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Abstract

The generalization of the BFKL equation for the case of non-forward
scattering is considered. The kernel of the generalized equation in the
next-to-leading approximation is expressed in terms of the gluon Regge
trajectory and the effective vertices for particle production in Reggeon
collisions. The “bootstrap” equations for the gluon Reggeization are
presented.
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1 Introduction

One of the remarkable properties of QCD is the Reggeization of elementary
particles. Contrary to QED, where the electron does Reggeize in perturbation
theory [1], but the photon remains elementary [2], in QCD the gluon [3.4]
does Reggeize as well as the quark [5]. The gluon Reggeization plays the key
role in the derivation of the BFKL equation [6] for the cross sections at high
C.M.S. energy /s in perturbative QCD. This equation is very important for
the theory of high energy processes. It is used [7] together with the DGLAP
equation [8] for the description of deep inelastic scattering processes at a
small value of the Bjorken variable z. The equation was derived [6] in the
leading logarithm approximation (LLA) more than twenty years ago, and
recently the calculation of radiative corrections [9-15] to the kernel of the
equation was completed and the equation in the next-to-leading logarithmic
approximation (NLLA) was obtained [16].

The famous BFKL equation is a particular case of the equation for the ¢-
channel partial waves of the elastic amplitudes [6] for the forward scattering,
i.e. t = 0 and vacuum quantum numbers in the ¢-channel. Evidently, it is very
important to obtain in the NLLA not only the equation for this particular
case, but the equation for the non-forward scattering as well. Besides the
fact that the last equation is much more general, it permits to check in
the NLLA the gluon Reggeization, the base of the whole program of the
calculation of the radiative corrections formulated in Ref. [9] and fulfilled
in Refs. [9-15]. Remind that in the LLA the Reggeization was noticed in
the first several orders of the perturbation theory. After that, assuming
that it is correct in all orders, the equation for the ¢-channel partial waves
of the elastic scattering amplitudes [6] was derived. It is clear that, for
the gluon quantum numbers in the t-channel, the solution of this equation
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must reproduce the gluon Reggeization, as it was explicitly demonstrated in
Ref. [6]. This “bootstrap” supports the idea of the Reggeization in such a
strong way that practically no doubts remains that it is correct. Nevertheless,
strictly speaking, the “bootstrap” cannot be considered as a rigorous proof.
Therefore, such a proof was specially constructed in Ref. [17]. In the NLLA
till now we have only the simple check of the Reggeization in the first three
orders of perturbation theory in as [12].

In this paper we present the representation for the scattering amplitudes
in QCD at high energies /s and fixed momentum transfer v/—% in the NLLA
in terms of the impact factors of the scattered particles and the Green func-
tion for the Reggeized gluon scattering. The representation is obtained on
the base of the gluon Reggeization. The impact factors and the kernel of the
equation for the Green function are expressed in terms of the gluon Regge tra-
Jectory and the effective vertices for Reggeon-Reggeon and Reggeon-particle
interaction. The requirement of the selfconsistency leads to the “bootstrap”
equations for the gluon Reggeization.

In the next Section we discuss the meaning of the gluon Reggeization. In
Section 3 we show the representation of the scattering amplitudes in terms
of the impact factors and the Green function. In Section 4 the ” bootstrap”
equations are derived. The summary is given in Section 5.

-2 The gluon Reggeization in QCD

The notion “Reggeization” of elementary particles in perturbation theory is
usually related to the absence of non analytic terms in the complex angular
momentum plane [1-3]. We use this notion in a much stronger sense. Talking
about the gluon Reggeization in QCD we mean not only the existence of the
Reggeon with gluon quantum numbers, negative signature and trajectory

i) =1+uw(t) (1)

passing through 1 at t = 0. We mean also that in each order of perturbation
theory this Reggeon gives the leading contribution to the amplitudes of the
processes at large relative energies of the participating particles and fixed
(i.e. not increasing with s) momentum transfers.

Let us explain this in more details. Consider the elastic scattering process
A+ B — A’ + B at large s and fixed t:

3={PA+PE)E—}DC: t:qu §=PA~—FPB. (2)

For the sake of brevity, the term “gluon Reggeization” used by us means
that the elastic scattering amplitude with the gluon quantum numbers in the
t-channel has the Regge form

e L NHRY < 2 S
(A)4F =54 [(-_—t-) - (£) | 5. (3

Here ¢ is a color index and '}/ p are the particle-particle-Reggeon (PPR)
vertices which do not depend on s. Notice that the form (3) represents
correctly the analytical structure of the scattering amplitude, which is quite
simple in the elastic case. In the derivation of the BFKL equation it is
assumed that this form is valid in the NLLA as well as in the LLA.

Together with the form (3) of the elastic amplitude the derivation of
the BFKL equation in the LLA and NLLA is based on the Reggeized form
of production amplitudes in the multi-Regge kinematics (MRK). For the
production of n particles with momenta k;, i = 1 =n. in the process A+ B —
A + B + n this kinematics implies that the invariant masses of any pair of
produced particles are large and all the transferred momenta are fixed (not
increasing with s). More definitely, let us put Pi = ko. pg = kny1 and
introduce the Sudakov decomposition

ki=fip1r+aipa+kin,  saifi=kI-k¥ =k} +E2?, (4)
where p; 2 are the light cone momenta such that

2 2
m m
Pa=prt—4p;:, Pe=p2+—2p1. 2pp2=s (5)

(we admit all particles to have non zero masses, reserving the possibility to
consider each of them as a compound state or as a group of particles) and
the vector sign is used for the transverse components. Then in the MRK we
have

= 2

P2+ m?

ﬁs—*l—ﬁaﬂ{<ﬂln+-‘€ﬂﬂ«aﬂ+ltl:

=il 2

Pg +myp

—B'S_B—ﬁﬁﬂ+1'<§ﬁﬂ---{<ﬁl<€ﬁﬂkl (6}

Due to Eqs. (4)-(6) the squared invariant masses

si = (kic1 + ki) = sfi_10; = %}_(‘E:‘? + k) (7)
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are large compared with the squared transverse momenta of the produced
particles, which have the order of the squared momentum transfers:

si >k ~|ti |=] ¢ | . (8)
where
B w41 Fid
Gi=pa— D ki=—|pa—Y ki| ~Bip1—aicip2— Y kjy .
§=0 j=i j=0
ti=qf gl =—§;° . (9)

and the product of s; is proportional to s:

n41 £l

[Isi=s][k7+5) . ' (10)
i=1 i=1

It is necessary to remind that, contrary to the elastic amplitude, the produc-
tion amplitudes have a complicated analytical structure (see, for instance,
Refs. [10.18]). Fortunately, only the real parts of these amplitudes are used
in the derivation of the BFKL equation in the NLLA as well as in the LLA.
The term “gluon Reggeization” used by us means that the real parts of the
production amplitudes in the MRK have a simple factorized form and can be
presented as

2 w(ti)

iR & 1 : 8
Aap™" = 2T, [T 778y (@ 0i0) '

i=1 'U’E?AEE

;"':{tﬂ-l-'l}
1 Sn+1

thy1 /EEE2+1
nn

where nggrﬂ (¢i. gi+1) are the so-called Reggeon-Reggeon-particle (RRP) ver-
tices, 1.e. the effective vertices for the production of the particles P; with
momenta k;=¢; — ¢i4+1 in the collision of the Reggeons with momenta ¢; and
gi+1 and colour indices ¢;+and ¢;4;. Pay attention that we have taken defi-
nite energy scales in the Regge factors in Eq. (11) as well as in Eq. (3). In
principle. we could take an arbitrary scale sg: in this case the PPR and RRP
vertices would become dependent on sg. Of course, physical results do not
depend on the scale.

X

Cntl

In the LLA only one particle can be produced in the RRP vertex, and
since our Reggeons are Reggeized gluons, this particle can be only a gluon.
The situation i1s quite different in the NLLA. In this case we have to con-
sider the so-called quasi-multi-Regge kinematics (QMRK) [9], where any (but
only one) pair of the produced particles has a fixed (not increasing with s)
invariant mass. We can treat this kinematics using the effective vertices
Tﬁgﬁ‘;[q;,qiﬂ) [9.13] and Tﬁgﬂ[q,-,q,-ﬂ} [13.15] for the production of two
gluons and a quark-antiquark pair respectively in Reggeon-Reggeon collisions,
as well as the effective vertices I'p. p for the production of the “excited” state
(containing an extra particle) in the fragmentation region of the particle P
in the process of scattering of this particle off the Reggeon. Introducing
these vertices the production amplitudes of n + 1 particles in the QMRK are
given by Eq. (11) with one of the vertices ‘T,f:‘;:,-+. orI';, substituted with the
vertices ']ri‘cﬁ-_’l or I'G. p respectively.

Since in the limit of large invariant masses of all pairs of the final state
particles the QMRK amplitudes must turn into the MRK ones, in this limit
the effective vertices qﬁgiﬁ satisfy the factorization properties

1
W‘rﬁfﬂ (gi —li.qi+1) (12)
Tl o |

Voro2(gi. 9i41) = Yot (05 4 — 1)

at (ppl2) < (prl1). (pali) <€ (palz). where Iy o are the momenta of the
produced gluons. The vertices I'p. p in the case in which the “excited” state
P* contains the gluon, i.e. P* = GP, have the property

c e ___1___ G '
epp (9) —l“pp{qH}ﬂcc.{qH:q} (13)
at (ppl) > (pppp). | being the gluon momentum and ¢ = pp — pp.

The BFKL equation is straightforwardly obtained [6] if the amplitudes (3)
and (11) are used in the unitarity relation for the s-channel imaginary part
of the elastic scattering amplitude. Remind that the representations (3) and
(11) for the amplitudes with the gluon quantum numbers in the t;-channels
were rigorously proved [17] in the LLA.



3 The generalized BFKL equation in the NLLA

Decomposing the elastic scattering amplitudes .,4 B'in the parts with defi-
nite irreducible representation R of the colour gmup in the f-channel:

ALF Zmn) : (14)

and using the amplitudes (11] and their generalization for the QMRK, we

get for the s-channel imaginary part of the amplitudes Ag (details will be
given elsewhere)

. dD-? dD 2
Wy e q1 Z rn u]

q1—q)

s atos g
KW_'_EA 57 [(i) G (§1. Ga. fﬂ] }( ~§; — ¢ s0) . (15)
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Here sq is the energy scale (which can be, in principle, arbitrary), the index v
enumerates the states in the 1rreduc1ble representation R, <b{ "’J (¢1: ¢ 80) are
the impact factors and G (ql d2.q) is the Mellin tranbfnrm of the Green
function for the Reggeon Reggeon scattering. The impact factors and the
Green function appear as the generalization of those defined in Refs. [16.19]

for the case of non-forward scattering and non-vacuum quantum numbers in
the t-channel. The Green function obeys the equation

WG (G, q. ) =
dﬂ—?

Q@ -0 (@ - @)+ f 2 (7 q-}zf‘m(ﬁ,a";ﬂ@iﬂ}{@i"fé‘z;a?)-
4.9 -4
Here the kernel (16)

KR (1, ¢ 7)

- = —s 2 -— —
= [ (—3°) +w (—(fh ) )] @i’ (§1 — 7)° 6P~ (g1 — @)+KP (1. G2: 9)
(17)
18 given as the sum of the ‘virtual” part, defined by the gluon trajectory,

and the “real” part K(® , gelated to the real particle production in Reggeon-
Reggeon collisions. The “real” part can be written in the NLLA as

ey d
KR (1, @2 §) =f (;T Ir”“d‘ﬂn (91:92:4) 0 (8, — 8,r)
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E/q"'?m"*—q'}*x’ g

2
8
x KRB (&, §2: @) In ( ey ) : (18
- 5 ) (=4~ )
In this equation A™®) (g1, q2:q) is the scattering amplitude of the Reggeons
with initial momenta ¢; and —¢» and momentum transfer ¢, for the represen-
tation R of the colour group in the ¢-channel, s, = (¢q1 — qg]? 18 the squared

invariant mass of the Reggeons: KRB (41.¢=2: ¢) is the part of the kernel at
the Born (i.e. LLA) order related to the real particle production, which is
given by the first term in the R.H.S. of Eq. (18) taken in the Born approxima-
tion. The expression for the s, .-channel imaginary part ZmA®) (¢;. ¢2: §)
in terms of the effective vertices for the production of particles in Reggeon-
Reggeon collisions is given below. The intermediate parameter s, in Eq. (18)
must be taken tending to infinity, so that the dependence on s, disappears
in Eq. (18), because of the factorization property (12) of the two gluon pro-
duction vertex.

The impact factors can be expressed through the imaginary part of the
particle-Reggeon. scattering amplitudes. In the NLLA the representation
takes the form

b d-ﬁ
&0 (dr: T s0) =f SERImAG ) (pp,ar: §:50) 0 (5, = 5pn)

1 gV —%g! (R.v)B 54
- (T QKRB (@ . ¢r) In | =2 :
2/@,12@,,__@2 pp ORI GR) In | oo
(19)

In Eq. (19) 5., = (pp — qR]? 1s the squared particle-Reggeon invariant mass

while Im.ﬁigj’:} (pp.qR:q: s0) 1s the spg-channel imaginary part of the scat-
tering amplitude of the particle P with momentum pp off the Reggeon with
momentum —¢g. ¢ being the momentum transfer. The argument s in the
impact factor and in the amplitude shows that these two quantities depend
on the energy scale sg of the Mellin transformation. Of course, physical quan-
tities do not depend on this artificial parameter. It can be shown that with
the NLLA accuracy the R.H.S. of Eq. (15) with the impact factors defined
by Eq. (19) and Eq. (27) below, does not depend on sg. The Born (LLA)

impact factors @g;ﬁﬁ are given by the first term in the R.H.S. of Eq. (19)
taken in the Born approximation. Note that for the Born case the integral
in Eq. (19), as well as over s, in Eq. (18). is convergent, so that
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the parameter s, does not play any role. In the NLLA the independence of
the impact factors on s, is supplied by the factorization properties (12) and
(13).

The imaginary parts of the Reggeon-Reggeon and particle-Reggeon scat-
tering amplitudes, entering Eqgs. (18) and (19) respectively, can be expressed
in terms of the corresponding vertices, with the help of the operators P for
the projection of two-gluon colour states in the ¢-channel on the irreducible
representations R of the colour group. We have

yo
ImARY (q1.2: §)

c1 ¢} 73' cacs Pl Y
= {adPriond) 5 [otfd (ava) (G4 (o)) doy . (20)
i {1} s
where ng is the number of the states in the representation R, -yi{c}ﬁ (91.92)

is the effective vertex for the production of the particles {f} in Reggeon-
Reggeon collisions. dp; is their phase space element,

D ¢(D) dn_lff
dps = (2m)" 62 q1 — g2 = 1) ] , (21)

and ¢; = ¢; — ¢q. The sum over {f} in Eq. (20) is performed over all the
contributing particles {f} and over all their discreet quantum numbers. In
the LLA only one-gluon production does contribute; in the NLLA the con-
tributing states include also the two-gluon and the quark-antiquark states.
The normalization of the corresponding vertices is defined by Eq. (11).

For us the most interesting representations R are the colour singlet (vac-

uum) and antisymmetric colour octet (gluon) ones. We have for the singlet
case
Jclc'l‘scgc;

(c1€1|Poleach) = N? 1 ng=1, (22)
and for the octet case
(exciPaleacty = L2ictnce g g, (23)

where f,4. are the structure constants of the colour group. The above matrix
elements can be decomposed as

> {1 [Pr|v)(v|Prlcach) (24)

e
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with EE
ce'|F = — 25
(cc’'|Po)0) JNT=1 (25)
(Cc;lﬁglﬂ) e fﬂccf : {26)

VN

This decomposition allows to write the imaginary part of the scattering am-
plitude of the particle P off the Reggeon in the form

ImAG Y (pp.qr: §: 80) = (cc|Pr|v)

/ X jo(-dx’) 80 bu(-dx")
xstr?;}p(QH) (P?I}P’(QR)) (&?> (~:2) - dpy

Ir
i
(27)

where I'{/, are the effective vertices for the production of the states {f}.

Their normalization is fixed by Eq. (11). At the parton level the contributing
vertices are the PPR vertices I'%, p which have to be taken in the one-loop
approximation [10,11], the vertices T, ; | for the gluon emission in the frag-

GPP .
mentation region and the vertices FCQQG for the gluon — quark-antiquark

transition [12]. It is worthwhile to stress that for the case of the singlet
representation R the expression (19) for the impact factors, together with
Eq. (27), is valid for colorless objects (at the hadron level) as well. For small
size objects (such as a photon with large virtuality) the impact factors can
be calculated in the perturbation theory.

4 The bootstrap condition

Let us compare the s-channel imaginary part of the amplitude (3) with the
imaginary part given by Eq. (15) in the case of the gluon representation in
the {-channel. In the LLA from Eq. (3) we get

A 146 (V1) -
Im,(ﬂg)ﬂﬁﬂ x r{j’i} (M) mw ') )T gp . (28)

where the index (B) denotes the Born (LLA) expression and «(!) stands for
the gluon trajectory calculated with the one-loop accuracy:

gt N " s -
(2m)P=1) 2 J k2§ k)2
11

w(t) = (29)




The R.H.S. c-f‘ Eq. (28) coincides in the LLA with that one of Eq. (15) due
to the properties of the LLA impact factors and the Green function:

8.c)B . \/}T ¢
@L,'F? = —:gw—i}—l’;,? ; (30)

independently of ¢}, ¢», and
dﬂ—? 1 ;
GO®) (f,. ¢, ) e
w A 5 i i o * 31
f @ (@—-q)° w-wD() =

Applying these properties the imaginary part shown in Eq. (15) in the NLLA
becomes

N ) 1+W[”[3]
5
T, (AR T = (It!) {r:t;i:n [u“l (t) (1 +w® (1) In ( tf))

8p

2 D-2 o
g Nt / d qd1 dD 2(}’2
(8)(1) f= =, e(B
r v N dD—-—?q:
g / = [‘I’{E}:CHIJ (7' §: 50) TLE)
(27) . qrz(f}';__q—)? A'A :q:50) I'gi g
1c(B) £ (8.c)1) =7 =

(8.¢)(1 4 ; :
where K:{E‘”.l) and <I=P,;}{ ) are th-s:' next-to-leading contributions to the kernel
and to the impact factors respectively for the gluon quantum numbers in the

t-channel. If now we require that this expression coincides with the imaginary
part of the Regge form (3) in the NLLA:

Im, (AR)4 g

14w ()
it 5 c(B
i (Tﬂ') {T32 [ 0+ (1) + (1) (1) In(s)] £
¢ c(l) ~c(B c €
+ol) IFTITER) 4 r;ﬂ’rﬂ‘,‘é]} : (33)

1} - .
where l"fj,jl 18 the one-loop correction to the PPR vertex and «(2) (t) is the

two-k?o;:- contribution to ti;'lﬁ trajectory, we arrive at the following bootstrap
equations:

g°Nt f dP—2q, dP-2q,
-D_l b = 2 - -
2(2x) W a-9°7) G-
12

k&) (41.42: )

=M (@) (1) (34)
and
i VNt f & vy @{B’c)“}{(}”'f‘su)
£ ne® B LT TR 4
e(1) (1) c(B) 1 (2) (1) . q?
=I5 (8) + I35 [ (¢) = («D (1)) In =) @9

5 Summary

In this paper we have considered the scattering amplitudes in QCD at high
energies /s and fixed momentum transfer v/~¢ in the next-to-leading ap-
proximation in Ins. Due to analyticity and crossing properties Eqs. (14) and
(15) define the non-forward scattering amplitudes in the NLLA in terms of
the impact factors and the Green function for the Reggeized gluon scatter-
ing. The impact factors and the kernel of the equation for the Green function
are given in terms of the gluon Regge trajectory and the Reggeon-particle
vertices which were used also in the derivation of the BFKL equation for the
forward scattering in the NLLA [16] and are known.

The requirement of the self consistency of the derivation of the BFKL
equation, based on the gluon Reggeization, is expressed by Eqs. (34) and
(35). Since the BFKL equation is very important for the theory of Regge
processes at high energy /s in perturbative QCD, these equations should be
checked. All quantities entering these equations are unambiguously defined.
The gluon Regge trajectory w (t) is known with the two-loop accuracy [12].
The one-loop correction K®1) to the kernel is given by Egs. (17), (18) and
(20) in terms of the trajectory and the effective vertices for the particle pro-
duction in Reggeon-Reggeon collisions. All vertices entering these equations
were calculated with the required accuracy: the Reggeon-Reggeon-gluon ver-
tex in Ref. [10], the vertices for the two-gluon production in Refs. [9,13] and
the vertices for the quark-antiquark production in Refs. [14,15]. The PPR
vertices entering the second bootstrap equation, i.e. Eq. (35), were obtained
with the one-loop accuracy in Refs. [10.11]. Finally, the one loop correction

@iﬁ'j}m to the impact factors is expressed by Egs. (19) and (27) in terms of
the PPR vertices and the vertices for the production of the “excited” states
in the fragmentation regions. For the cases where the initial particles are
quarks and gluons these vertices can be found in Ref. [12].

The explicit check of the validity of Eqs. (34) and (35) will be the subject
of subsequent publications.
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