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Abstract. Breaking of a plasma wave driven by a long beam of charged particles
results in electron jets escaping from the plasma column and forming an electron
halo. For plasma densities less than or of the order of the beam density, this
process is well described by a semi-analytical model, which agrees with simulations
and allows to calculate the position of wavebreaking points and determine the
regions around the plasma column occupied by the halo.
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1. Introduction

Proton-driven plasma wakefield acceleration (proton-
driven PWFA) is an actively developing novel method
of accelerating light charged particles [1–3]. Recently,
the AWAKE project at CERN [4–6] demonstrated the
seeded self-modulation (SSM) of a 400 GeV proton
beam [7, 8] and acceleration of 19 MeV electrons to
2 GeV in a 10 m plasma [9]. The plasma in the
experiment is created by a short laser pulse, which co-
propagates with the proton beam and single ionizes
the rubidium vapor in a long gas cell (figure 1(a)).
The gas cell has an important technical feature [10]:
its ends are open and attached to the expansion
volumes, so the gas can flow freely from the main
vacuum chamber to the outside though the inlet
and outlet orifices. Rubidium sources vaporize the
liquid metal and provide a constant vapor density
almost throughout the cell. This design minimizes the
transition region from vacuum to the nominal density
of the rubidium vapor near the both orifices in the
plasma cell. However, plasma density ramps are still
present and may cause issues related to the injection
of the accelerated electron beam.

The proton beam generates a significant defocus-
ing wakefield in a plasma of varying density, which de-
stroy the electron beam injected along the axis [11,12].
For this reason, it was decided to inject the acceler-
ated beam into the plasma at a small angle [4]. Ac-
cording to simulations [12–14] confirmed by measure-
ments [15,16], the interaction of the proton beam with
a radially bounded plasma also leads to the ejection of
plasma electrons out of the plasma boundary. The elec-
trons gain a substantial radial momentum, taking en-
ergy from the breaking plasma wave, and escape from
the plasma. This effect is closely related to the phase
mixing and trajectory crossing in a cold plasma with a
radial density gradient [17–20]. The electron jets cause
charge separation and create a radial electric field Er
and an azimuthal magnetic field Bφ around the plasma.
The radial force Fr = −e(Er − Bφ), where e is the el-
ementary charge, can degrade the quality of the accel-
erated electron beam already at the injection stage.

The plasma density n near the orifices of the
AWAKE plasma cell has a “ramped” longitudinal
profile (figure 1(b)). It decreases towards the expansion
volumes from the nominal density n0 = 7 × 1014 cm−3

to zero according to the power law [10]. The time
between the passage of the ionizing laser pulse and
the wavebreaking depends on the plasma density and
hence on the longitudinal coordinate z. To avoid
electron beam degradation outside the plasma, the
beam must be injected with a limited delay after the
laser pulse, that is, at ξ = z − ct > ξwb(n(z)), where
ξwb is the co-moving coordinate of the first plasma
electron trajectories intersection measured from the

pulse that we will call the wavebreaking point, and c is
the speed of light. Therefore, it is important to know
how quickly an axisymmetric plasma wave breaks at
different beam-plasma density ratios. In this paper,
we study the formation of the plasma electron jets due
to wave breaking, assuming that the wave is excited
by a long, half-cut Gaussian ultrarelativistic proton
beam. We develop a semi-analytical theory in section 2
and compare it with numerical simulation results in
section 3. We show that for the beam parameters
of interest for AWAKE, the wavebreaking point can
be found in the framework of a simple electrostatic
model that allows analytical approximations and a fast
numerical solution.

2. Trajectory crossing

We consider the following distribution of the driver
beam density:

nb(ξ, r) =

{
nb0e

−r2/(2σ2
r)−ξ

2/(2σ2
z), ξ < 0,

0, otherwise.
(1)

This beam excites the wave by the steep leading edge
that mimics the rapid vapor ionization by a short
laser pulse located at ξ = 0. Upon entering the
plasma section, the proton beam interacts with the
radially uniform bounded plasma of radius Rp � σr,
the density of which varies over a wide range. The
interaction regimes gradually change from strongly
nonlinear to linear, depending on the density ratio
nb0/n(z). To find the trajectories of plasma electrons,
we use the one-dimensional Dawson’s model for
cylindrical nonlinear plasma waves [17, 21]. It implies
no crossing of the trajectories, so it is applicable to a
limited region in the co-moving frame, where ξ > ξwb.
According to the model, the motion of plasma electrons
is described in cylindrical coordinates (r, ξ) by the
equation

d2r

dξ2
=
k2p
2r

[
r20 − r2 −

∫ r

0

nb(ξ, r
′)

n
r′dr′

]
, (2)

where r0 is the initial radius of the electron at ξ = 0,
kp =

√
4πne2/(mc2) is the plasma wavenumber, andm

is the electron mass. For the beam density distribution
(1), the equation (2) takes the form

d2r

dξ2
=
k2p
r

[
r20 − r2

2
− σ2

r

nb0
n

(
1 − e

− r2

2σ2r

)
e
− ξ2

2σ2z

]
. (3)

Following the context of the AWAKE, we consider
the case of a long proton beam (σz � k−1p ). This
assumption allows us to neglect the dependence of the
beam density on ξ and put nb(ξ, r) = nb(0, r) when
solving the equation (3). By introducing dimensionless
quantities ρ = r/σr, ρ0 = r0/σr and ñ = n/nb0, we
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Figure 1. (a) The AWAKE schematic layout and (b) the plasma density profile n(z) along the plasma cell. The red line corresponds
to the maximum density of the proton beam nb0 = 4 × 1012 cm−3.

simplify the equation (3) and make it independent of
the transverse beam size:

1

k2p

d2ρ

dξ2
=

1

ρ

[
ρ20 − ρ2

2
− 1

ñ

(
1 − e−ρ

2/2
)]
. (4)

Solutions of this equation are periodic functions
ρ(ξ) which oscillate with frequency ω and amplitude
A = (ρ0 − ρmin)/2, depending on the initial electron
radius ρ0 (figure 2), where ρmin is the minimum radial
position of the electron during oscillations.

At high plasma densities (n � nb0), the plasma
is able to locally compensate the space charge of the
beam. Therefore, the oscillation frequency ω depends
on the radius just as the plasma frequency ωp(ne) =√

4πnee2/m calculated for the electron density ne =
n+ nb:

ω ≈ ωp(n)
√

1 + nb(0, ρ)/n (5)

(figure 2(a)). Compensation of the beam current
also changes the oscillation frequency observed in the
laboratory frame. This effect is not included into the
electrostatic model (2). The compensating current
flows in a region of radius about k−1p or σr, whichever
is larger [22]. If the beam is narrower than the
plasma skin depth (kpσr � 1), the current carries
the wave pattern as a whole and does not affect the
wavebreaking. Otherwise, the current neutralization
is local, and the frequency change is twice as large as
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Figure 2. (a) Frequency ω and (b) amplitude A of plasma
electron oscillations as functions of the initial electron radius ρ0
obtained by numerically solving the equation (4) for different
ratios nb0/n. The dashed lines in (a) are approximations (5)
and in (b) are approximations (7) for ρ0 � 1 and (8) for ρ0 � 1.

the equation (5) gives. At plasma densities n . nb0,
the approximation (5) is no longer applicable, although
it qualitatively agrees with numerical solutions of the
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Figure 3. (a) Trajectories of plasma electrons and (b) the
corresponding derivatives ∂ρ/∂ρ0 calculated numerically for
ñ = 1. The black dots show the point at which the trajectories
intersect for the first time.

equation (4) (figure 2(a)).
The amplitude of electron oscillations approxi-

mately equals the difference between the initial elec-
tron position ρ0 and the equilibrium radius ρeq at
which the right-hand side of equation (4) is zero:

ρ20 − ρ2eq
2

− 1

ñ

(
1 − e−ρ

2
eq/2
)

= 0. (6)

At small initial radii (ρeq ∼ ρ0 � 1), we can expand
the exponent and obtain

A(ρ0) ≈ ρ0 − ρeq ≈ (1 −
√
ñ/(ñ+ 1))ρ0. (7)

At ρeq ∼ ρ0 � 1, we neglect the exponent and find

A(ρ0) ≈ 1/(ñρ0), (8)

so the amplitude A(ρ0) reaches a maximum in the
region ρ0 ∼ 1 (figure 2(b)).

Differences in the oscillation frequencies of two
close plasma electrons with trajectories ρin(ξ) and
ρout(ξ), such that ρin(0) < ρout(0), lead to the
intersection of the trajectories. When this happens,
the radial force driving the initially inner electron rises
due to an increase of the total negative electric charge
in the region ρ < ρin(ξ). As a consequence, this
electron acquires a larger positive radial momentum
and changes the character of its motion. All electrons
initially located in ρin(0) < ρ < ρout(0) experience
similar radial kicks, forming an electron jet that leaves
the plasma.
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Figure 4. The plasma electron density ne(ξ, r) obtained from
LCODE simulations for ñ = 1. The arrow shows the point in
the plasma where the first jet of ejected electrons appears from.

The location ξwb of the point at which the
trajectories intersect for the first time depends on the
ratio nb0/n. To find this point, we differentiate the
equation (4) by ρ0:

1

k2p

d2

dξ2

(
∂ρ

∂ρ0

)
=
ρ0
ρ
−
(
F

ρ
+
(
1 + nb(ξ, ρ)/n

)) ∂ρ

∂ρ0
, (9)

where F is the right-hand side of the equation (4).
When neighboring trajectories intersect, the derivative
∂ρ/∂ρ0 turns to zero. Solving the equation (9)
numerically (figure 3(b)), we find the rightmost zero
of ∂ρ/∂ρ0 located at ξ = ξwb (see [23] for details).
This point defines the trajectories that intersect first.
Solving the equation (4) for these electrons, we find
the radius rwb at which the trajectories intersect (the
black dot in figure 3(a)).

3. LCODE simulations

In order to check the accuracy of the Dawson’s model
and to relate the calculated point (ξwb, rwb) to
the region where the plasma electron jet is formed,
we conducted a series of simulations using a two-
dimensional cylindrical quasistatic code LCODE [24,
25]. We put σr = 0.2 mm, Rp = 1.1 mm and scan
the plasma density up to n0 = 7 × 1014 cm−3, which
corresponds to k−1p ≤ 0.2 mm. The simulation grid
size is 2µm in both r and ξ. There are 25 macro-
particles per cell for plasma electrons, plasma ions are
the immobile background, and the charge and current
of the beam are introduced analytically.

In typical simulations (figure 4), jets of ejected
electrons appear after several plasma oscillations and
are seen both inside and outside the plasma. The point
where the first jet originates from perfectly matches
the earliest intersection point of the trajectories in
the numerical simulation, as well as the results of the
Dawson’s model (figure 5). The trajectories calculated
using the equation (4) fully agree with the simulations,
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Figure 5. Plasma electron trajectories from LCODE
simulations and from the numerical solutions of the equation (4)
for ñ = 1. The black dot shows the point at which the
trajectories intersect for the first time, according to the Dawson’s
model.
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Figure 6. The plasma electron density ne(ξ, r) obtained from
LCODE simulations for the electron driver and ñ = 1. The red
lines are solutions of the equation (4). The black dot marks the
wavebreaking point, according to the Dawson’s model.

but only at ξ > ξwb, as expected due to the limitations
of the model. Thus, our approach makes it possible
to localize the point of the first trajectory intersection
without using full-scale numerical simulation.

Plasma electron trajectories that come close to
each other cause a local increase in plasma density.
Therefore, intersections of neighboring trajectories
always occur at high density ridges (figures 4 and 5).
In the case of positively charged beams, the electron
trajectories always intersect at points where the radial
components of electron velocity are positive. Since
the motion of plasma electrons is determined by the
total linear charge bounded by their trajectories, the
intersection changes the charge balance, and particles
that had a smaller radius before the intersection
experience a weaker return force and continue moving
towards the plasma boundary.

For negatively charged beams, the behavior of
plasma electrons is qualitatively different (figure 6).
The electrons escape from the plasma immediately
after the passage of the beam front. The total
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Figure 7. (a) Plasma electron trajectories from LCODE
simulations and from the numerical solutions of the equation (4)
for ñ = 0.2. The black dot shows the point at which the
trajectories intersect for the first time, according to the Dawson’s
model. (b) Components of the electron momentum for these
trajectories.

linear charge of the plasma column, including the
driver, becomes negative, so the outer electron layer
of thickness ∆r ≈ σ2

r/(ñR), estimated for R � σr, is
ejected to return the plasma to quasineutral state. The
motion of the first ejected plasma electron calculated
according to the Dawson’s model (the upper red curve
in figure 6) fully agrees with the simulations, so the
boundary of the electron halo around the plasma
can be found semi-analytically. This process is not
related to the intersection of electron trajectories in the
plasma wave. The intersection occurs later and does
not necessarily lead to the plasma electron ejection,
because the trajectories intersect when the particles
move towards the axis.

The close agreement between the results of the
Dawson’s model and the numerical simulations shows
that the location of the wavebreaking point is mainly
determined by the change of the electron oscillation
frequency due to the beam charge and, therefore,
depends on the ratio of beam and plasma densities. At
low plasma densities (ñ . 1), the plasma frequency
on the axis is much higher than at ρ ∼ 1 (red
lines in figure 2(a)). As a result, the trajectories
intersect at the very first period of the plasma wave
(figure 7(a)). The Dawson’s model is fully consistent
with simulations in this regime. At high plasma
densities (ñ � 1), the radial variation of the plasma
frequency is small (blue lines in figure 2(a)) and
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Figure 8. (a) Plasma electron trajectories from LCODE
simulations and from the numerical solutions of the equation (4)
for ñ = 2. The black dot shows the point at which the
trajectories intersect for the first time, according to the Dawson’s
model. (b) Components of the electron momentum for these
trajectories.

manifests itself only after several plasma periods
(figure 8(a)). However, in simulations, the first
intersection of trajectories occurs earlier than in
the Dawson’s model, which gives only qualitative
agreement in this regime. The difference is due to the
longitudinal momentum of plasma electrons, which is
not taken into account in the equation (4). At low
plasma densities (ñ � 1), the longitudinal motion of
the electrons can be neglected (figure 7(b)), in contrast
to high densities (ñ � 1), when the longitudinal
and transverse components of the electron velocity
are comparable (figure 8(b)). Note that for the
beam parameters considered, the plasma skin depth
is equal to the beam radius at ñ = 175. For the
variants shown in figures 7 and 8, kpσr � 1, so
the longitudinal velocity affects the wavebreaking by
changing the trajectories of oscillating particles, rather
than by increasing the frequency difference.

Despite its inaccuracy at high plasma densities,
the Dawson’s model allows us to find a qualitative re-
lationship between the position of the first intersection
of trajectories and the plasma density (figure 9). This
information is difficult to extract from simulations be-
cause the simulated trajectories may intersect due to
numerical plasma heating [14], making it impossible to
algorithmically localize both the longitudinal [26] and
the radial coordinates of the first “real” wavebreak-
ing event. At low plasma densities (ñ � 1), the wave
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Figure 9. Place of the first intersection of trajectories at
different plasma densities, according to the Dawson’s model.
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Figure 10. Longitudinal coordinate at which the trajectory
crossing occurs for the first time, as a function of the plasma
density.

breaks almost on the axis, as in figure 7(a). As ñ in-
creases, the point (ξwb, rwb) shifts back and away from
the axis, following the shape of the plasma electron
density crest. After reaching some threshold radius,
which roughly corresponds to the largest beam density
gradient, the point jumps to the next density crest, and
returns closer to the axis. At ñ� 1 the jets of ejected
electrons always form at the same radius.

The dependence of ξwb on the plasma density n
(figure 10) is of a particular practical importance, since
the ejected plasma electrons transfer the wakefields
outside the plasma column. Beyond this point (at ξ <
ξwb) the wakefields exist outside the plasma column
and can distort the trajectory of the injected witness
bunch.

4. Summary

A plasma electron halo occurs when a charged particle
beam interacts with a radially limited plasma of
comparable density. The halo covers a wide area
around the plasma column and generates radial
forces there. These forces can affect particle beams
propagating outside the plasma, deflecting them or
degrading their quality.

In this work, we developed a semi-analytical
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theory based on the Dawson’s sheet model that allows
us to clarify the mechanism of halo formation, locate
the source of halo electrons, and determine the halo-
free region outside the plasma in AWAKE-like setups.
The theory agrees with simulation results and shows
that, in the case of the proton driver, the halo
electrons appear as a result of wavebreaking, that
is, the intersection of electron trajectories inside the
plasma. For long beams with a sharp leading edge, the
location of the wavebreaking point depends only on the
transverse size of the beam and the ratio of beam and
plasma densities. An increase of the latter postpones
the wavebreaking. Negatively charged drivers create
the electron halo as soon as they start interacting with
plasma. At plasma densities much higher then the
beam density, the effects of the electron halo become
weak for unmodulated beams of any charge sign, since
the halo appears later and has a smaller relative charge.
In the future AWAKE experiments, however, the effect
of the electron halo will be eliminated by injecting the
witness electrons along the axis [27] and will not cause
issues.
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