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1 Introduction

The most common basis fer the description of processes at small values of
r = Q%/s ( Q? is a typical virtuality and /8 isthe c.m.s. energy) in the frame-
work of the perturbative QCD is the BFKL equation [1], originally derived in
the leading logarithmic approximation (LLA), which means resummation of
all terms of the type [o lns]” (as = g% /(4x) is the QCD coupling constant).
The calculation of the radiative corrections to the kernel of this equation has
taken many years of a hard work [2]-[7]. Recently, the kernel was obtained
in the next-to-leading approximation (NLA) [8] for the case of the forward
scattering, i.e. for the momentum transfer ¢ = 0 and the vacuum quantum
numbets in the t—channel. In the M S renormalization scheme with a rea-
sonable scale setting the corrections appear to be large. Now this problem
is widely discussed in literature (see, for instance [9]). In this situation it is
very important to be sure in correctness of both the basic hypothesys used
and the calculations performed in the derivation of the equation.

Remind, that the derivation of the BFKL equation (in the NLA as well
as in the LLA) is based on one of the remarkable properties of QCD - the
gluon Reggeization [10], which was proved in the LLA [1},{11]. In the NLA
this property was only checked in the first three orders of the perturbation
theory [6]. Since the gluon Reggeization forms a basis of the derivation of
the BFKL equation, it is clear, that more powerful tests are necessary.

As for the calculations of the radiative corrections to the kernel, they
are very complicated and up to now only a part of them was independently
performed [7] or checked [12]. Therefore, the calculations must be carefully
verified.

The both goals - the stringent test of the gluon Reggeization and the
examination of the calculations - can be solved simultaneously by check of
the “bootstrap” equations [13],[14] appearing as the requirement of the com-
patibility of the gluon Reggeization with the s-channel unitarity. In fact, the
BFKL equation is the equation for the Green’s function of two Reggeized glu-
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ons. In the colour singlet state these Reggeized gluons create the Pomeron.
The self-consistency requires that in the antisymmetric colour octet state
the two Reggeized gluons must reproduce the Reggeized gluon itself (“boot-
strap” condition). The above statements are valid in the NLA as well as in
the LLA. Along with the stringent test of the gluon Reggeization, the check
of the bootstrap equations provides a global test of the calculations of the
NLA kernel, because these equations contain almost all the values appearing
in the calculations.

In the BFKL approach amplitudes of high energy processes are expressed
in terms of the above mentioned Green’s function and impact factors of scat-
tered particles, which are defined by Reggeon-particle scattering amplitudes.
The non-forward impact factors for gluon [15] and quark [16] scattering were
recently calculated in the NLA and the fulfillment of the bootstrap condi-
tions for them was demonstrated [15], [16],[17] for both helicity conserving
and non-concerving parts, in an arbitrary space-time dimension D = 4 + 2e.

The quark contribution to the non-forward BFKL kernel was also cal-
culated [18] and the fulfillment of the bootstrap conditions for the kernel
in the part concerning this contribution was explicitly demonstrated in the
NLA [18],[19], also in an arbitrary space-time dimension. The only one (but
most complicated) bootstrap condition remains unchecked - for the gluon
part of the kernel. In this paper we calculate the gluon contribution to the
non-forward colour octet kernel of the BFKL equation, having in mind sub-
sequent examination of the bootstrap condition.

A significance of the the non-forward octet kernel is not limited by the
check of the bootstrap condition. The kernel of the non-forward BFKL equa-
tion for an arbitrary colour state in the ¢ -channel is expressed in terms of the
gluon Regge trajectory and the part related to the real particle production
in the Reggeon-Reggeon scattering ( “real” part, for brevity). The trajectory
is known [4] and enters into the kernel in the universal (not depending on
a colour state) way [13]. The “real” part includes contributions from the
one-gluon, two-gluon and quark-antiquark pair production. The first contri-
bution for any colour state in the ¢ -channel can differ from the contribution
for the octet state only by a group coefficient. The last two contributions can
be separated (for an arbitrary colour state in the ¢- channel) in two pieces,
one of which is determined by the colour octet state. Therefore, the colour
octet piece enters (with some group coefficient) in kernels for other colour
states, in particular, for the colour singlet state (Pomeron channel). In the
Pomeron channel the non-forward BFKL equation can be applied directly for
the description of experimental data. Evidently, a region of applicability of
this equation is mich wider than the forward-case one.
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In the next Section we present the general form of the gluon contribution
to the kernel and the explicit form of the gluon piece of the gluon trajectory.
In Section 3 we derive the gluon part of the contribution to the kernel from
the one-gluon production. In Section 4 we consider the two-gluon production
in collisions of the two Reggeized gluons. The contribution of this process to
the kernel and the result for the total gluon contribution to the kernel are
presented in Sections 5 and 6 respectively.

2 Definitions and basic equations

In the BFKL aproach the high energy scattering amplitudes are expressed in
terms of the impact factors ® of the scattering particles and of the Green’s
function G for the scattering of Reggeized gluons [13]. Considering the
Green’s function we can take, without any loss of generality, masses of the
colliding particles with momenta p4 and pp equal zero: p% = p% =0, (pa+
pB)? = 2(papp) = 8. As usual in an analysis of high energy processes, we ap-
ply the Sudakov decomposition for particle momenta. The Mellin transform
of the Green’s function with the initial momenta of the Reggeized gluons in
the s—channel ¢1 =~ Bpa -+ g11 and —¢o ~ app — g2, and the momentum
transfer ¢ ~ g, obeys the equation [13]:

WG:E.:R} ('il:«@?:gj -

—+7 - — s - d.D"E.r — = — —
‘IIEQ{ 25“3 %) (Q.'L = QZ) " / F2512 K:(R} (Eh! Ty 'ﬂ GLE;R} ('-"E 42, q) 1 (1}

where R denotes the representation of the colour group in the ¢{—channel.
The transverse momenta are spacelike and we use the vector sign for them.
Here and below we use for brevity v/ = v — ¢ for any v. The space-time
dimension D = 4 + 2¢ is taken different from 4 to regularize the infrared
divergences. We use the normalization adopted in [13].

The non-forward kernel, as well as the forward one, is given by the sum
of the “virtual” part, defined by the gluon trajectory j(t) = 1 + w(t), and
the “real” part K.,{:R), related to the real particle production in the Reggeon-
Reggeon collisions

™ (@, =
[ (=@7) +w (=4")] Fa *6P2 @ - @) + K (@,8:9) - (2)
As it is seen from (2), the gluon trajectory enters the equation in the uni-
versal (independent from R) way. In the one-loop approximation (LLA) the
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trajectory is purely gluonic:

'ZNt dﬂ —qu
{‘l} f) = g / =7 — 1 (3)
g v (er)P1 ) @’

where t = ¢> = —g2, N is the number of colours (N = 3 in QCD). In the

NLA the trajectory was calculated in [4]. Since the quark contribution to the
non-forward kernel was already considered (18], we present here the two-loop

gluon contribution:

2 (D—2)
g t d q] 5 | -l : 1 = —
Wg}(t) = Eﬁ)p_l f qazér{z [I*G(QLE) - 21‘(‘}[1}1,(}1)] 1 (4)

where

2N722 (D-2)
e g°N*q d g2
Fo(@,9) =~ gryp-1 / Za-1

)093 (-2 (3 -2) 10

) P29 ] I'(z) i

: ) Tg’)(I = ALY (ﬂ)
t DD =4)  AD-1)(D-3) )= T() |
['(z) is the Euler gamma-function. In Egs. (3)-(5) and below g is the bare
coupling constant related to the renormalized coupling g, in the MS scheme
by the relation

11 2nyg gz
- & =€ BN B o i g ot 6
where ny is the number of the quark flavours, =
2NT(1 —€
r— g2 =2 (3 : (7)
(4m)3+e

Let us stress that in this paper we will systematically use the perturbative

expansion in terms of the bare coupling g. :
The “real” part for the non-forward case in the LLA is [1], [21]:

2 =2 =1 2 ¥ q*iij*fﬂ
(R)B (7 2.7\ = 9 CR (fh'?z_‘ 421 _Ez): (8)
Ky (Q?nq?:Q) (21’!‘}'5”'1 (ql _qz)g |
where the superscript B means the LLA (Born) approximation and the colour
group coefficients cg for the singlet (R = 1) and octet (R = 8) cases are
N

ﬁ]_ZN, ﬂgzi. (g)
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In the NLA the “real” part of the kernel can be presented as [13]:

o R

R)ro = =
DImAEIR} (41,32 q) 0 (s, — Srr)
0 {‘Zﬂ‘)

Bl S R iy F-arr-a)?)
(10)

Here A% (g1, q2;¢) is the scattering amplitude of the Reggeons with the
initial momenta ¢ = Bpa + ¢ and —ga2 = app — g2 at the momen-
tum transfer ¢ = g, and the representation R of the colour group in the
t—channel, s, = (q1 — g2)° = saf — (¢1 — g2)? is the squared invariant mass
of the Reggeons. The s, —channel imaginary part Imﬂgg (d1, 4>; ) is ex-
pressed in terms of the effective vertices for the production of particles in the
Reggeon-Reggeon collisions [13]. The second term in the r.h.s. of Eq. (10)
serves for the subtraction of the contribution of the large s, region in the
first term, in order to avoid a double counting of this region in the BFKL
equation. The intermediate parameter s, in Eq. (10) must be taken tending
to infinity. At large s, only the contribution of the two-gluon production
does survive in the first integral, so that the dependence on s, disappears
in Eq. (10) due to the factorization property of the two-gluon production
vertex [13]. :
The remarkable properties of the kernel are

KRN0, §; ) = K@, 0;7) = KNG, @: @) = K@, §:9) =0, (11)

}CER} ({?1! _*2; "T) i

and

KR (G, @ 9) = K@, 35 —0) = K (-@, -6 -0) - (12)
The properties (11) mean that the kernel turns into zero at zero transverse
momenta of the Reggeons and follow from the gauge invariance; Eqgs.(11)
are the consequences of the symmetry of the imaginary part of the Reggeon-
Reggeon scattering amplitude (13).

Using the operator Pg for the projection of the two-gluon colour states
in the t—channel on the irreducible representation R of the colour group we
can present the imaginary part of the Reggeon-Reggeon scattering amplitude
entering Eq. (10) in the form

c1¢4|Pr|ead] ;
ITmAGR (91,42;9) = = liznil 5 Zf Vele, (@1, @) (”“f;fc}a (‘3’1"3’3)) 4y -
{r}
(13)




Here ne is the number of independent states in the representation R, the
sum {f} is performed over all states f which are produced in the Reggeon-

Reggeon collisions and over all discreet quantum numbers of these states,
’Téfv}: g1, q2) is the effective vertex for the production of the state f and dpy

is the phase space element for this state,

il 4D
dp! == -Hi (2,’?1'} 5{‘”)(@1 — g2 — %kE}H m ) (1‘1-}
: . icf r

where n is a number of identical particles in the state f . In the LLA only
the one-gluon production does contribute in (13) and Eq. (10) gives for the
kernel its LLA value (8); in the NLA the contributing states include also
the two-gluon and the quark-antiquark states. The normalization of the
corresponding vertices is defined in Ref. [13].

The most interesting representations i are the colour singlet {Pomeron
channel) and the antisymmetric colour octet (gluon channel). We have for
the singlet case

- 511151_ gcg:‘:'2
{c1¢}|Pileacy) = N1 =1, (15)

and for the octet case

= ) 5, Jeac e
(erdy Poleacy) = 5522

where fabe are the structure constants of the colour group.

Mg = P\ITE -1 ' {15)

3 The one-gluon contribution to the kernel

The gluon contribution to the Reggeon-Reggeon-gluon (RRG) vertex was
calculated in [3]. Remind that the complicated analitical structure 120,
3] of the vertex is irrelevant in the NLA where only the real parts of the
production amplitudes do contribute ( only these parts interfere with the
LLA amplitudes, which are real). Remind also that in the NLA the vertex
depends on the energy scale sr used in the Regge factors. In Eqgs. (10),(13)
it was assumed that sp = Ez} where k is the produced gluon momentum.
Neglecting the imaginary part, we have for the gluon contribution to the
RRG vertex with this choice of sg [21]

: ‘ QQZNF (1- E) (&) (@)
7 il K 1
Yol @) = 9T21c, € () {C’”(‘“‘ fi [1 s RS )

1%

+( PA pB ) IQENFU"E) +G)
7

(kpa) & (kp;;) (d7)2+e a5 (QEE ‘_*5?12 “fgz)fég}]} . 447)

Here d is the colour index of the produced gluon, e*(k) is its polarization

vector, T2 . = —ifdc,c, are the matrix elements of the colour group generator

in the adjoint representation, k = ¢1 — g2 is the gluon momentum,
242 72
C’(t}z,qﬂ =—-q11L —qa.L + (g2 —q11) ( . "15—;) +: (t;-'g e szJ_) (1 - ET%" 3
: k

(18)

and

GRS LEE N T | 72 MU
gp@ - 1L +8%), (i>_“12 &N\ frafl” _
- 6 (@ —a) @) 2 % V- (""' ) 5 — 30(2) +2eC3) ) 5

—

fo(G') s . = [ 22 4 22 _ 9 gy 92 a7 :
3 PR \g )

g1 — da2 @'23
@ _ 1 &a (q’f) k2
3 — = — ]'u = '-I' e 7 ]_
3 (¢ —q3) \d% 6 i)

where ((n) is the Riemann zeta-function. Note that the one-loop contribution
to the RRG vertex is not known for arbitrary e. Therefore Eq. (19), contrary
to all the pre:_:_:eeding formulas, is valid only in the limit € — 0. The only term

[} " = * = £
of this equation which remains unexpanded in ¢ is (k 2) . For this term the

expansion is not performed because the RRG vertex is singular at k2 =0
and in subsequent integrations of its contribution to the kernel the region
¢|In(k2)| ~ 1 does contribute. In Eq. (19) all terms giving nonvanishing in
the limit € — 0 contributions after these integrations are kept.

The vertex (17) is explicitly invariant under the gauge transformation

e'(k) — et (k) + k*x, (20)
so that we can use the relation
Y et D (k)eM (k) = —gu- (21)
. ]

Substituting (17) in (13), using (21) for the sum over polarizations and

(T4,) = Nz(N; =
(22)

&
d -
boresbeses Ty (Ther) = NIN*=1), FertjefencseTs
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for the sum over colour indices, with the help of Egs. (18)-(19) and (14)-(16)
we obtain from Eq. (10) the gluon part of the contribution to the kernel from

the one-gluon production in the Reggeon-Reggeon collisions:

kC® (7. g’cr {(tﬁz'ﬁz + 4% _q-z)

rRc \91,92:9) = —-'—'(Zﬂ)}_'},_,l 72
9
— - - —k —_ — T +4E§(3) -‘lﬂ m—
2 (2 +are | F ) @ 7
2 foon 13 M3 k2 _’ E e &
+9 NT(1—¢) (43’14:g iﬂz l s (*}12 + qf+ 4G - 2@_2)}
6(4m)?*e (@2 -af) (@ —%)
2—*2 =3 !.;.'E " >
X L_Qﬂi?:i In (}2 = ga —gs
L9 — 92 qq
411 247 q5 7% '3’ —a@ 2G5 3 72 + G5 &.g} In (ﬁ)
gt — g3 k2 3’ — @3 a5

—3f =F gzﬂR = ~d

The symmetry properties (12) of ,”Cg;ﬁ;} (¢1, @2; q) are evident from (23).
The properties (11) are not so evident, but can be easily checked.

4 The two-gluon production

Let us consider the production of two gluons with momenta k1 and ks in
collisions of two Reggeons with momenta q; and —go. We will use the Sudakov
parametrization for the produced gluon momenta :

ki:ﬁ!pﬁ+ aipﬂ"l"kil 1 Saiﬁi:_kfj_ :kiga Ji:ljjj

Bi+PB=8, artar=a , ki +ka =@ —q21 (24)

and the denotation
- k=k +tka=¢q —q, (25)

so that s,,, = k. For the effective vertex of the two-gluon production in the
Reggeon-Reggeon collision we have:

"h’c{ii (g1, ﬁ'z) (26)

12

= g%e% (ka)en, (k2) [le. T A%1%3(ky, kg) + T2 Th2 A% (ky, kz)] :

c1J ~jez Cc17 ~Jea

where d; are the colour indices of the produced gluons, e#(k;) are their polar-
ization vectors. The tensor A*1%2(k,, ky) obtained in [2] satisfies the transver-
sality conditions:

k?lAﬂ1ﬂz(k1:k3} ) kga-‘qﬂjtrz(klﬂ kg) = 0. (27)

Due to these conditions the two terms in {26) are separately invariant with
respect to independent gauge transformations of the gluon polarization vec-
tors

e®(k;) — e*(k;) + k¥ xi, (28)

so that we can use different gauges for each of the produced gluons and for
each of the terms. Choosing

ea(kl)-&? s Ea(kl)p? =0, Eﬂ(kﬂ)kg sy 5&.(;‘:2)?5 =0, (29)
we can present the polarization vectors as

(ke (k1))
k1p1

(kEE.L(kB])pé

ki) =e  (k
e(k1) J_F 1) 5o

p1, e(k2) = el (ka) — hesi b))

and their convolution with the tensor A*1*2(kq, k;) as

€g, (k1) €5, (k2) A% %2 (ky1, ko) = 4€l 4, (k1) €] 4, (K2) ¥ (ka, k2).  (31)

The tensor ¢#*¥(k, k) in the transverse space was defined in [6]. It can be
presented in the form

i 5 iy iy Wil e ¥ M
i b= LR B (0 RE (o BN, o)
1 2

k
- 5y

~

(k)i kiki ta  kfkl b kil ke (H 1 )4_@@11

k2 © kK sayp k2  safs K= say o k2
1, t1  saf2  saafi  sa1fa  agty  Pits

e T e S LS | = =

591 ( vt - = ) W

where the denotations
ti:qq?_j_: i=1,2; E].:(QI"“kl)z (33)
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are used, g/” is the metric tensor in the transverse plane:

w'. uw  Palat+VaPA
¢’ =g -
(papB)

Since the different gauges are used for each of the produced gluons, to obtain
the contribution of the second term in (26) one has not only to change k1 « k3
in the contribution of the first term, but to change also the gauges (e(k)p1 =
0 « e(k)ps =0), so that |

(34)

er (k1) eh, (ko) A*** (ka, k1) (35)

= 461-&1 (kl) Eictg (kz) Qulﬁl (kl)ﬂaﬂﬁz (k?)cﬁzﬁl (kz, kl) '
where 3
kS k
5 5 Sl
QP (k) = g7 —2 k?.l' (36)
In order to calculate the two-gluon contribution to the imaginary part of
the Reggeon-Reggeon scattering amplitude (13) entering Eq. (10) for the the
kernel we need to sum over gluon polarizations and colour indices. The first
sum can be obtained using the relation

Y (5Pm)) AN =~ (37)

A

and the second, for the most interesting singlet and octet representations,
with the help of - '
bovcy benes T T TS5 T

= ¥
2™ ey} JCg

2 2
— N2(N? i pdz pd d _N(N-—l)
= N ( = 1)1 6CLC‘1(5(:2E{2- ﬂlliﬂﬂirC;lEjTjﬂla -— 2 y
3(N? -1
r:d d. d 1d2_N( ) 'rli d-l" 2 dl_.._
fﬂ}.ﬂ;‘:fﬂchgﬂfclliTiﬂngc’l}Tj e 4 ’ fm”iﬂfcﬁﬂéﬂjclliTici ﬂrle_?ﬂ% g=1) .

(38)

Using these formulas, we obtain

e1¢) [Prlead , *
16s[Prlercs) Zwﬁ‘i (g1, 92) (’Tf{g’; (qimffé))
GG

gﬂﬂ‘,

= 85;.-4!‘\?'2 [(ﬂRCﬂlaz(khk?)cralag(kl* k2)
14

bRy (K1, k2)Ca, 5, (b2, E1 )X P (R )X (R2)) + (ks kz)] - (39)

where ¢, ,,(k1,k2) is obtained from cq,a, (k1, k2) by the substitition g; — q.
ond the coefficients ag and bg for the singlet (R = 1) and octet (R = 8)
representations are '

ag — 1, b(] = =1 g == bﬂ = (4-0)

Evidently the term (k; «+ k2) in (39) gives the same contribution to the
kernel as the preceeding terms, so that in the following only these terms will
be considered and their contribution to the kernel will be doubled.

To perform the integration in Eqs. (10), (13) over longitudinal compo-
nents of the produced gluon momenta we will use the variable z = 81/8, so
that

£y =0y =1 =8, :1:,;:%, i T L (41)
The alternative choice is y, with
g »
p=y n=1-y n=— i=L2 (42)

The variables r and y are connected by the relations

$E§ HEE
yr

25 s -, T =3 -, (43)
which are inverse each to other. Remind that the vector sign is used for
the transverse components. The integration measure in Egs. (10), (13) with

account of (14) has the same form for both choices :

dk?® d S g ' i
Bm) PC T (1 —2) @M@ 4yl —y) 2m)E-Y’
12220, 12320 (44)
Note that T oLt
kitk=k=0-G=0-0 (45)
is fixed.
The important symmetry properties of the convolutions
fa{kh kﬂ} B A (k]_, 'k?)d::tt r¥q (le kﬂ) (46)
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and
folk1, k2) = Coyay (K1, ka)s, g, (2, k)P (k1 )Q272 (k,) (47)

entering (39) are their invariance with respect to the “left-right” transforma-
tion

ki = ko, a1 B oo f, ¢ < —a@, gi «~ —qs . (48)

This invariance follows from the transformation law for the tensor ¢ (kq, k2).
It is easily seen from (32) that this tensor turns into ¢”#(ki,kz) under the
transformation (48). In terms of variables k;,z,y this transformation reads
as

kl 3 k?: T 1, 'fl e —{;f?: {l_’?l’ bt _q; T (49)

One can check by a direct inspection that the tensor c*¥(ki, k) (32) is
equal zero at zero transverse momentum of one of the Reggeons, ie. at
g1 = 0 or §» = 0. It guarantees another important properties of the functions
fa(k1, ko) and fu(k1, k=) - their turn into zero at zero transverse momenta of
the Reggeons (cf.(11)).

Let us adopt the first choice (m,El) of variables for the integration in
Egs.(10), (13). Then the two-gluon contribution to the kernel is presented in
the form

. e
Kinoe (@1, @; 7) (50)
4g*N? [ dP—2ky 1 dazb (s, — K?)
= @ | Gy || Tt anfalls k) + bk, ko)
1 [ dP 2 P
L o TIriimBe s o o B e 2 i A
2/ TET.FE T (qj.?lr,q-j T (ri 2, Q] ('i’_"’— ﬁ)z(f_‘i—{j’z)z "

where the group coefficients ap and bg are defined in (40) and the func-
tions fo(ki, ko) and fu(ky, k2) in (46) and (47) respectively. The functions
must be expressed in terms of x and k1. It can be done using Eq.(41) and
the relations '

i S
k'l.' & ((Idm)kl—mkz) 'y ]‘ 1 P2 7 —+ 32
= P , © = (( — )k + z(k1 — ¢1) );
e et k.2
ky +ky =k, ti=g>, aiz—;"ﬁf, d=1.2 (51)

To analise the behaviour of the functions fu(ki,k2) and fu(k1,kz) in the
integration region of (50) it is convenient to express the tensor ¢ (k1, k2) in

16

(32) in terms of z and k,. After this it is not difficult to show that for any

=

z in the interval [0, 1] the tensor falls down as 1 /k{, so that the integration
over k; is well convergent in the ultraviolet region. As for the z- behaviour
at fixed El, it is easy to see that in the limit x — O the tensor c®192(kq, ko)
tends to zero, whereas at = — 1 the tensor has a finite value. Tt means that
the function fp(k1,ks2) (see (47)) turns into zero both at z = 0 and z = 1,
so that performing the integration of the term with fo(kq, ko) in (50) we
can ignore the restrictions on the integration region imposed by ¢ (s, —k?).
Remind that the parameter s, must be taken tending to infinity, therefore,
due to the convergency of the integral over El in the ultraviolet region, the
restrictions have the form: '

1=2 3554, (52)

From the discussion above it is clear that the restriction from below does
not play any role, but the upper limit is important for the integration of
falky, k2) in (50). |

The limit z — 1 corresponds to the multi-Regge limit of large relative
rapidities of the produced gluons, so that the value of fa(ki, k2) at this limit

is related to the LLA kernel Te el Indeed, using (41) and (51), we obtain
from (32):

M (k1, ka)|e=1 (53)
41 @-k2, | @—F)2, |
e TENG Q1—k1+—“‘:?—“k1 q1—k1-—-—_,2--—"kg -
(ih e kl) - kl 1 k3 L

This result and Egs.(30), (31) and (18) give us the relation

EL(k1)C“(l;Z‘1 &y, kl'! Q1)E;(k2)cv(q2: \ ¢ kl)
(1 —k1)?

e, (k1) e} (k) A* (k1, k2)lz=1 = —

1

(54)
which means that in the multi-Regge limit the vertex for the two-gluon pro-
duction is expressed in terms of the one-gluon production vertices. For the
function f(k1,kz) (46) we obtain from (53), using (8):

o 2
(&%’f_)—;’i—]) ks, k)l

]- < g 33 3 -
K G-k ek 6T
(¢1 — k1)(d{ — F1)? |
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Therefore the substraction term in (50) can be written as

T EEK{R]B(E 7 KRB (F gh; §) In 5
z ) MR SR NG )

] 1 QQECR e P fl_“”% o
=79 ((2?]”"'1) jd ki P2 m(le)f“[kl’kz)I“::l‘ (55)

Taking into account that ¢% = N*ap (compare (9) and (40)), we obtain that
the two-gluon contribution to the kernel can be presented as

R ur -
jC(RR)G.-:: (g1, G2; G'_)

4g*N2? 1 dz 4242k
; B (Zi)ﬂ_l \/(; _q:,(]_ i ;j_‘/ Fm}}_—% {ﬂ'R [fﬂb(kl:l kﬂ) ™ :I:(fa(kl,kg)|$=1 )]
2tN? [ d%k 2

27D —1 f (EW)D--.ll apfalki, k2)lz=11n (E‘é) . (56)

Remind that from general arguments the kernel must be symmetric (see (12))
with respect to the substitutions g; < g, i=12and ¢i & —@, § < ~qs
(note that at both of them g changes its sign). The symmetries of the two-
gluon contribution to the kernel can be explicitly demonstrated using the
representation (50). First of all, it is easy to show with the help of the
expression (8) for the Born kernel that the substraction term is symmetric
under these substitutions. After this the symmetry of the total contribu-
tion under the first transformation follows from the evident invariance of the
convolutions (46) and (47) under this transformation. The symmetry under
the second follows from the invariance of these convolutions as well as the
integration measure (see (44)) with respect to the ”left-right” transforma-
tion (48), (49). Turning to (56) we see that the contribution of fu(ki,k2)
is symmetric with respect to both transformations. As for the terms with
fal(k1, k2), the last of them gives the contribution antisymmetric under the
substitution §; < —@a, §1 < —{ds. Therefore, this term can be omitted
together with antisymmetric contributions from remaining terms. So, the
total contribution of all three terms with f(k1,k2) can be obtained by the
integration of the first term over z from zero to 1 — § at arbitrary small 4
with subsequent omission of terms proportional In 0 and terms antisymmetric
under the substitution §i < —@, ¢ < —§s.

+brfelk1, ka} + (
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5 The two-gluon contribution to the octet
kernel

Up to now our results could be used for any colour representation R. Starting
from this point we will consider only the case of the gluon channel (antisym-
metric octet representation). In this case only the function f al(k1, k) does
contribute to the kernel. From the discussion at the end of the preceeding
Section it follows that the the two-gluon contribution to the octet kernel can
be presented as

; 4 pr2 1 +2e
. (8) Ly e N A dx f d? k1 fa(kl,kg) "
| Khrool@ @9 = prp=1° fﬂ e Laors o o)

where & denotes the operator of symmetrization with respect to the substi-
tution @1 < —@», §; « —ds and (1 — ). means the substraction:

1 1 |
dx dx

2 i@ = [ £(@) - 1) 58
|, T s, gt 1) F
According to (46) the function fq(ki,ks) is determined by the convolution of
the tensor c#¥(ki,kz) given by (32) with the tensor ¢, (k1,k2) given by the
same formula with the substitution g; — ¢} = ¢; — g. We obtain (details of
the calculation are given in Appendix A):

- 31 ) 2 g R
Jalky, ko) = {1{;6 [m g ((@am +(1 - 22 - ) 2D

@R@A)]| 2z -2 (=20 -2)¢? ..., Kid,
SRRy = T e ST

2 = :1:3 tff 2 @*2‘3 T éﬂ 2 fj-z
, X (2(1 SRR Yy CE G
[ bt 5 24 42y A1 - 2)kPk?

z(1 - z)\* /%32 [1+e
-l-( S ) 5 5 — (3 4+ 2€)z(1 — z)

pE — —f 3 — M
o2 (o) ((+ 2(a) - o) - eolk? - 7))

"“_h-—""_—

42 42 2 =
W i rqi4q — (Q1 vy Z(klfh))
=l relke + 2 2]+ i -2 o
( ) 2 P 4t1k12 {ﬁ@j( ) tlfﬂ
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L1+ -2)* @ — 20 @)@ — 2(k1 1))

4 t1 )

- B Rad) — (&

g 2@

vaa(l=2)k2  1+e
_QIIEQEE ¥ r 3 2 1 -...-3;} (

g2)( km}) + zgy 2@12 — zk*(§19) + 37 (1)

—2(k1d2))(d@/ *(1 - @) ~ 27 A))

A

=+t E(Q 2)2
éﬂczﬂtl

47 2(@' 2)2
4k2t1k12

e e T
4s (QIq} — —f
a = : i i 1 59
2(1~m}k2t1}+{q HQ,,} (59)

where #; is obtained from #; (51) by the substitution @ — g,

xzzka
+‘11

4 Y
Birt)  4k2fk2

jc‘ 2 kg" 'ff 2
b

cG2 (GG k) — @ (k1))
2(1 — z)k2E: k2

A=((1-2)k —zks), , B=K%+2(1 -2)k> (60)

Unfortunately, the integral (57) can not be expressed in terms of elemen-
tary functions (and dilogarithms) at arbitrary €. Therefore we present the
result (see details of the integration in Appendix B) in a “combined” form,
leaving untouched the terms in f2(k1,k2) which can not be integrated in
elementary functions.

ey £—1
2
4g*N?D(1 — €) T2(1 + €) (k ) [ @8+ D)
(4?r)[}ﬂ].+.€ F(1+2E) 46 'JI (Iz Q'z QE

11 + 7e 2k
2(1 + 2¢€)(3 + 2¢) €

KE?%IGG{&L f_?B; é) : %

. @wti) F (14 €) — 201+ 2¢) —

3 "
. (_E+¢(1]“¢(1—f)+3¢(1+6)~—2yb(1+-2£)
s b+ de )._ 114 7e —-zﬁrz{qz) _(_'22)!E
21+20)B+2) ) de(l+29(B+20 12 2 g2

= e+ 1 =
S5 =i A (@) +gi(1

f(1+2) & -3 & 3 ~ IR gﬁ))
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il

IV E € 1
= ((QI) +(2) ) T 1203 + 20

2 (@) - @) - @+8) (@ - @)

(ﬂ;g —G‘z )
(‘1’1 i ‘?2)

[(2{1 + 6§
& (@? ff@;f“

(@ - @) ( (@

- g2 +q2 —k —21+e*3)
@ -3 R A

(2 + 2 + 2 + 26 — 2k - 2°) -

+

(1 + 2¢)

4g*N? I'(1+e¢)
+4f2(1 +€)

@mPrre C~IFa 20 10

“ g1, g2 < ga},
(61)

I(q1, g2 fﬂ}

where

dr / d2+2£k1
1 —z)yzJ witel(l —¢)

T (‘5'13(3‘?1@*1’) o ‘ﬂﬂ(klffl))
2A2F, pE

@Lm@z'i @'1452 B ‘11 qg zk *
X + L5
Y kl

A%
4 wr(I~e€J (§;

1
I(@a,aa;q)=48f (
0

z%(1 — z)
4A2%,

- @)| -

Fz{f) (E Z)f.—
I'(2¢) 2¢
dz+2s£

12(1 - k)2
T (T) i

The first of the symmetries (12) of the two-gluon contribution is explicit in

(61); the second is also easily seen. The properties (11) are not so evident.

It takes some job to demonstatate their existence. In particular, one has

to calculate the function I(g,d; §) at g2 = 0 and gy = 0. It is not very

easy, but possible (see for details Appendix C), so that we have checked the

fulfilment of Egs.(11) for the two-gluon contribution at arbitrary e. '
In the limit ¢ — 0 we obtain -

:f)z(i:) {(k )""1 (a3 +apa? - a°k?)

(1 11 67
X153 —f t5s

(ﬁzﬁgﬂ + "Jzziﬂz

7%k ?)

EE%GG(‘II& 'IB:{D e

- T~ 4@+ < (- +903) + 5 )
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o B i | —¢ i
s =2 14 -
+q [2 (ﬂ +1Ing )hl( 7 ) 2¢(2)

11 72at\ , (@+ &) 0y 1 a5 1 Jy 1§
+— 111(-.1 s + —=—===1n (%) -1-—].1(12 (-:,1-“)—}-—1]:13 (-—2-) ne
6 ( K% (37— d7) g 4 g* 4 q* P 3

11 1 k2 12 2
— =g+ -z | 11 - (@2 + @ +A4(dias) —24°) + .- N
6 6 (@2 - 32)° (@’ - @)
2 fﬁflg q_?zz f]_z o i sl 51
* (Wlﬂ @ — g - '2‘22 +1(q1, 325 @)
Ia]
4 nr2
g NT(1—¢) i >
e (4m)Prite GG - (63)

iy

In this limit the function (g}, §2; q) takes the form

g ]- k d:}[} =2 1__ —3
I(Ql:iiz:@"):E/ G in (‘h( $)+q3:c)
0

qi(1 — z) + goz) k2z(1 - z)

o T T R 2 2 2 =2 272 ‘T]Eﬁ_‘qz—fgfjﬂz
@22 - @ - @) + 2078 - 70 - el + @ - )

— =42 T —ayp D 5 =7} =y =} e
_|_E_ (4((2}_11112 (%)) ke 5] 4@2?1 I (%) In(ql_. 2)
2 2 e 4k 2 3 k1

= 1 Ezqﬂzix 2‘?2 1 5'2 1 ~2
S8 A 19401°93 "\ 1. 2( G Leaf 92

i [(f“‘q)m( et LR e G
The integral in '(64) can be presented in another form:

/1 da (@0 -9+ e i
- — 2 =
o (Gi(1-2)+ gaoz) k2z(l — z)

% /‘x’ dz 1
o 2+k2(@+3 +2)? 4470

% In (‘?13 +§i+z+ VG2 + 3F + 2)? - 447 q5
g +df+z— VIGE+ 33+ z2)* -~ 4975

ot

(65)
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It is possible also to express the integral in (64) in terms of dilogarithms, but
this expression is not very convenient:

fl dz G2(l—2) + @5z 2
= —r 2 ln — e e BN .
o (@1(1—2)+ for) k2z(1 - x) |4111g2| sin ¢

psing : : :
ks Im (L ; 66
% [mpa,ratcm a T + Im ( (FEXQWE’})] (66)
where ¢ is the angle between 1 and g3,
ara lfi‘zi) fz dt
=min| =317 ,in — In(1 — £). 67
p=min ({Z1i)+ He)= |, T~ .

6 The non-forward octet BFKL kernel

The general form of the kernel (for arbitrary representation R of the colour
group in the t-channel) is given by Eq.(2). The “virtual” part is universal
(does not depend on R) and is determined by the gluon Regge trajectory,
which is given by Eqgs.(3)-(5). (Remind, that in this paper we consider pure
gluodynamics. The quark part of the kernel was considered in [18]). The
“real” part, related to real particle production in the Reggeon-Reggeon colli-
sions, in the NLA is given by the one-gluon and the two-gluon contributions
considered in Section 3 and Section 5 respectively.- Since the radiative cor-
rections to the effective vertex of the one-gluon production are known only
‘1 the limit € — 0, the total “real” part of the kernel can be obtained only in
this limit. It is given by the sum of (23) and (63). After powerful cancella-
tions (in particular, between the terms with singularities 1/¢* and all terms
with (§2 — ¢7) in denominators) we obtain

2 i =D =3
e | g"w q q _I_q q -
Kf(a}(m.,t;!z;fi'}:g@ﬂ—)ﬁj{( == e o —qz)

1  g*NT(1—€)(k?) [ 11 , 67
4 (5 (4,?1,)24-{ (_EE + E _C(Z)
202 11 PNI(1-¢) [ (11, (G'F
ve (TR + 7@+ 54®) ) ) + e (5o (5)

q
1 gt ith 1 35 i L. 49
- by 7 ]I] — ki “_l et ]n = o =
+4Ln(§,3) ('_qﬂ FLde 7)1’ (3
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_BEH a3 (@E) LB - EE ( o ( 1 (q-*;ﬁ‘q'f ))
2k 2 ds k2 g5 ) k4

1 —72 Ez_ﬂ—»z 97252 _ 7212 22203 '3'2 —ququ o
'f?{fi ( q1 ){" d1da — ‘i’lfh —GaGy “ + kz (fh _"i'z}]

1 dz 321~ 2) + e L
X = e In = +_—_~1ﬁ i e g :
o (@(l - 2)+ gaz)? k2x(l — x) 2(2m)

(68)

After the cancellation of the terms ~ 1/¢? the leading singularity of the

kernel is 1/e. It turns again into ~ 1/e? after subsequent integrations of
the kernel because of the singular behaviour of the kernel at k2 = 0. The
additional singularity arises from the region of small }r. 2, where ¢|Ink 2| ~ 1.

Therefore we have not expanded in e the term ( ) The terms ~ € are

taken into account in the coefficient of the divergent at k2 = expression
in order to save all nonvanishing in the limit ¢ — 0 contributions after the
integrations.

The symmetries (12) of the kenel are easily seen. The first of them is
explicit in (68). To notice the second it is sufficient to change = +» (1 —z) in
the integral in (68).

In order to check that the kernel (68) turns into zero at zero transverse
momenta of the Reggeons (11) one has to know the behaviour of the integral
in (68). A suitable for this purpose representation is given in (65). From this
representation one can see that singularities of the integral at zero transverse
momenta of the Reggeons are not more than logarithmic. After this no
problems remain to verify (11).

In conclusion let us note that in [17] the octet kernel was obtained using
as a basis the bootstrap relation and a specific ansatz to solve it. Our results
disagree with the results obtained in [17]. To see the disagreement it is
sufficient to observe that the kernel obtained in [17] is expressed in terms of
elementary functions. We conclude that the ansatz used in [17] is not correct.
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Appendix A ‘

In this Appendix we present the details of the calculation of the convolu-
tion fa(kr, k2) (46). |

It is suitable to represent the tensor ¢*“(k1,ks) in the form

: M (k1,ka) = E?‘” I”’” -+ I’m (A1)
where
pv *qu ky k3, kL (L — 2)ka — ko)l 5 gy (1-=) ( 2 _klz)}!
5 = k2 b (1= g;)EIE 2 > (1-z) =z
(A.2)

AY wie? =\
I3 =73 [ qpl 1'( Fk_k]) Ty

(l—-:n) . i

2% ({(flk”) z—(ﬁﬁ)kl)i—(é‘lﬁ)gi”]- (A3)

1 33 s L it v ﬁ;“:"r ; fgplis " L
v _mli_( = h) 2 g (@ ])J:(th k)t -+ gé’ { = = (&'12 — 2k1q1).
3 klg tl

1

(A.4)

Analogous decomposition is made for the tensor ¢, (ki, kz) obtained from

cuv(k1, k2) by the substitution ¢; < g, i = 1,2 and we denote lpyy (1=
1,2, 3) the tensors l,,, after this substitution. .

The calculation of the products I#¥1},  is significantly simpler than the

calculation of the whole convolution fu{kl, ks) (46), though still rather te-

dious. The results are:

vy - L CHR [ Gk (-a) o ] ﬂ)
1 ShaeT A4 JEIEE ¥ (1 — 2)k2

S e DI

& o8K)\ (F1A)k2 e
0y = ﬂ‘*{—z(}- +€)(1 - z) (1-—2:34—( - )){ih ) — k*(q1 k1)

2k4 k? 2
ki’ 2 i -T) 1 ky
H; El_up = ?‘kg {(1+E){ E_El (qj 1q1) $+ 2 2(1 o ﬂ?)klgtl
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T {(qlq{)[ 2(3 — 42) — (1 - 20)%k2] - g2(@{R)

+4(1 —x
b 4 i e
x 2A1+-4z(1—2))+4(q1q) ) (§1 k }+ = [2*2 A (G1q7 *%kz}
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(A.10)
With the help of (A.1)-(A.10) and the equations obtained from them by the
substitution §; < ¢ we arrive at (59).

Appendix B
In this Appendix we present the details of the calculation of the integrals

in (57) with fz(k1,k2) given by (59). Firstly let us remind the denotation
used:

ELT El‘* Eg:(?’l.-"q_*g? E:(l_m)gl'—ﬁg?? Q::{j;_gﬂji'__lrz;

w4 AL
((1 s :I:)kj_ = mkg) . !{ i l Eﬂ
z(1 — x) et 8 e

Fok _i ((1 - 2)R? + (ks &)’) (B.1)

k? =

and t{ is obtained from #; by the substitution g1 — ¢y
It is easy to see, that

7 _fl dz ] d? 3¢k, l+e[22(1—2) 4
0= | zZl-z)J mtT(1—¢) | K o A

T % e
X ((tﬁﬂ) +(1 - 2z)(1 — )22 g‘kl) " (fhﬁig‘hﬁ)il

zll — m)%rz =il = I)‘ﬁ! y kﬁqlﬁ_ s T2 1 &
+ 2 e L (3(1 + AN, +A gpu) il
(B.2)

The zero appears as a resuit of the integration over k1 (or, equivalently, over
K). The first two terms here gives zero due to parity, the third - due to the
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dimensional regularization, and the remaining terms - due to the isotropy

of the transverse space leading to the replacement 2(1 + ¢)A A, — == zgip
after the angular integration.

The calculation of the contributions of the terms with the denominators
¥, ¥2, k%% and k%k? is straightforward. We obtain, using usual Feynman
parametrization if necessary

Bar¥g 1 ~1 Ao
Iy = / ﬂ,l,Jr,[l—'(l = t)i— = "E"['T‘(l 'm)k ] 1

d?—l—‘zlc k1 1 5
= = [z(1 — 2)k?) ! B.3

d>t+2e L, 1 1 -
e = RSl s kﬂ e—1
sz /ﬂ‘“‘ff(l —€) A2% elm(l g W

-“2‘] L NG g0 4
AT ] ntD(1—€) A2k2  T(2¢) :

The subsequent integration of these terms over z can be done without diffi-
culties.

The integrals over ki from the terms with the denominators EfE and

Elgf? 1 can not be expressed through elementary functions at arbitrary e. Nev-

ertheles, these terms do not create problems. For them it is convenient to
make integration over ki,

d2+2Ek1 1 Yo S | 1 dz
"’f"fﬂ”f TIFL(1 — ) Efz_(k ) / (@2(1 — 22))0-9

22k, 1 R dz
o= | g @, mas ey B9

then to introduce the variable y = zz instead of z and to change the order of

the integrations over = and y, after that the integrals can be easily calculated.
In this way we obtain

i fl dr / d}‘r:’a:k] EE‘EIE(EE A Iq*lfﬂq*zz
T Jo U-a)iz ) PHC(1-€) | 4k2Z O A(1 - z)k2k2
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The integrals with ;¢{ in denominators can be calculated with the help
of the trick used in [18]. Let us consider in (59) the first such term. It can
be presented as

=12 _ L. 7! Eg ;
_@ -T2 _ Gaa-q) [”l+ 1]' (B.7)

El E-; 11 T E] i_'.rl

The first term in the R.H.S. can be integrated over ki and then.mrgr T . Fr?r
the second it seems more convenient to begin with the integration over x in

(57) getting
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With the help of the representation
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the integration over k; and the subsequent integration over z become trivial
and give
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Analogously we obtain

gl gy @2k (1+ (1 —2)? ()2 — 2(- @)@ — 2(Fad))
i /.3 z(1 - m)f m el (1~ ¢) 4 0n s,
_ PP +e L+ {(@Dre+ (@) - (@) B 11

- I'(1+2) 8 (14 2¢)(3 + 2¢) | g

The terms in f,(ky, ka) with the denominator k%f; and with 2™ in numerators

at natural n can be calculated performing the integration over k; at fixed
Feynman parameter z, then making the change of variable y = zz:

f /' d‘Z—l—E-ckj s
o z(1-— m) mite’(1 — €) k2,

1 1 gt
— dz f dz =
R e e

1 1 o]
= - dyy""“lf AT ———5 - - o ; B.12
fu v 1235 — )+ qf — v@g) 319

The change of variable y = xz has been performed in the last equality. This
integral can be now calculated integrating first over x and then over y. The
complete calculation for all such terms in (59) is long, but straightforward.
The integration of the terms

1 ST e R e k2k2q!?
R QPERLIET L JEETINN .~

can be done guite analogously, since under the transformation (49) they
acquire the form of the terms discussed above. In this way we obtain:

1 dax A2+ ‘Er_kl 1 ATy I e Sabis
-/; z(l —x) J wliTel(1 —¢€) k2i, [2(@1@2)(&1@1) —(9192) (k141))
(1 —2)k2
+ags 2q7 — ok 2(@1q) + @23 D) — 7124 A= E F) ! ]

Lt el - q* - g7 oy 1+€
- e @+ B (@ v - 2a)).
(B.13)
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o m(l —z) J wtel(1 2 k2t,

= F 2 —rut
{2 - =) 2@y + T

g | (200 (@) - @)

<@+ @) (@ - @)

E 2 —f2 2 2 '[F] e 6;2
T (*‘Il +d; +26° + 23 —2k* — 2§ )——“_——
{ql—qz] (q "‘QJ

one+1 oy 611

(@~ @)

( (ﬂfzw;z_;?) —2(1+e€) (q"z—q‘f))

(B.14)
All the calculations discussed before were done exactly at arbitrary e.

It can not be done for remaining terms. They contribute into the function
I(q1, ¢; q) (62). We have used the following equality:

f] dx f d2+2e kl (62)2
0 (1 = .’.ﬂ)+$ ?rl*ff'(l o E) 851?1

FZ(E) (EZ]H—E 2
“Feg 15z ~2¢M+20(1 -9 491+

In (a"ﬂ /q*?)
= , (B.15)
mt<T(1 - €) (g —)2(q7 — 1)

o This equality can be obtained performing the integration over z first, using
the representation (B.9) and the integral

. +
: (67 — a3)

+49(1 + 2¢)] —

(6'2)2 / d2+2'£k
&

* / d2+2Ek1 in (f‘g/q'z)
w0 (1 =€) 12(7— 1)2
.IHE({;E)) (72%)° [_ big ZW){I} Yl —€) + (1 +¢€) — (1 + 25))]. (B.16)
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The last integral can be easily obtained with the help of the generalised
Feynman parametrisation.

Using the integrals calculated above we come to the representation (61)
for the two-gluon contribution for the kernel.

In the limit ¢ — O the expression (64) for I(4, g2; ) was obtained per-
forming the integration over k in (62) Grst. We have

(L—a) | T%(€) a1 (372)\"
L @12'5’;2 {I"(ZE):E . (k )

dz-i—ﬁekl 1
/ TTeD(1 —€) k2ik2

S :
(@?((fl— m}qf-)a;%} {1“ (2 (@ -2) +aa)’) +

4 (ZE(.ﬁ(l =&k ‘sz)) {ln (‘le (32(1 — =) + f}'gzm))_l_ 1 - (g2(1 - :r:})ﬁ] -

2- (@ (.1 o E)){]

(@1(1 —2) + g2z)? k2 ;
(B.17)
d* 255 El ¢
—— o~ —x(l — e, -
./ mHeD(1 — €) k2, k2 ) ¢ (q1(1 — =) + Gox)?
1 (32 (32(1 — =) + &5'z)) P s (G2(1—=))
i zk 2 €
- (—;2(1_ }+ 49 )2
4 k 1 » T \q Tj)+ 42T +1
ek 2 [ (@°(1 - 2) + &&'7) (1 - =) €
72(1 — — g
Ledobe it nagy (@0 -2) + 4 ‘”)] : (B.18)
o (@1 -2)+ @) z(1 — 2)k?
—og 142
f pog, (%)
(L - ) (g - D(F - 1)?
e 4 61?€;2> 1 2(*5:_"12 }
v =+ Ing?}] —In® | 55 )] - B.19
& (e )n (@) +am ()] e

The integrals (B.17),(B.18) are calculated for arbitrary small k2 and for =
arbitrary close to zero or unity.
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The approximate form (64) for I(d, §; §) can be obtained using Eqs.(B.17)- '

(B.19) and the relation
f’ zdx 0 G2(1 — ) + @5=
o (1(1 — =) - @z)’ k2z(1 — z)

3 k2 +q? - G2 [1 dz * G2l —z)+ @z
2k 2 o (§i(1 — =) — @2x)®

k2z(1 — z)
1 gy 35 1 gy 4 Qs
—_T(L( Ty 10-8)) - Ln(L)n(LE) e
: _

Appendix C

Due to the symmetries (12) of the kernel (61) it is sufficient to show
that the kernel turns into zero at zero transverse momentum of one of the
Reggeons, let say, at ¢o = 0. But even in this special case the integration
in I(q1,d>; §) (62) can not be done in terms of elementary functions. Fortu-
nately, the expression (62) can be simplified at gz = 0 and presented as

*(e) =2

1, & Dlno = —5r57” (F*) W)+ (0 —20(20)]

_{‘?2)2 1 j' d2+2£3 = fﬁ(i’_ E}E
4 witel(1 —€) rza‘_ G 7t :

Note, that at §2 = 0 we have ¢ —kand @ =—¢, @ = E—(}".

Evidently, the integral term in (C.1) excludes for the piece of the kernel
(61) without the substitution §; < g the possibility to turn alone into zero
at @ = 0. Therefore we need to calculate I'(q1,@; q) = I(q{, q4; —q) at
g = 0. This function can be also simplified. Not, that as well as in the
preceeding case simplifications can not be done for separate terms in (62)
and are possible only due to the definite combination of them. We obtain:

- 3 ' £
1@, 8 ~Dlarmo = qromd” (@) (0 - 9(29)

(C.1)

= (F?)" (1) - 9(2) — (@)° (9(1) = ¥(1 — &) + 26(e) — 20(2)
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In the sum of (C.1) and (C.2) the terms with In(l — E)Z cancel each other,
after that the integrals can be calculated and we obtain:

(1@, & D) + 1@, & ~ D=0
112 € =/ 2

— o [(
—(c:r*) (20(1) - 26(1 - ) +39() -3p2)| . . (C3)

With this result to show that the kernel {61) turns into zero at ¢ = 0
(and, due to the symmetries (12) at zero transverse momentum of any of the
Reggeons) becomes a simple task. '

- 9(29) - (K2) e(1) +w(e) - 3u(20))
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