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1 Introduction

The electromagnetic polarizabilities @ and 3 are fundamental charac-
teristics of the bound system. Their magnitudes depend not only on
the quantum numbers of the constituents, but also on the properties of
the interaction between these constituents. Therefore, the experimen-
tal and theoretical investigation of the electromagnetic polarizabilities
are of a great importance. In particular, their prediction and the com-
parison with experimental data may serve as a sensitive tool for tests
of hadron models. Correspondingly, a large number of researchers have
been attracted by this fascinating possibility. The electromagnetic po-
larizabilities can be obtained from the low-energy Compton scattering
amplitude. In the lab frame the amplitude of Compton scattering on
the compound system of total angular momentum S = 0, 1/2 up to
O(w?) terms reads [1, 2]

T = TBorn + awiwy€y - €3+ B(ky X €) - (kg X €) , (1)

where w;, k;, and €; are the energy, momentum, and polarization vec-
tor of incoming (¢ = 1) and outgoing (¢ = 2) photons (A = ¢ =1). The
contribution 1., corresponds to the amplitude of Compton scat-
tering off a point-like particle with spin, mass, charge, and magnetic
moment equal to those of the compound system. For spin S > 1 the
O(w?) part of the Compton scattering amplitude contains additional
terms, proportional to quadrupole and higher multipoles of the bound
system [3]. In particular, for S = 1 there is a contribution, propor-
tional to the quadrupole moment operator.

The investigation of electromagnetic polarizabilities is interesting
not only for systems, bound by the electromagnetic interaction, like
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atoms, but also for those, bound by strong interaction, such as atomic
nuclei [4] or hadrons [5]. At present there are many different ap-
proaches used for the description of the electromagnetic polarizabili-
ties of hadrons: the MIT bag model [6, 7], the nonrelativistic quark
model [8, 9, 10, 11, 12], the chiral quark model [13, 14], the chiral soli-
ton model [15, 16] and the Skyrme model [17, 18]. Here we mentioned
only a small part of the publications on these topics (see also review
[19]). Though much effort has been devoted to these calculations, all of
them can not be considered as completely satisfactory. In particular,
there is a problem in the explanation of the magnitudes of proton and
neutron electric polarizabilities within a nonrelativistic quark model.
It was derived many years ago [2, 20, 21] that & can be represented as
a sum

D 2
Z|n| 0] + Aa = a, + A, (2)

where D is the internal electric dipole operator, |0) and |n) are the
ground and excited states in terms of internal coordinates, and £, and
FEy the corresponding energies. The term A« in & has a relativistic
nature and its leading term is equal to

2
€ry

Aa=—L£
a=2E, 3)

where e and M are the particle charge and mass, rg is the electric
radius defined through the Sachs form factor Gg?. The calculation of
the quantity «, in the nonrelativistic quark model without relativistic
corrections taken into account leads to the same magnitude of «, for
proton and neutron. Since A« is equal to zero for the neutron but gives
a significant contribution to @ for the proton, one has a contradiction
between the theoretical prediction of & for nucleons and their exper-
imental values, since the latter are close to each other. In fact, this
approach is not consistent, because there are relativistic corrections to
o, which are of the same order as Aa.

?For convenience, our definition of r% absorbs a total charge e of the system.



Starting from second-order perturbation theory one gets the fol-
lowing expression for a,:

_ 2~ [0y
=3 2 W Ep a

where J is the internal electromagnetic current. Using the identity
J = i[H,D], where H is the Hamiltonian, one comes to the form
Eq. (2) for a,. The relativistic corrections to a, in Eq. (4) come
from the corrections to wave functions and energies of the ground
and excited states, and correction to current J. Note, that in [22]
(see also [23]) it was mentioned, that such corrections could exist,
but no explicit calculations were made for a realistic system and the
importance of these corrections was not realized.

Due to the relation between J and D it is clear that there also
is a relativistic correction to the electric dipole moment operator (see
below) which is connected with the appropriate relativistic definition
of the center-of-mass coordinate. The neglect of this relativistic cor-
rection leads to an incomplete expression for &, and the missing piece
which is calculated in the following turns out to be very essential. We
expect, that the inclusion of all relativistic corrections allow one to re-
move the big difference between the predictions of the nonrelativistic
quark model for proton and neutron electric polarizabilities due to the
difference in Aa.

The expression for the magnetic polarizability in the nonrelativistic
quark model with no exchange and momentum-dependent forces has
the form [21, 24, 25].

i M]0)? 2,2 (D?
ﬂ:ﬂpara‘l'ﬂdia - Z | n| —|E0| (Z%‘l‘ %) 3 (5)

where M is the internal magnetic dipole operator and the summation
in the second term on the r.h.s. is performed over the constituent
quarks, r; being the corresponding internal radius vector.

In order to understand the importance of the different relativistic
corrections for the polarizabilities, it is useful to consider the example
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of a system where the relativistic corrections can be obtained ab initio.
In this paper we calculate the low-energy Compton scattering ampli-
tude for a system of two particles with masses m; > and charges €; o,
bound by electromagnetic forces. We consider the case 6%72 < 1 which
provides the validity of the nonrelativistic expansion. We consider in
detail the cases of spin 0 and 1/2 of the particles and give the result
for general case of arbitrary spins.

2 Scattering amplitudes

For the electromagnetic interaction between particles a simple estimate
shows that the part ¢ of Compton scattering amplitude, proportional
to w? has the form:

€ ek
t =wd’ cl+62—0+63—g+--- , (6)
o

where @ = 1/(ug) is the Bohr radius, g = —ejea > 0, p = mymy/(my+
my) is the reduced mass, £g = —ug?/2 is the ground state binding en-
ergy in the nonrelativistic approximation, and ¢; are some quantities,
bilinear with respect to €;, €5 and depending on the ratio of charges
and masses. Here, for definiteness, we assume w = wy. The two first
terms of this expansion contain the parameter ¢ < 1 in the denomina-
tors and, therefore, come from the contribution of big distances r ~ a
(or small momenta p ~ 1/a = pg) to the matrix element. These two
terms which have no contributions from the Born amplitude are the
ones we are going to calculate in this article. Since they are determined
by a contribution from big distances (small momenta), it is possible
to use the nonrelativistic expansion in the calculations. In fact, the
first term is known and contains the contributions of «,, Eq. (2) and
Bparas Eq. (5), calculated in the leading nonrelativistic approximation
(see below). Some contributions to the second term are also known,
namely, those, containing the magnetic polarizability B4, Eq. (5) and
the correction A, Eq. (3). These contributions come from the ex-
pansion of the photon wave functions over kr ~ w/ug and from the
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expansion of the propagator of the system with respect to the photon
energy and the center-of-mass kinetic energy of intermediate states.
The corresponding results for S and A« can be obtained using the
nonrelativistic Hamiltonian of the system. As was mentioned above,
the other source of the contributions to ¢y, which has not been in-
vestigated so far, is the relativistic correction to the Hamiltonian of
the system and the corresponding corrections to the wave functions,
energy levels, and currents. We will obtain the complete result for
the second term in the expansion Eq. (6). In the expression for the
electromagnetic current we neglect for a while the dependence of the
form factors on the momentum transfer. We will take this dependence
into account at the consideration of the general case of arbitrary spins.

2.1 The system of two spin-0 particles

Let us consider first the bound state of two spin-0 particles. In order
to calculate the Compton scattering amplitude, it is convenient to put
the system into the external electromagnetic field A(x,¢). In this case
the nonrelativistic Hamiltonian has the form

2 2

~ ™ T g
H,. Al = ! 2 _
[ ] 2m1 + 2m2 |I‘1 — I‘2| k (7)

where 7; = p; — €;A(r;,t). Let us pass to the variables r and R,
corresponding to the relative and center-of-mass coordinate:

m m
1‘1:R+M21‘, I‘QIR—MII‘, M:m1+m2. (8)
Then, the momenta p; are
mi ma
=—P =—P- 9
pi=",P+tp. p= P-p, (9)

where P = —iV g and p = —tV,.. For A =0 we have

N P2 P2 p2 g
Hy[A=0="—+H, =——+-——2
[ ) 2M+ 2M+2,u r



The first relativistic correction Hp (Breit Hamiltonian, see, e.g., [26])
to Eq. (7) reads

ﬂB[A] = ! ((ﬂfg + (71-%2 ) + J (5£+ r;—g]) ﬂiﬂ%. (11)

8 my ;5 2mimy \ T

The first term in Eq. (11) is the correction to the kinetic energy and
the second one is the correction due to magnetic quanta exchange,
corresponding to the space component of the photon propagator in
the Coulomb gauge. If A = 0 then in the center of mass frame where
the eigenvalue of the operator P is equal to zero we have

ﬂB[A :0]‘P=O = HB =

AL 1 oy g (00

8 (m?-l_mg) (p) _2m1m2(r + r3)pp, (12)
The terms, containing the operator P in the Hamiltonian, determine
the contribution of recoil effect to the Compton scattering amplitude.
Within the precision of the present calculations these terms should be
taken into account only in the Hamiltonian H,, and can be ommited

in Hp (see below). The correction dgy to the ground state energy,
related to the Hamiltonian Hp reads

5 1 1 3
8o = (0] Hp0) = —¢* lglfl (m—? + —3) -t ] - (13)

my mymsy

Let us start the calculation of the Compton scattering amplitude
with the amplitude 7}, obtained with the use of the nonrelativistic
Hamiltonian Eq. (10). This amplitude can be represented as a sum
1, = Tyes +1's of resonance and seagull parts. The part 7,..; is deter-
mined by the second order of perturbation theory with respect to the
terms in H,,.[A], linear in the vector potential A. In the lab frame it
has the form



Tres - - <¢0| eXP[—i(kl - kQ)R] X

€ : € .
X € - lm—llpl exp(—tkory) + m—ZP2 eXP(—‘k2r2)] X

2

P
X [€O+W1 - m _Hnr]_l X

€ . € .
X €] - l—lpl exp(tkiry) + —2p2 exp(zklrg)] |1o) +
ma my
+ (61 — 6; , W] & —Wwy, kl — —kg) . (14)

Here to(r) = 7~ Y%(ug)*/?exp(—pgr) is the wave function of the
ground state, depending on the relative coordinate r. The final mo-
mentum of the bound system is equal to k; — ky. Using the relations
Eq. (8) and Eq. (9) and making a simple transformation in order to
cancel the exponents containing R, we obtain

» € m .m
Tres = — (Yolé; - lm—11<p + 57 k) exp(—igkor) -

€ .m € .m
X G(wy) € -p lm—ll exp(zﬁklr) — m—:; exp(—zﬁlklr) |10) +
+ (61 — 6;, Wy = —wa, kl — —kg) . (15)

Here G(w) = [g¢0 + w — w?/2M — H,,]7! is the nonrelativistic propa-
gator of the system in the operator form. The seagull amplitude 7 is
determined by first order of perturbation theory with respect to the
terms in H,,[A] which are quadratic in A. Similar to Eq. (15), we
obtain

2
Ts = — €1 - €5(t] L;—II exp(i%(kl —ko)r)+
2
+ ;_:;QXP(_i%(kl - kz)l‘)] |%o) - (16)
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Performing the expansion of Eq. (14) and Eq. (16) with respect to

ki and w; 2 up to quadratic terms and using the relation w; — wy =
(k; — k2)?/2M , we obtain

2
T, = —6163% + (17)

9 € ea \2 e +te € €
* 2 L2 1 251, 2 _
+€1€2W l2ug4 <m1 m2) + Mg2 (m% + mg)‘|

1 e? €2 3 €1 ey \?
— killed x ko] |— [ L+ + 2|+ <— — —) .
ler x Ka]lez x ko] l292 (m? mg) 2M g% \'m;  my

There is no need here to distinguish between w; and wy in the O(w?)
term. Therefore, we set wy = wy = w in Eq. (17). The result Eq. (17)
is in agreement with Eq. (2) and Eq. (5), with a, calculated in the
nonrelativistic approximation, since in our model

Dw:ﬂ<€_1_€_2)r’

my my

2 9 € €s \?
Qonr = §<¢0|Dan0Dnr|¢0> = <_1 - _2> )

2ug9t \my  my
Aa = 613L€2<¢0|elrf +eardli) = ei}? (% + ;—1’%) L (18)
(ol M[thyz) = 0, (o[ D[tig) = ;—2 (=- m—;;)Q ,
ol |t 4 8]y = 3 (4 ).

Here Gy is the reduced Green function in the operator form:
Go = [0 — Hyp +10] 71 (1 — |t0)(vo]) - (19)

The details of calculations of different matrix elements, containing the
operator (g are presented in Appendix A.

We pass now to the calculation of the relativistic corrections to
the electromagnetic polarizabilities, connected with the Breit Hamil-
tonian Hp Eq. (11). We perform the calculations in the same way
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as at the derivation of Eq. (14) and Eq. (16), but for the Hamilto-
nian H = f{nr + f{B. At the calculation of these corrections within
our accuracy the terms of the Hamiltonian f{B[A], quadratic in A do
not contribute to the electromagnetic polarizabilities, i.e. the seagull
contribution from Hp[A] is absent. In the corrections to the electro-
magnetic polarizabilities from the resonance part of the amplitude, we
can take the second order of expansion with respect to w of the op-
erator Green function and put k; 3 = 0 elsewhere. This means that
within our accuracy we can neglect in Hg[A] the terms containing
the total momentum P and replace the exponents in the photon wave
function by unity. Therefore, the terms in the Hamiltonian f{B[A],
linear in A, can be represented in the form —A(0)J g, where

JB=—(6—13—€—23) p;p—w<p+%(r-p)) (20)

2mymar
is the correction to the operator of the total internal current J :
J=J, +Jp=(er/m1—ex/ma)p+JIB. (21)

Let us now discuss the relativistic correction to the electric dipole
moment operator. In the lab frame it is equal to Dy, = €111 + egra.
For the total Hamiltonian of the system the following relation holds

i[f{m[A = 0]+ Hpl[A = 0], Dtot:| = (22)
2
P1 P1 gel r
—e— 1= — —(r- 1 2).
€1 - ( me) Sy <p1 + 2 (r Pl)) + (142

The r.h.s. of Eq. (22) is nothing but the operator of total current in
the lab frame, containing the total momentum P. This can be verified
by differentiating the Hamiltonian H,,.[A]+ Hp[A] over A at A = 0.
Therefore, there are no relativistic corrections to the total electric
dipole operator Dy,;. The internal electric dipole moment operator is
defined as

D =Dy — (61 + 62)Rcm ) (23)
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where R, is the center-of-mass vector. This vector is defind in such
a way that it satisfies the following relations:
P

[Rcm ) P] =1 3 Z.[litota Rcm] = ) (24)
Htot

where Hy,; is the total relativistic Hamiltonian of the system, and P
is the total momentum. Within our accuracy the second relation in
Eq. (24) reads:

il [A = 0] + Hy[A = 0], Rup] = % (1 - W) . (25)

It is known (see, e.g. , [27]) that there is a relativistic correction to Ry,
in classical electrodynamics. For the case of two particles, interacting
due to electromagnetic field, the corresponding operator which satisfies
the relations Eq. (24) has the form

1 2 2
R, =R+ — rl,&—i + r2’&_i _
2M 2my;  2r 2my  2r

2 2
Pi P2 g9
- <R, — 4+ —= _ = . 26
{ ’2m1+2m2 r}) (26)
Here we took into account the first relativistic correction and use the

notation {a, b} = ab+ba. In terms of the variables r and p (see Eq. (8)
and Eq. (9)) we obtain :

my

R., =R+ % <{r, H,) +gf) , (27)

where the term proportional to the total momentum P is omitted.
Substituting this expression into Eq. (23) we obtain the relativistic
correction to the internal electric dipole moment:

Dy=SEDE) (o ye ) e
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Note that, as should be the case, the operator of total internal current
J =J,, + Jp satisfies within our accuracy the relation

where D, is defined in Eq. (18), and H,,, + Hp is the internal part of
Hamiltonian (see Eq. (10) and Eq. (12)).

Let us write down now the corrections to the O(w?) term of Comp-
ton scattering amplitude, related to the Breit Hamiltonian and the
corresponding current. The correction due to Jg reads

t. = —w2<@b0|[e§-JB Gg €1-d,,+e5-J,, Gg €1-JB]|Yo)+ (€1 < €5) . (30)

The O(w?) correction to the amplitude, connected with the expansion
of the propagator with respect to Hpg, has the form

ty = —w* (ol €} - I [GEHBGE + GoHpGo + GoHpGiler - I |vo)+
+ (€1 > €3). (31)
The contribution due to the correction to wave function is
by = —w <¢0|[€2 J . Goer - J,,.GoHp + HpGoes - J,,.Goe - Jor]|0)+
+ (€1 > €3). (32)

At last, the contribution corresponding to the correction to the ground
state energy reads:

= 3(.0 5€0<¢0|62 Jano€1 nrth) + (61 4 6;) (33)

In order to calculate the matrix elements in Eq. (30)-Eq. (33) it is
convenient to use the following relations (see Appendix A):

r/r r [ r? bar ba
Gorg = —— <—+a) Yo, Gorrg=—— (—+— )lbo,
g \2 g\ 3 6

1 11a3

Goripg = —; ( +ar® — ) o, (34)
1/r 5ar3 5(121‘2 155a*

Gorvy = —= (— + + ) o,
g\ 4 6 2
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where @ = 1/pg. Using (34) and also the relation p = ip[H,,,, x] , we
get the following results for the contributions Eq. (30)-Eq. (33)

L 2uw’ter €5 (e €9 20 €1 €9 89 (e — €3)
T 92 g omg w2 T ) T T g |
1 2 1 2 AN D)
proler €5 e ex \2 1061 [ 1 1 25
=5 |7 —— Soo l st =t
g myp My 288 \'my = m; 3pmyme
2wl € (e e V2 (3 /(1 1 14
tw='u7212<—1——2> N+t =]t (35)
g mip My 4 \mj  my Ypmyme
o€ €5 [ € e2\2129 (5 (1 1 1
te:_’ui'.“<_l__2) T |l st —= |+ .
g m ms9 4 |8 \my my [y mg

Representing the sum of all contributions in Eq. (35) as w?€; - €5a, B
we obtain the following result for a, g :

1 /e ey \? /121 113
o+ (2 (1)
_late) <€_1_ 6_2) (= mz) (36)
M g? my Mo 2mimy

If one starts the calculation of a, from Eq. (2), then it is easy to check
that the first term in Eq. (36) corresponds to the sum of corrections
due to modification of wave function, propagator, and ground state
energy. The second term in Eq. (36) corresponds to the contribution
due to the relativistic correction to the electric dipole moment Eq. (28).
Therefore, this correction appears due to the correct description of the
center-of-mass motion. It is seen that the first term in Eq. (36) has the
same dependence on charges as «,,, while the second term is similar
to Aa, Eq. (18). Taking a sum of asp , @oyy, and Aca, we come to
the following result for & for the system under consideration:

po L(o Ay (i

¢ gt \my  my 29 6 4M
ate)|3fea ) (ate)
+ Mg? 2 m%-l_m% 2mimg | (37)

14



Thus, the relativistic corrections to «, has reduced to a renormaliza-
tion of a,,,, and essentially to a modification of Aa , Eq. (3). One can
expect that the last statement is valid not only for the system under
consideration. Indeed, due to the definition of D, the correction to &
related to the modification of R, is proportional to /M , where Q is
the total charge of the system, and, therefore, has the same structure
as Aa.

As a nontrivial test of our method of calculation we checked the
fulfilment of the low-energy theorem for the Compton scattering am-
plitude. At w = 0 this amplitude should have the form

«lerte 2 « €1t € 2
Tw=0) = —%z‘%z
*(€1+€2)2 €0

where g = M +¢&g is the mass of the system. It is interesting, that the
term in r.h.s. of Eq. (38), proportional to the nonrelativistic energy o,
appears as a contribution of terms from the Breit Hamiltonian Hp [A],
which we checked by explicit calculations (see Appendix B).

2.2 The system of a spin-0 particle and a spin-1/2
particle

Let the first particle have the spin 1/2 and the second particle have
the spin 0. Then we should add the term

61(1+Hl)s
my

6H, [A] = — - H (39)
to the nonrelativistic Hamiltonian H,,.[A], Eq. (7). Here H is the
external magnetic field, s; = o1/2 is the spin operator of the first
particle, and k; is its anomalous magnetic moment in units ey /2m;.
There is also some additional contribution § Hg[A] to Hg[A], Eq. (12)
(see, e.g. [26]). The terms of §Hg[A] linear in s; as well as Eq. (39) de-
termine the O(w) terms of the Compton amplitude. These terms are
well-known and follow, together with the w-independent term, from
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the low-energy theorem [28]. As it was explained in the previous sub-
section, it is sufficient within our accuracy to account for the Breit
Hamiltonian only in the long-wave limit, i.e. at w;y = 0 in order
to obtain the O(w?) terms of Compton amplitude. In this limit the
Hamiltonian §Hp[A] reads

_ 6162(1 + 2[11)

SHp[A] = 2m] <775(1') + :—351 (rx 7r1)> +
+ Msl (rx my). (40)

mymors

The explicit calculation shows that the contribution of 6 H,,[A] given
by Eq. (39) and the terms in Eq. (40) linear in o; do not lead to
any contributions to ¢; 3 in Eq. (6), i.e. they can be neglected in
the calculation of polarizabilities within our accuracy. In particular,
there are no terms linear in the spin in the quantities ¢ 3, which is in
agreement with the general conclusion on the absence of terms O (w?)
linear in spin in the non-Born part of the Compton amplitude [22].
The only term which should be taken into account in addition to those
considered in the previous subsection, is the spin-independent term in
Eq. (40) (Darwin term):

7g(1l+ 2r1)

5DHB =
2m?

o(r) . (41)
It follows from Eq. (40) that there is no correction to the current
associated with the Hamiltonian épHpg. Using the expressions (31-
33) with the replacement Hp — dpHp and the relations Eq. (34) we
obtain

5 2 L e* 2
Spte =0, 5th:_w<e_1_e_z) (14 2k1) , (42)

8mig? my; My
129uw?e; - € < €1 €9 )2
opt, =0, dpte=————"=|—— — ] (14 2K1).
Dy » oD 8mig? my Mo (1+261)

As a result, the correction to the electric polarizability associated with
the Breit Hamiltonian in the system of spin-0 and spin-1/2 will be the
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sum of a, g Eq. (36) and

2
Saryy = <€_1_ 6—2) (1+21) . (43)

2
2mig* \'my gy

2.3 The system of two spin-1/2 particles

In the case of two spin-1/2 particles it is necessary to account for two
Darvin terms in addition to the Breit Hamiltonian Eq. (12), corre-
sponding to both particles

7g(1+ 2kr1)
2m?

7g(1+ 2K3)

5DHB = 2m2
2

5(r) + 5(r) (44)

and the Hamiltonian, corresponding to spin-spin interaction [26]:

55HB =

4t ) 3] s S0,
r 3
(43)
with n = r/r. It is more convenient to rewrite §; Hg in terms of the
total spin operator S = s; + sg:

g+ k) (1 + ko) [3nianij <Z 2 )]
s Hp = ST—— P + 476(r) 3S 1), (46)

mym

where the operator ();;, quadratic in S, is equal to
2 2
Qij = SiS; + 55 — 35 dij - (47)

Note that in such a system as positronium it is necessary to add the
contribution of the annihilation diagram, which results in the replace-
ment (28%/3 — 1) — (7S%/6 — 1) in the coefficient of the é-function in
Eq. (46) (of course, in this case m; = my, € = —e€3). As in the pre-
vious subsection, the terms proportional to the d-function in Eq. (44)
and Eq. (46) give the contribution da,pg, which should be added to

Qo Eq. (36): )
3lp [ e €2)

daop=—= | —— — 48

coB <m1 2 . ( )



m% ms miyms

1+2m_|_ 1+§H2+4(1+”1)(1+m) <§S(S+1)—1)] )

Here we replaced S? by its eigenvalue S(S + 1), where S = 0,1 is the
total spin of the system. The term in Eq. (48) containing the tensor
operator 3(n-S)? — S% determines the contribution to the O(w?) part
of the Compton amplitude, which has the form

t(tensor) - W20‘T€Zi€;* <Ql]> ) (49)

where (- - ) denotes the averaging over the spin part of the wave func-
tion. Of course, t(;eps0,) vanishes if S = 0. Since there is no correction
to the current or to the energy of the ground state due to the tensor
part of 0, Hp, the contributions to oy come only from the corrections
to the propagator and to the wave function. Using Eq. (31), Eq. (32),
and the relations (see Appendix A)

3rirs — 128 (v a
GolBrry = by = —THIR (2 DY) (60
3rir; — 128 (Ta* Tar  r?
GolBrir, = rid i) =~ (? Tt Z) o
we obtain

arT =

AT+ R1) (1 + k2) <€_1 _ 6_2)2.

51
40M g2 my;  mey (51)

In the system of two spin-1/2 particles there is a big paramag-
netic contribution to the magnetic polarizability from the first term
in Eq. (5). The main contribution corresponds to the transition from
the ground state with the total spin S = 0 to the state with S = 1,
with both states having the same angular momenta, [ = 0, and radial
quantum numbers n, = 0 (hyperfine splitting). Representing the spin
part of the magnetic moment operator in the form

M= fisi+ fas2 , fi= M’

my
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and using Eq. (45), we obtain:

3(f1 = fa)?a® 1
a1 (52)
16 f1 f 1y
As was pointed out in the previous section, for positronium it is neces-
sary to change the coefficient of é-function in Eq. (46). As a result, the
contribution of the first term in Eq. (5) to the magnetic polarizability

of positronium is:

pr=

3
ﬂl = :t?G,S s (53)
where upper sign corresponds to parapositronium (S = 0), and lower
sign to orthopositronium (S = 1).
2.4 The system of two particles with arbitrary spins

Let the particles have the spins s; 3 and magnetic moments p; » which
we represent in the form

€a5q

a — ]. a) s :].’2 4
po= 2140, @ (54)

The electromagnetic current for each particle has the form (see, e.g.,
[29, 30])
; vy, G

jp = lb(Pl) Fe? + ﬁzuuqy ¢(p) ) (55)

where ¢ = p’ — p. The operator X, is a generalization of the corre-
sponding matrix for spin 1/2. The indices numerating the particles
have been omitted. The quantities £, and &,, depend on ¢* and
(s,q")*, where s, is the 4-vector of the spin operator. This quantities
are normalized as follows:

F.(¢=0)=1, Gnl¢g=0=1+k. (56)

If we neglect the ¢-dependence of the form factors, then, in addition to
the Breit Hamiltonian for two spin-0 particles, Eq. (11), it is necessary
to take into account the Hamiltonian Eq. (45) (with the corresponding
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spin operators) and two other contributions [29]. Namely, the Darwin
Hamiltonian

Splls = Y 228 (14 2 (50 + C)3(E) (57)

a=1,2 a

¢ = 0 for integer spin and ¢ = 1/4 otherwise, and the term containing
the quadrupole moments of the particles:

_ 9(1+ 2r4)&a 2 2
(SQHB —a§2w(3(n-sa) — 8 ), (58)
& =1/(2s — 1) for integer spin and & = 1/(2s) otherwise. It is clear
that all matrix elements can be calculated in the same way as in the
previous subsection. The averaging over the spin variables can be done
using the following relations

2
<SSZ| [SliSzj + S2i815 — §5i]‘5152] |S, S;) = A(S, 51, S2)<S Sz|Qij|Sa S;%

9
(S 5. [Slisu + s1i815 — g%‘Sf] S, 81) = B(S, 51, 52)(5 S:|Q;15, 57)

(59)
where S = sy + s, is the total spin operator, @;; is defined in Eq. (47),
and for S >1
A+ 201 + Ag) — 3(Ap — Ay)?
A(S = 60
(561, 82) 2A(4A — 3) (60)
3AZ 4+ A0 — 6X2 = 3) +3(A1 — A2) (M — Ay = 1)
B = .
(3)81)82) 2A(4A_3)
Here A = S(S+ 1), A2 = s12(s12+ 1) are the eigenvalues of the
operators S% and si2, respectively. For S =0, 1/2 we put A =B = 0.
As a result, we obtain the following generalization of Eq. (48) to the

case of arbitrary spins:

620 (e e\ |1+ 2K 14 2Ky
oo = i (G =) [ Q) o et G
2(1 1
+ ( + Hl)( +H2) (A— Al _ AQ):| . (61)
myms
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The generalization of Eq. (51) is

4 11201 1
ap = — 7,u2 <€_1 _ €_2> [ (L4 r){d+ m)A(S, 51, 52)+
40¢g my mo m1msy
1+ 2k 1+ 2k
m¥ 1£1B(S, Sla82) + m% 2£2B(Sa SQaSI) . (62)

Let us now take into account the ¢g-dependence of the electromagnetic
form factors of the constituents defined in Eq. (55). We assume, that
the scale of variation of these form factors are much larger than the
typical momentum transfer ~ pg. In other words, the characteristic
size of each constituent is much smaller than the size of the whole
system a = 1/pg. In this case it is sufficient, within our accuracy, to
take G, = 14 k and to expand the form factor £, up to quadratic in
q terms:
riq* | ri(s-q)?
6 2 '
375 are some constants. Multiplying the O(q?) terms in this ex-
pression by —47¢g/q? and performing the Fourier transform, we obtain
the additional terms in the Hamiltonian

F.(q%, (s“qﬁ)2) ~1-— (63)

where r

27 3(s, -n)? —s?
dsHp = Z l?‘q (rga - rfasg) O(r) + grfa—( 21‘)3 1. (64)
a=1,2

Since the terms in this Hamiltonian have the same structure as above,
it is easy to write down the result for the corresponding corrections to
polarizabilities:

621 [ €1 es \?
dpaop = —3g2 <m—1 - m—2> (7‘31 —rhd k- 7‘32/\2) ) (65)
471 [ ey €2 \? 2 2
drap = ~ 1047 <m—1 - m—2> [7‘513(5’ s1,52) + 15 B(S, 32,31)} :

If the parameters of the form factors 1‘375 ~ 1/m? < a?, then the
contributions Eq. (65) to the polarizabilities are of the same order

as a,p. The first relativistic correction to the Compton scattering
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amplitude at w = 0, Eq. (38), is proportional to £ = —ug*/2 and is
independent of the spins of the constituents. Then, the correction to
the amplitude at w = 0 connected with spin-dependent terms in Breit
Hamiltonian as well as the Darwin terms (also having the spin origin)
should vanish. This statement was checked explicitly (see Appendix
B).

Let us consider now the paramagnetic contribution to the magnetic
polarizability from the first term in Eq. (5). Let s; > sy. Then, the
total spin of the ground state is .S = s; — 53, and the main contribution
corresponds to the transition from the ground state to the state with
S = 81— 53+ 1, with both states having the same angular momentum,
[ = 0, and radial quantum namber n, = 0 (hyperfine splitting). A
simple explicit calculation leads to:

(i = f2)sa(s1 4+ D)a®
= Afifals1 —sa+1)2 (66)

This term should be added to the diamagnetic contribution [g, (see
Eq. (17)) =

1 (el € 3 e ep)\?
e (L) 2 (L2 (g7
Pai 2¢? (m? + m3 2M g2 <m1 m2> (67)

3 Conclusion

We have obtained the complete result for the first relativistic correc-
tions to the electromagnetic polarizabilities, including the tensor part
which exists for the total spin S > 1. We demonstrated that, within
our accuracy, this tensor part contains the quadrupole moment of the
system and no any higher multipoles. For the system of two spinless
particles it is easy to check that the total relativistic correction Eqgs.
(18) and (36) is negative at arbitrary masses and charges. In the gen-
eral case of non-zero spins and arbitrary anomalous magnetic moments
the relativistic correction Aa + aop + daop, where daop is given by
Eq. (61), can be positive. It is interesting to consider some special
cases. The first of them is a hydrogen-like ion. In this case e; = e,
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eg = —Ze, and my > my. In the limit my — oo the result for electric
polarizabilities is independent of the spin and magnetic moment of the
nucleus. Neglecting also the anomalous magnetic moment x; of the
electron, we obtain from Eq. (17), Eq. (18), Eq. (36), and Eq. (48)
9 14
a= - , (68)

2mial 2 3mPae, 4?

where a,, = ¢? = 1/137 is the fine-structure constant. Note that in
this limit the correction Aa , Eq. (3), vanishes. The result Eq. (68)
is in agreement with that obtained in [31] with the use of the reduced
Green function of the Dirac equation for an electron in a Coulomb
field. For the magnetic polarizability at s; = 0 we have

- 1

ﬂ - ﬂdia = —m- (69)

For sy = 1/2 in the limit my > m; there is a very big contribution
from the paramagnetic part of the magnetic polarizability, Eq. (52). In
the Compton scattering amplitude this contribution should be taken
into account only for photon energies w much smaller than the energy
Enp ~ ol m?}/my of the hyperfine splitting. For pug? > w > Ej,s the
paramagnetic contribution should be omitted.

Another interesting example is positronium. As we mentioned
above, in this case it is necessary to replace (28%/3—1) — (7S?/6—1)
in the coefficient of the d-function in Eq. (46) due to the contribution
of the annihilation diagram. Putting m; = mg = m, ¢ = —ey = ¢,
and k1 = k3 = 0, we obtain Aa = 0 and the complete result for the
polarizabilities

A {—1001 for 5 = 0

“= (moey)?  6mlac, 735 for S=1

_ 24 4

go= (-1)° (70)

Tmiad,  miae,

As in the previous case, for photon energy w > o m the paramag-
netic contribution should be omitted in the Compton scattering am-
plitude.
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For S = 1 (orthopositronium) we also have the tensor polarizability

47
20m3ae,

ar = (71)
Thus, we have shown that the complete set of the first relativistic
corrections differs essentially from the commonly used term A«a. We
suppose that for the electromagnetic polarizabilities of hadrons investi-
gated within the constituent quark model an analogous situation may

be found.

Acknowledgments

A.LLM. thanks the members of the Zweites Physikalisches Institut at
the University of Gottingen for the warm hospitality during his stay,
when a part of this work has been done. One of the authors (M.S.)
thanks Deutsche Forschungsgemeinschaft for the suport of this work
through the grants Schu222 and 436RUS113/510.

Appendix A

In this Appendix we derive the formulas for the result of the action
of the operator Gy, Eq. (19), on the wave function [t¢y), multiplied by
some polynomial of r. More precisely, we obtain the expression for
GoYip (x/r)r"1p) in the form of the product Y, (r/r)P(r)|),where
P(r) is some polynomial. Since the Hamiltonian H,, commutes with
the operator of angular momentum 1 = rXp, we can make the following
transformation:

GoYim (v/r)r" o) = Yiu (x/1) G (7" = G10(r™) o), (72)

where Ggl) = [50—H,(11r)+i0]_1, ol = —(2ur)T1O2r +1(1+ 1)/ (2ur?) —

g/r is the radial Hamiltonian with the angular momentum [, and

(1) = (ol o) = EED g (73)
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where @ = 1/pg. In the derivation of Eq. (72) we used the identity

(1 = [%0) (Pol) Yim (x/r)r"|th0) = Yim (x/7) (1" = 810(r")) |%0) -

For our purposes it is sufficient to consider the cases n > [ —1for [ # 0
and n > 1 for [l = 0. It is easy to check that in these cases one can

represent the result of action of G((]l) in r.h.s. of Eq. (72) in the form

GO0 = sio(r i) = 3 Cor o) (74)

k=0

where (', are some constants to be found. Acting on both sides of this
(1)

equation with the operator eg— Hy, and collecting the coefficients with
different powers of r, we obtain

rt — 510<r"> — _%COT—Q _ WCIT—I + (75)
(k=1 +2)(k+1+3
+ Z <( Q)L )Ck+2 —g(k+ 1)Ck+1> P
k=0

From this relation we can find the coefficients C';. For the case n > [—1,
[ # 0, we finally obtain

GoYim (x/r)r"|th) = (76)

(n—14+1) (n4+1+2) ’f (k—1)! (2r/a)*
g (2/a)™*1 (n+1)! (k=D (k+1+1)

For the case n > 1, l = 0 we have

—Yim (x/r)

[io)

k=l

n pontl r/a)k
Gor i) = -t 2 1((2/) Ck+2

_g(Q/a,)n+1 ~ k (k-l—l)! 9 )|lb0> (77)

Using the formulas Eq. (75) and Eq. (76) one can easily calculate all
matrix elements needed.
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Appendix B

In this Appendix we check the fulfilment of the low energy theorem.
Namely, we reproduce the two first terms of the expansion with respect
to g9/M of the Compton scattering amplitude at w = 0:

Tw=0)~—€ -ezw <1 - €—O> . (78)

In fact, the first term is contained in Eq. (17). In order to obtain
the second term, we have to take into account the corrections to the
current, seagull, wave function, propagator, and energy due to the
Breit Hamiltonian Hg[A]. The contribution to the amplitude at w = 0
due to Jp reads

Tc - _<¢0|[€§'JBG061'JTLT+
+€§'JHTG0€1'JB]|¢O>+(€1(—)6;). (79)

The contribution due to the correction to seagull (the terms in Hp[A]
being quadratic in A) reads

I, - <¢|{(;+m—) [<e1-p)<ez-p)+<e1-e;)§]+ (50)

2

[, sl

miyms r

The contribution connected with the expansion of propagator with
respect to Hg has the form

Tp = —<¢0|(6§ . Jnr GOHBGO €1 - Jnrth) + (61 < 6;) . (81)
The contribution due to the correction to wave function is

T, = - <¢0|[€§ “JrGoer - 3, Gol g + (82)
+ HpGoey - I, Goey - Iy, ]|1ho) + (€1 < €5) .
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At last, the contribution corresponding to the correction to the ground
state energy reads:

Te = 5€0<¢0|€§ . JnTG?JEl . Jnrth) + (61 4 6;) (83)

Using the results of Appendix A, we obtain the following expressions
for the corrections:

Tc:_e1-62g2’u2 <€_1_€_2> [5,u < 613_ €23>+4€1—€2]’
3 my mo my my my my

€1 - €5 €12 €92 8
15 = - 2g2ﬂl5ﬂ (171113+ 23)"‘ g ]a (84)

6 mo my mo

» 2

€€ 4 5/ €1 €2 1 1 ) 12 ]
1, =1 a2y
P 1 IF <m1 m2> [,u <m13+ mey3 +m1 my]’

” 2

€1 € € € 1 1 14

“Z%ﬁfﬁGL“%[%<3+ Q* ]
my mo my my my moy

* 2
€1 - € €1 €9 1 1 8
ro=-=3830 (G- ) e (s ) * )
my mo my my my My

Summing up these contributions, we get

«le1+ e 2
T = —€; .62%%]2’

(85)
which is the second term in Eq. (78). Let us consider now the contri-
bution to the Compton amplitude at w = 0, connected with the spin-
dependent terms and the Darwin terms in Breit Hamiltonian. Note
that all these terms are proportional to either é(r) or to the operator
(3n;n; — &;;)/r®. The terms x &(r) give the contributions to 1), and
T.. Using the results of Appendix A, it is easy to show that the sum of
these two contributions is zero. The terms o (3n;n; — 0;;)/r® give the
contributions to 77, and 7),. Again, direct calculations show that they
also cancel each other. Therefore, we proved, that the first relativistic
correction to the Compton amplitude at w = 0 is spin-independent,
which is in agreement with the low-energy theorem.
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