РОССИЙСКАЯ АКАДЕМИЯ НАУК Ордена Ленина Сибирское отделение

Н.С. Бучельникова, В.Э. Карлин

eh - СТРУКТУРЫ ПРИ ВЗАИМОДЕЙСТВИИ ХОЛОДНОГО ЭЛЕКТРОННОГО ПУЧКА С ПЛАЗМОЙ. II.

ИЯ
Ф 2005-14

НОВОСИБИРСК 2005

eh -структуры при взаимодействии холодного электронного пучка с плазмой. II.

*Н.С. Бучельникова, В.Э. Карлин*Институт ядерной физики им. Г.И.Будкера630090 Новосибирск СО РАН

Аннотация

Проведены численные эксперименты (метод частиц в ячейках) по исследованию неустойчивости холодного пучка электронов в плазме. Скорость пучка в разных случаях $V_o/V_T = 15.9$; плотность $n_b/n_o \sim 0.04 - 0.50$. $L/r_d = 200$. $M/m = 10^{10}$.

Показано, что при больших плотностях пучка $n_b/n_o \ge 0.30$ пучковая неустойчивость и захват электронов пучка и плазмы приводят к формированию eh-структур на фазовой плоскости ("electron holes"). При малых плотностях $n_b/n_o \le 0.10$ развитие пучковой неустойчивости сопровождается сателлитной, что приводит к сильной стохастической неустойчивости и к "размешиванию"электронов на фазовой плоскости, а при $n_b/n_o \le 0.04$, кроме того, к формированию волны БГК типа сгустков малой амплитуды.

Interaction of cold electron beam with plasma. Electron holes. I.

N.S. Buchelnikova, V.E. Karlin Budker Institute of Nuclear Physics 630090 Novosibirsk, SB RAS

Abstract

The instability of a cold electron beam in a plasma was studied in numerical experiments (PIC-method). The velocity of the beam $V_o/V_T = 15.9$; the density $n_b/n_o \sim 0.04 - 0.50$. $L/r_d = 200$. $M/m = 10^{10}$.

If the density of the beam is high $n_b/n_o \ge 0.30$, the beam-plasma instability and the trapping of the beam- and plasma-electrons lead to the formation of electron holes (eh-structures on the phase plane). If $n_b/n_o \le 0.10$ the beamplasma instability is followed by the sideband instability, which leads to the large scale stochasticity and to the "mixing" of the electrons on the phase plane, if $n_b/n_o \le 0.04$ it leads, besides, to the formation of the low-amplitude bunch-type BGK-wave.

В настоящей работе описаны численные эксперименты (метод частиц в ячейках) по исследованию неустойчивости холодного (монохроматического) пучка электронов в плазме. Работа является второй частью работы [1], в которой описаны случаи с малыми скоростями пучка $(V_o/V_T \sim 2.7; 4.5; 8.3)$ и большой плотностью $(n_b/n_o \sim 0.3 - 0.5)$. В настоящей работе описаны случаи со скоростью пучка $V_o/V_T = 15.9$ и разными плотностями пучка $(n_b/n_o \sim 0.04 - 0.5)$.

Ранее нами исследовалась неустойчивость холодного пучка большой скорости ($V_o/V_T \sim 15.9; 31.8$) с плотностями $n_b/n_o \sim 10^{-3} - 0.3$ в плазме с подвижными ионами [2-4]. Было показано, что при малых плотностях пучка развитие пучковой неустойчивости приводит к формированию квазистационарной волны БГК типа сгустков захваченных частиц [2,4]. При увеличении n_b/n_o в результате пучковой и сателлитной неустойчивости на фазовой плоскости формируется область стохастического движения электронов, но при $n_b/n_o \leq 0.02$ сохраняется и волна БГК малой амплитуды [2,3]. Кроме того, в плазме с подвижными ионами существенную роль играет модуляционная неустойчивость.

В работе [1] показано, что при малых скоростях и больших плотностях пучка $(n_b/n_o \sim 0.3 - 0.5)$ пучковая неустойчивость приводит к захвату не только электронов пучка, но и значительного числа электронов плазмы. В результате на фазовой плоскости формируются структуры типа так называемых electrone holes (будем называть их eh-структуры) (см., например [5,6] и ссылки [7-15] в работе [1]). Неустойчивость слияния ehструктур приводит к формированию квазистационарной одиночной ehструктуры, которая является волной БГК.

В настоящей работе показано, что и при большой скорости пучка неустойчивость пучка большой плотности приводит к формированию ehструктур. При уменьшении плотности пучка до $n_b/n_o \leq 0.1$ уменьшается число захваченных электронов плазмы и eh-структуры не формируются. При развитии пучковой и сателлитной неустойчивости, так же, как в плазме с подвижными ионами, на фазовой плоскости формируется область стохастического движения, а при $n_b/n_o \leq 0.04$ параллельно формируется волна БГК типа сгустков.

Численный эксперимент выполняется методом частиц в ячейках. Рассматривается одномерная система длиной $L/r_d = 200$ с периодическими граничными условиями. Для электронов и ионов плазмы задаётся максвелловское распределение с $T_e/T_i = 30$, обрезанное на скорости $V \sim \pm 2.8 V_T$ из-за ограниченности числа счетных частиц ($N^e \sim 2 \cdot 10^5$). Ионы неподвижные ($M/m = 10^{10}$).

Задается холодный монохроматический пучок со скоростью $V_o/V_T = 15.92$. Число электронов в пучке N^b , плотность пучка n_b/n_o и энергия электронов пучка W_b^o/W_e^o (W_e^o – тепловая энергия электронов плазмы) в случаях 7-10, рассмотренных в настоящей работе, приведены в таблице.

Случай	7	8	9	10
$N^b \cdot 10^3$	100	60	20	8
n_b/n_o	0.50	0.30	0.10	0.04
W_b^o/W_e^o	129.68	77.81	25.94	10.38

Начальные параметры. $V_o/V_T = 15.92$

Отметим, что в случае 10 при задании электронов пучка применяется метод "взвешивания", эквивалентный тому, что один электрон дробится на α частиц с массой m/α и зарядом e/α , но тем же e/m, что у электрона, так что движение этих частиц не отличается от движения электронов. В случае 10 число этих частиц $N^{b'} = 2.5N^b = 2 \cdot 10^4$. В остальных случаях $N^{b'} = N^b$. Отметим, что функции распределения по скорости строятся для "взвешенных"

В начальный момент времени задается затравочная ленг
мюровская волна с параметрами $\lambda^N/r_d=100,~N_e=L/\lambda^N=2;~V_{\Phi}^N/V_T=16.01;~E_o/\frac{mr_d}{eT_{ce}^2}=1$.

Отметим, что параметры пучка $(V_o/V_T, n_b/n_o)$ и затравочной волны $(\lambda^N/r_d, V_{\Phi}^N/V_T)$ в случаях 8,9,10 совпадают с параметрами случаев 1-7, 1-6, 1-4 из работы [3] соответственно. Различие заключается в том, что в работе [3] рассматривается плазма с подвижными ионами $(M/m = 10^2)$ в системе длиной $L/r_d = 100$, так что $N_e = 1$.

В начальный момент задается 100 пробных частиц (e = m = 0, e/m то же, что и у электрона) со скоростью $V_N^o/V_T = 2.71$. Пробные частицы равномерно распределены в интервале $x \sim 0 - L$. Выводится 18 траекторий пробных частиц на фазовой плоскости.

Подробности постановки и описания численного эксперимента приведены в работе [2].

Отметим, что в тексте и на рисунках напряженность поля Е и амплитуда гармоник E^N нормируется на mr_d/eT_{ce}^2 .

Рассмотрим случай 7 с $n_b/n_o = 0.50$, случай 8 с $n_b/n_o = 0.30$, случай 9 с $n_b/n_o = 0.10$, случай 10 с $n_b/n_o = 0.04$. Во всех случаях $V_o/V_T = 15.92$.

Для каждого случая приведен тот же набор кривых, что и в работе [1]. Кривые, описывающие случай 7, приведены на Рис.1-7, случай 8 – на Рис.8-13, случай 9 – на Рис.14-20, случай 10 – на Рис.21-27.

Во всех случаях 7-10 начальная стадия определяется пучковой неустойчивостью, которая приводит к возбуждению основной ленгмюровской волны – гармоники с номером $N = N_e$ (Рис.2,3,9,10,15,16,22,23). Возбуждается и гармоника $N = 2N_e$.

Почти одновременно с захватом электронов пучка начинается захват основной волной электронов плазмы. Это приводит к затуханию электрического поля и росту энергии ΔW_e (Рис.1,8,14,21). Кривые W(t) проходят через максимум и после небольших колебаний становятся практически постоянными. Проходит через максимум и амплитуда основной волны.

В таблице 1 приведены t_{\max}^N , E_{\max}^N – время достижения максимума кривой $E^N(t)$ и максимальная амплитуда основной волны $N_e = 2$ и гармоники $N = 2N_e = 4$; максимальные значения ΔW_b , W_E , ΔW_e ($\Delta W_b = -(W_b - W_b^o)$; $\Delta W_e = W_e - W_e^o)$ в первом максимуме кривых W(t), а также $V_{3\max}^N/V_T$ ($V_3 = 2\sqrt{\frac{e\phi}{m}}$), $T_B = \frac{2\pi}{k\sqrt{e\phi/m}} = 2\lambda/V_3$ и плотность энергии $E_{\max}^2/8\pi n_o T$ для волны N = 2.

<u>В случаях 7,8</u> дальнейшее развитие неустойчивости подобно случаям $1 \div 6$ [1]. Действительно, по фазовым плоскостям электронов (Рис.4,11) видно, что захват электронов пучка и плазмы за $t/T_{oe} \sim 10$ приводит к формированию еh-структур. eh-структурам соответствует характерное распределение поля E(x) и впадина плотности в распределении $\tilde{n}_b(x)$, минимум которой соответствует фазе E(x) = 0. Это четко видно в случае 7 (Рис.5).

Случай	7	8	9	10
n_b/n_o	0.50	0.30	0.10	0.04
W_b^o/W_e^o	129.68	77.81	25.94	10.38
$t_{\rm max}^{(2)}/T_{oe}$	4.7	4.2	4.8	5.3
$E_{max}^{(2)}$	175.3	127.4	105.7	73.8
$V_{ m 3max}^{(2)}/V_T$	16.81	14.33	13.05	10.91
$T_B^{(2)}/T_{oe}$	1.9	2.2	2.4	2.9
$(E_{\rm max}^{(2)})^2/8\pi n_o T$	9.81	5.18	3.56	1.74
$t_{\rm max}^{(4)}/T_{oe}$	3.0	3.2	4.0	6.4
$E_{\max}^{(4)}$	181.5	160.0	90.3	48.5
$\Delta W_b/W_e^o$	94.07	54.06	14.77	5.07
W_E/W_e^o	21.04	14.93	5.85	2.17
$\Delta W_e/W_e^o$	89.37	51.05	9.10	2.90
$\Delta W_b/W_b^o$	0.73	0.69	0.57	0.49
W_E/W_b^o	0.16	0.19	0.23	0.21
$\Delta W_e/W_b^o$	0.69	0.66	0.36	0.28

Таблица 1. Амплитуда основной волны и энергии $\Delta W_b, W_E, \Delta W_e$ в первом максимуме кривой $E^N(t)$ или W(t). Случаи 7-10. $V_o/V_T = 15.92; N_e = 2.$

 W_b^o, W_e^o - начальная энергия электронов пучка и тепловая энергия электронов плазмы; N_e - номер гармоники основной волны; E_{\max}^N - максимальная амплитуда основной волны N=2и гармоники N=4в $t=t_{\max}^N; E$ - нормировано на $\frac{mr_d}{eT_{oe}^2}, \ V_3=2\sqrt{\frac{e\phi}{m}}; \ T_B=\frac{2\pi}{k\sqrt{e\phi/m}}=2\lambda/V_3$ - период оборота захваченных электронов; $\Delta W_b=-(W_b-W_b^o)$ - потери энергии электронов пучка; W_E - энергия электрического поля; $\Delta W_e=W_e-W_e^o$ - энергия электронов плазмы.

Образованию еh-структур соответствует характерный плоский или слегка пологий участок на кривых $E^{N}(t)$ основной волны (Рис.3,10). В работе [1] показано, что резкое уменьшение $E^{N}(t)$ соответствует развитию неустойчивости слияния eh- структур. Действительно, по $E^{N}(t)$ (Рис.3,10) и фазовым плоскостям (Рис.4а,11а) видно, что в случаях 7,8 неустойчивость слияния начинает развиваться в $t/T_{oe} \ge 60$, а к $t/T_{oe} \ge 80$ формируется одиночная eh-структура. В $t/T_{oe} \sim 100 - 200$ эта структура практически не меняется. Соответственно остается постоянным распределение E(x) (Рис.5) и средняя амплитуда основной волны (Рис.3,10). В таблице 2 приведены значения максимальной амплитуды E_m распределения E(x) (выбрана фаза с максимальной амплитудой в $t/T_{oe} \sim 200-205),$ средняя и максимальная амплитуда $E_{\rm cp}^N, E_{mx}^N$ основной волны N=2и гармоники $N=2N_e=4$ в $t/T_{oe} \sim 150-200,$ а также энергии $\Delta W_b, W_E,$ ΔW_e в $t/T_{oe}=200.$

Случай	7	8	9	10
n_b/n_o	0.50	0.30	0.10	0.04
W_b^o/W_e^o	129.68	77.81	25.94	10.38
E_m	85.3	31.4	44.2	68.8
$E_{\rm cp}^{(2)}$	28	18	14	34
$E_{mx}^{(2)}$	44	25	16	36
$E_{\rm cp}^{(4)}$	10	3	12	29
$E_{mx}^{(4)}$	15	4	15	31
$\Delta W_b/W_e^o$	64.13	38.94	10.76	2.64
$W_E/W_e^o \cdot 10^{-2}$	56.85	14.02	18.35	67.81
$\Delta W_e/W_e^o$	64.06	39.00	10.61	1.96
$\Delta W_b/W_b^o$	0.49	0.50	0.41	0.25
$W_E/W_b^o \cdot 10^{-2}$	0.44	0.18	0.71	6.54
$\Delta W_e/W_b^o$	0.49	0.50	0.41	0.19

Таблица 2. E_m, E_{cp}^N и энергии $\Delta W_b, W_E, \Delta W_e$ в $t/T_{oe} = 200$. $V_o/V_T = 15.92$

 E_m - максимальное значение распределения поля E(x) в $t/T_{oe} \sim 200-205.$ $E_{\rm cp,mx}^{(2)}, E_{\rm cp,mx}^{(4)}, E_{\rm cp,mx}^{(4)}$ - средняя и максимальная амплитуда основной волны N=2 и гармоники N=4 в $t/T_{oe} \sim 150-200; \, W_b^o, \, \Delta W_b, \, W_E, \, \Delta W_e$ - см. пояснения к табл.1.

Вид функций распределения по скорости в $t/T_{oe} = 200$ в случаях 7,8 (Рис.6,13) имеет такой же характер, как в случаях 5,6 [1]. Действительно, по кривым $f(V)/f_{omax}$ в логарифмическом масштабе видно, что на $f_e(V)$ и $f_b(V)$ образуется почти плоский участок, причем $f_e(V)$ и $f_b(V)$ в пределах этого участка и области спада в случае 7 практически совпадают, а в случае 8 различаются незначительно.

В таблицах 3,4 приведены некоторые цифры, характеризующие $f_e(V)$ и $f_b(V)$. В таблице 3 приведены максимальные и минимальные скорости электронов пучка и плазмы в $t/T_{oe} = 200$. В таблице 4 приведены максимальные значения $f_e(V)$ и $f_b(V)$, в t = 0 и $t/T_{oe} = 200$, а также оценки V_p -границ плоского участка и оценки среднего отношения $(f_e(V)/f_b(V))_p$ в пределах этого участка.

Случай	7	8	9	10
n_b/n_o	0.50	0.30	0.10	0.04
$V_{\rm max}^b/V_T$	39.31	36.07	29.56	27.18
V_{\min}^b/V_T	-6.59	-2.30	-1.22	-0.39
$V_{\rm max}^e/V_T$	36.71	33.37	29.81	23.34
V_{\min}^e/V_T	-20.86	-22.13	-3.96	-4.67

Таблица 3. Максимальные и минимальные скорости электронов пучка и плазмы в $t/T_{oe} = 200. V_o/V_T = 15.92$

 $V^b_{\rm max}, V^b_{\rm min}$ - максимальная и минимальная скорость электронов пучка; $V^e_{\rm max}, V^e_{\rm min}$ - максимальная и минимальная скорость электронов плазмы.

Таблица 4. Обработка функции распределения по скорости электронов пучка и плазмы. $t/T_{oe} = 200$.

Случай	7	8	9	10
n_b/n_o	0.50	0.30	0.10	0.04
$f_{bo\max} \cdot 10^4$	10	6	2	2(0.8)
$f_{e \max}/f_{o \max}$	0.43	0.73	0.88	0.75
$f_{b\max}/f_{o\max}$	0.11	0.11	0.03	0.01(0.005)
$f_{e\mathrm{max}}/f_{b\mathrm{max}}$	3.91	6.31	26.9	55.1(137.7)
V_{Φ}/V_T	21.2	26.0	—	—
V_p/V_T	4 - 28	4 - 27	4 - 19	4 - 22
$(f_e/f_b)_p$	1 - 1.1	1 - 1.5	0.8 - 1.1	$0.06 - 0.08 \ (0.15 - 0.20)$

 $V_o/V_T = 15.92; f_{o\max} = 3.78 \cdot 10^4.$

 $f_{o\,\max}, f_{bo\,\max}$ - максимум начальных функций распределения электронов плазмы и пучка, в случаях 7-9 $f_{bo\,\max} = N^b$, в случае 10 $f_{bo\,\max} = N^{b'} = 2.5N^b$, в скобках в случае 10 приведены цифры для электронов с $f_{b_{\mathcal{P}\mathcal{A}}} = f_b/2.5$; $f_{e\,\max}$, $f_{b\,\max}$ - максимум функций распределения электронов плазмы и пучка в $t/T_{oe} = 200$; V_p -границы плоского участка $f_b(V)$, $f_e(V)$ (приближенно), $(f_e)_p$, $(f_b)_p$ - функции распределения на плоском участке (пределы изменения, приближенно).

На Рис.7 показаны типичные траектории электронов (пробных частиц с $V_N^o/V_T = 2.71; 0 \le x_N^o/r_d < 200$) на фазовой плоскости для случая 7. В работе [1] показано, что регулярные колебания траектории V(x,t) соответствуют движению захваченной частицы, а средняя скорость соответствует фазовой скорости. Действительно, по фазовым плоскостям

в случае 7 видно, что частицы с траекториями типа Рис 7а постоянно находятся в пределах eh-структуры и совершают обороты вокруг центральной "дырки".

Анализ траекторий показывает, что некоторые частицы все время остаются захваченными (Рис.7а), некоторые выходят из захвата во время неустойчивости слияния, а затем снова захватываются (Рис.7b). Часть частиц движется стохастически – они то захватываются, то выходят из захвата (Рис.7с,d).

По траекториям захваченных частиц (Рис.7а,b,с) видно, что средняя скорость, соответствующая фазовой скорости еh-структуры, возрастает при формировании одиночной eh-структуры, Фазовая скорость одиночной eh-структуры, определенная, как среднее по нескольким траекториям захваченных частиц, в случае 7 - $V_{\rm th}/V_T = 20.3$.

Фазовая скорость определялась также по сдвигу фазы распределения E(x) = 0 в $t \sim 200 - 205$ с $\Delta t/T_{oe} = 0.5$. Для случая 7 найдено, что $V_{\Phi}/V_T = 21.2$. Кроме того, средняя фазовая скорость определялась по сдвигу фазы в интервале $t/T_{oe} \sim 100 - 200$ с $\Delta t/T_{oe} = 20$. Для случая 7 найдено $V_{\Phi}/V_T = 21.5$, для случая 8 – $V_{\Phi}/V_T = 26.0$.

Таким образом, в случае 7 результаты определения фазовой скорости одиночной eh-структуры разными способами находятся в хорошем согласии. В случае 8 V_ф определялась только одним способом.

При уменьшении плотности пучка характер развития меняется. Это проявляется уже в случае 8. По фазовым плоскостям Рис.11 в этом случае видно, что развитие неустойчивости, так же, как в случае 7, приводит к формированию одиночной еh-структуры. Однако, распределение E(x), $\tilde{n}_b(x)$ (Рис.12) в случае 8 отличается от характерного для eh-структуры (Рис.5). Отличается от него и E(x), $\tilde{n}_b(x)$ в случаях 9,10 (Рис.18,25).

<u>В случаях 9,10</u> развитие фазовой плоскости также отличается от случаев 7,8. Действительно, по фазовым плоскостям в этих случаях (Рис.17, 24) и распределению E(x), $\tilde{n}_b(x)$ (Рис.18,25) видно, что развитие захвата электронов пучка и плазмы не приводит к формированию eh-структур. Уже к $t/T_{oe} \sim 20 - 40$ происходит "размешивание"электронов на фазовой плоскости, что приводит к практически равномерному заполнению электронами некоторой области фазовой плоскости. Это подтверждает вид функций распределения. Действительно, по кривым $f(V)/f_{o\,max}$ в логарифмическом масштабе в случаях 9,10 (Рис.19,26) четко видно плато $f_b(V)$, $f_e(V)$, соответствующее области "размешивания".

По функциям распределения $f(V)/f_{o\max}$ видно, что в случае 9 в районе плато и спада $f_e(V) \sim f_b(V)$ (Рис.19, таблица 4). В случае 10 $f_e(V)$ много меньше, чем $f_b(V)$ (Рис.26, таблица 4), т.е. в этом случае образуется "хвост" ускоренных электронов.

По фазовым плоскостям (Рис.17,24) видно, что захват электронов плазмы начинается в случае 9 в $t/T_{oe} > 4$, в случае 10 – в $t/T_{oe} > 12$. При этом в случае 10 захватывается небольшое число электронов. В результате в случае 10 захват и ускорение электронов плазмы не приводит к сильному затуханию, так что кривые W(t) в случае 10 (Рис.21) отличаются от случае 7-9 (Рис.1,8,14).

Зависимость $E^N(t)$ в случаях 9,10 (Рис.15,16,22,23) отличается от случаев 7,8 (Рис.2,3,9,10). Действительно, в случаях 9,10 на кривых $E^N(t)$ основной волны N = 2 нет плоского участка, соответствующего образованию еh-структур. После затухания в $t/T_{oe} > 20 - 25$ амплитуда основной волны и гармоники N = 4 (вторая гармоника основной волны) становится практически постоянной или медленно падает. При этом амплитуда гармоники N = 4 все время сравнима с амплитудой основной волны (Рис.15,22, таблица 2). При уменьшении плотности пучка и уменьшении затухания в случаях 9,10 эти амплитуды возрастают (таблица 2).

В работах [2,3] исследовалось развитие неустойчивости пучка со скоростью $V_o/V_T = 15.92$, такой же, как в настоящей работе, в широком диапазоне плотностей $n_b/n_o \sim 5 \cdot 10^{-3} \div 0.3$ в плазме с подвижными ионами $(M/m = 10^2)$ в системе длиной $L/r_d = 100$. Было показано, что при малых плотностях пучка $n_b/n_o \leq 5 \cdot 10^{-3}$ развитие пучковой неустойчивости приводит к формированию волны БГК типа сгустков захваченных электронов. В такой волне плотность захваченных электронов максимальна в центре области захвата (в фазе E(x) = 0) в отличие от еh-структур.

При увеличении плотности пучка и амплитуды основной волны следом за пучковой развивается сателлитная неустойчивость, которая приводит к возбуждению второй и более высоких гармоник основной волны. В результате на фазовой плоскости в районе областей захвата основной волны и гармоник формируется область стохастического движения электронов. При небольших плотностях пучка сохраняется и основная волна БГК. Амплитуда этой волны остается постоянной или медленно падает [2].

При увеличении плотности пучка существенную роль начинает играть модуляционная неустойчивость. Отметим, что модуляционная неустойчивость возможна только в плазме с подвижными ионами, а сателлитная – должна наблюдаться и в плазме с неподвижными ионами. Параметры пучка в случаях 8,9,10 совпадают со случаями 1-7, 1-6, 1-4 в работе [3]. Можно ожидать, что развитие пучковой и сателлитной неустойчивости в соответствующих случаях будет одинаковым до тех пор пока не проявится модуляционная неустойчивость. Согласно работе [3] модуляционная неустойчивость в случаях 1-4, 1-6 становится существенной в $t_1/T_{oe} > 20$, в случае 1-7 – в $t_1/T_{oe} > 15$. Сравнение случаев 8,9,10 с соответствующими случаями 1-7, 1-6, 1-4 показывает, что в $t \sim 0 - t_1$ кривые W(t), $E^N(t)$, значения E_{max}^N основной волны и ее второй гармоники, значения W_{max} (таблица 1) практически совпадают. Это позволяет сделать вывод, что и в случаях 8,9,10 развивается сателлитная неустойчивость, а гармоника N = 4 является гармоникой-сателлитом.

Развитие фазовых плоскостей в случаях 8,9,10 также согласуется со случаями 1-7, 1-6, 1-4. Действительно, в случаях 9,10 и 1-6, 1-4 к $t/T_{oe} \sim 20-40$ происходит "размешивание"электронов на фазовой плоскости, а в случаях 8 и 1-7 наблюдается формирование еh-структуры ([3] Рис.30). В работе [3] показано, что "размешивание"электронов происходит в результате сильной стохастической неустойчивости движения электронов в районе областей захвата основной волны и гармоник и формирования области стохастического движения.

Характер траекторий электронов (пробных частиц с $V_N^o/V_T = 2.71$, 0 $\leq x/r_d < 200$) на фазовой плоскости в случаях 9,10 подтверждает вывод о сильной стохастической неустойчивости движения электронов. Действительно, по Рис.20,27 видно, что траектории в случаях 9,10 существенно отличаются от случая 7 (Рис.7) и имеют стохастический характер. При этом частица странствует по областям захвата основной волны и гармоник в пределах $V/V_T \sim 2 - 19$ в случае 9 и $V/V_T \sim 0, 5 - 23$ в случае 10 (стохастические траектории более подробно рассмотрены в работах [2,3]). Некоторые частицы иногда захватываются на некоторое время какой-нибудь гармоникой, чаще всего основной волной N = 2с $V_{\Phi}/V_T \sim 16$ (например Рис 20d, Рис.27b,d) или гармоникой N = 4с $V_{\Phi}/V_T \sim 8$ (например Рис.20с, Рис.27а,с), но потом снова начинают странствовать.

По кривым $E^{N}(t)$ в случаях 9,10 (Рис.15,22) видно, что амплитуда основной волны N = 2 и гармоники N = 4 довольно велика и почти постоянна во времени. Это показывает, что эти гармоники имеют характер волн БГК. В случае 10 с $n_b/n_o = 0.04$ подобно случаям 1-2 и 1-3 с $n_b/n_o = 0.01$ и 0.02 [2], параллельно со стохастической областью формируется волно БГК типа сгустков. На это указывает вид распределения E(x), $\tilde{n}_b(x)$ (Рис.25). Действительно, в этом случае в распределении $\tilde{n}_b(x)$ выделена гармоника N = 2 и фазе E(x) = 0 соответствует максимум плотности захваченных частиц $\tilde{n}_b(x)$. Гармоника N = 4 в случае 10 и N = 2 и 4 в случае 9 имеют характер волн БГК, которые поддерживаются движением стохастических частиц. Возможность существования таких волн рассматривалась в работе [7].

Результаты настоящей работы согласуются с результатами работ [5,6], в которых описаны численные эксперименты по исследованию неустойчивости электронного пучка в плазме. Начальные параметры пучка в случае "b"из работы [5] $V_o/V_T = 20$; $R = n_b/(n_e + n_b) = 0.3$; $n_b/n_o = 0.43$ близки к случаям 7 и 8 с $V_o/V_T = 15.9$; $n_b/n_o = 0.5$ и 0.3. Сравнение фазовых плоскостей в случае "b"([5] Рис.3) и в случаях 7,8 (Рис.4,11) показывает, что в случае "b", так же, как в случаях 7 и 8, образуются еh-структуры с большой фазовой скоростью.

Начальные параметры пучка в случае 4 из работы [6] $V_o/V_T = 20$; R = 0.05; $n_b/n_o = 0.053$ близки к случаю 10 с $V_o/V_T = 15.9$; $n_b/n_o = 0.04$. Сравнение фазовых плоскостей в случае 4 ([6] Рис.5) и в случае 10 (Рис.24) показывает, что в обоих случаях происходит "размешивание"электронов на фазовой плоскости, а еh-структуры не образуются.

Список литературы

- H.C. Бучельникова, В.Э. Карлин. Препринт ИЯФ 2005-13, Новосибирск, 2005.
- [2] Г.А. Артин, Н.С. Бучельникова. Препринты ИЯФ 98-36, 98-37 Новосибирск, 1998.
- [3] Г.А. Артин, Н.С. Бучельникова. Препринт ИЯФ 98-38, Новосибирск, 1998.
- [4] Н.С. Бучельникова, В.Э. Карлин. Препринт ИЯФ 2002-5, 2002-6, Новосибирск, 2002.
- [5] Y. Omura, H. Kojima , H. Matsumoto. Geophys. Res. Lett., <u>21</u>, 2923, 1994.
- [6] Y. Omura, H. Matsumoto, T. Miyake, H. Kojima . J. Geophys. Res., <u>101</u>, NA2, 2685, 1996.
- [7] Н.С. Бучельникова, В.Э. Карлин. Препринт ИЯФ 2004-44, Новосибирск, 2004.

Рис. 1: Зависимость от времени энергии электрического поля W_E , энергии электронов плазмы $\triangle W_e = W_e - W_e^o$ и потерь энергии электронов пучка $\triangle W_b = -(W_b - W_b^o)$. Случай 7.

Рис. 2: Зависимость от времени амплитуды гармоник $N_e = 1 \div 10.$ Случай 7.

Рис. 3: Зависимость от времени амплитуды основной волны N=2 и гармоник. Случай 7.

Рис. 4: Фазовые плоскости электронов пучка и плазмы. Случай 7. $V_o/V_T=15.92.$

Рис. 4
а: Фазовые плоскости электронов пучка и плазмы. Случай 7.
 $V_o/V_T=15.92.$

Рис. 5: Распределение поля E(x) и возмущения плотности электронов пучка $\tilde{n}_b(x)$. $E_m=110.07,\,\tilde{n}_{bm}/n_b^o=0.29;\,n_b^o/n_o=0.50.$ Случай 7.

Рис. 6: Функции распределения по скоростям электронов плазмы и пучка. Пунктир – начальная функция распределения. Случай 7. $V_o/V_T = 15.92.$

Рис. 7: Траектории электронов плазмы на фазовой плоскости. $V_N^o/V_T=2.71.~t/T_{oe}\sim 0-200.$ Случай 7.

Рис. 8: Зависимость от времени энергии электрического поля W_E , энергии электронов плазмы $\Delta W_e = W_e - W_e^o$ и потерь энергии электронов пучка $\Delta W_b = -(W_b - W_b^o)$. Случай 8.

Рис. 9: Зависимость от времени амплитуды гармоник $N_e = 1 \div 10.$ Случай 8.

Рис. 10: Зависимость от времени амплитуды основной волн
ы $N{=}2$ и гармоник. Случай 8.

Рис. 11: Фазовые плоскости электронов пучка и плазмы. Случай 8. $V_o/V_T = 15.92.$

Рис. 11а: Фазовые плоскости электронов пучка и плазмы. Случай 8. $V_o/V_T = 15.92.$

Рис. 12: Распределение поля E(x) и возмущения плотности электронов пучка $\tilde{n}_b(x)$. $E_m = 36.55, \, \tilde{n}_{bm}/n_b^o = 0.19; \, n_b^o/n_o = 0.30.$ Случай 8.

Рис. 13: Функции распределения по скоростям электронов плазмы и пучка. Пунктир – начальная функция распределения. Случай 8. $V_o/V_T = 15.92$.

Рис. 14: Зависимость от времени энергии электрического поля W_E , энергии электронов плазмы $\triangle W_e = W_e - W_e^o$ и потерь энергии электронов пучка $\triangle W_b = -(W_b - W_b^o)$. Случай 9.

Рис. 15: Зависимость от времени амплитуды гармоник $N_e=1\div 10.$ Случай 9. 28

Рис. 16: Зависимость от времени амплитуды основной волн
ы $N{=}2$ и гармоник. Случай 9.

Рис. 17: Фазовые плоскости электронов пучка и плазмы. Случай 9. $V_o/V_T = 15.92.$

Рис. 18: Распределение поля E(x)и возмущения плотности электронов пучка $\tilde{n}_b(x).~E_m=43.98,~\tilde{n}_{bm}/n_b^o=0.32;~n_b^o/n_o=0.10.$ Случай 9.

Рис. 19: Функции распределения по скоростям электронов плазмы и пучка. Пунктир – начальная функция распределения. Случай 9. $V_o/V_T = 15.92.$

Рис. 20: Траектории электронов плазмы на фазовой плоскости. $V_N^o/V_T=2.71.~t/T_{oe}\sim 0-200.$ Случай 9.

Рис. 21: Зависимость от времени энергии электрического поля W_E , энергии электронов плазмы $\triangle W_e = W_e - W_e^o$ и потерь энергии электронов пучка $\triangle W_b = -(W_b - W_b^o)$. Случай 10.

Рис. 22: Зависимость от времени амплитуды гармоник $N_e=1\div 10.$ Случай 10.

Рис. 23: Зависимость от времени амплитуды основной волн
ы $N{=}2$ и гармоник. Случай 10.

Рис. 24: Фазовые плоскости электронов пучка и плазмы. Случай 10. $V_o/V_T=15.92.$

Рис. 25: Распределение поля E(x)и возмущения плотности электронов пучка $\tilde{n}_b(x).~E_m=71.93,~\tilde{n}_{bm}/n_b^o=1.32;~n_b^o/n_o=0.04.$ Случай 10.

Рис. 26: Функции распределения по скоростям электронов плазмы и пучка. Пунктир – начальная функция распределения. Случай 10. $V_o/V_T = 15.92.$

Рис. 27: Траектории электронов плазмы на фазовой плоскости. $V_N^o/V_T=2.71.\ t/T_{oe}\sim 0-200.$ Случай 10.

Н.С. Бучельникова, В.Э. Карлин

eh -структуры при взаимодействии холодного электронного пучка с плазмой. II.

N.S. Buchelnikova, V.E. Carlin

Interaction of cold electron beam with plasma. Electron holes. II.

ИЯФ 2005-14

Ответственный за выпуск А.М. Кудрявцев Работа поступила 13.04.2005 г. Сдано в набор 18.04.2005 г. Подписано в печать 20.04.2005 г. Формат бумаги 60×90 1/16 Объем 2.5 печ.л., 2.0 уч.-изд.л. Тираж 115 экз. Бесплатно. Заказ № 14 Обработано на IBM РС и отпечатано на ротапринте ИЯФ им. Г.И. Будкера СО РАН Новосибирск, 630090, пр. академика Лаврентьева, 11.