sion that the minimum point is found. SEEK mode obtained better point of

22



1000 T
- S\

800 "“\ il
1 i
1

600 —- il

..
M

—
=

400 — A
R

—

B
| “““““‘\f\\\“‘t\{‘\t“,\g‘g ‘t‘ ",o‘w“‘wo'o’w,%@zf%;;;ﬁ

ly A
G
l

R

200 —f- |

————

vy

(IR

e
IR
N

i
IR

il
il
{

N

TESFUN.F

Figure 1: Profile of the test function
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Minuit(Migrad,Minimize,Simplex)
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Minuit(Seek) X

Figure 2: Schematic view of the development of minimization
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minimum but it 1s also far from the ”true” point. The minimization process
of COMBI algorithm seems to be almost chaotic, but it cannot get in the
infinite loop and converges anyhow.
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