Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 50

    Agroclimatic potential across central Siberia in an altered twenty-first century
[Text] / N. M. Tchebakova [et al.] // Environ. Res. Lett. - 2011. - Vol. 6, Is. 4. - Ст. 45207, DOI 10.1088/1748-9326/6/4/045207. - Cited References: 38. - We would like to recognize the Northern Eurasian Earth Science Partnership Initiative (NEESPI) and the NASA Land Cover Land Use Change (LCLUC) program for providing the background that made this work possible. We are greatly appreciative of the current support for this work provided by the NASA InterDisciplinary Science grant NNH09ZDA001N-IDS and the Russian Foundation for Basic Research grant 10-05-00941. We thank our two anonymous reviewers for their very helpful comments. . - 11. - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Кл.слова (ненормированные):
climate warming -- central Siberia -- agriculture -- crop range and production

Аннотация: Humans have traditionally cultivated steppe and forest-steppe on fertile soils for agriculture. Forests are predicted to shift northwards in a warmer climate and are likely to be replaced by forest-steppe and steppe ecosystems. We analyzed potential climate change impacts on agriculture in south-central Siberia believing that agriculture in traditionally cold Siberia may benefit from warming. Simple models determining crop range and regression models determining crop yields were constructed and applied to climate change scenarios for various time frames: pre-1960, 1960-90 and 1990-2010 using historic data and data taken from 2020 and 2080 HadCM3 B1 and A2 scenarios. From 50 to 85% of central Siberia is predicted to be climatically suitable for agriculture by the end of the century, and only soil potential would limit crop advance and expansion to the north. Crop production could increase twofold. Future Siberian climatic resources could provide the potential for a great variety of crops to grow that previously did not exist on these lands. Traditional Siberian crops could gradually shift as far as 500 km northwards (about 50-70 km/decade) within suitable soil conditions, and new crops nonexistent today may be introduced in the dry south that would necessitate irrigation. Agriculture in central Siberia would likely benefit from climate warming. Adaptation measures would sustain and promote food security in a warmer Siberia.

WOS,
Scopus

Держатели документа:
[Tchebakova, N. M.
Parfenova, E. I.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Lysanova, G. I.] Russian Acad Sci, Siberian Branch, Inst Geog, Irkutsk, Russia
[Soja, A. J.] NASA, Langley Res Ctr, NIA, Hampton, VA 23681 USA

Доп.точки доступа:
Tchebakova, N.M.; Parfenova, E.I.; Lysanova, G.I.; Soja, A.J.

    Hierarchical mapping of Northern Eurasian land cover using MODIS data
[Text] / D. . Sulla-Menashe [et al.] // Remote Sens. Environ. - 2011. - Vol. 115, Is. 2. - P392-403, DOI 10.1016/j.rse.2010.09.010. - Cited References: 71. - The research was supported by NASA grant numbers NNG06GF54G and NNX08AE61A. An additional thanks goes to Dr. Bin Tan who was instrumental in implementing the MODIS classification algorithms, and to the rest of the NELDA team for helpful input and discussions. . - 12. - ISSN 0034-4257
РУБ Environmental Sciences + Remote Sensing + Imaging Science & Photographic Technology

Аннотация: The Northern Eurasian land mass encompasses a diverse array of land cover types including tundra, boreal forest, wetlands, semi-arid steppe, and agricultural land use. Despite the well-established importance of Northern Eurasia in the global carbon and climate system, the distribution and properties of land cover in this region are not well characterized. To address this knowledge and data gap, a hierarchical mapping approach was developed that encompasses the study area for the Northern Eurasia Earth System Partnership Initiative (NEESPI). The Northern Eurasia Land Cover (NELC) database developed in this study follows the FAO-land Cover Classification System and provides nested groupings of land cover characteristics, with separate layers for land use, wetlands, and tundra. The database implementation is substantially different from other large-scale land cover datasets that provide maps based on a single set of discrete classes. By providing a database consisting of nested maps and complementary layers, the NELC database provides a flexible framework that allows users to tailor maps to suit their needs. The methods used to create the database combine empirically derived climate-vegetation relationships with results from supervised classifications based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. The hierarchical approach provides an effective framework for integrating climate-vegetation relationships with remote sensing-based classifications, and also allows sources of error to be characterized and attributed to specific levels in the hierarchy. The cross-validated accuracy was 73% for the land cover map and 73% and 91% for the agriculture and wetland classifications, respectively. These results support the use of hierarchical classification and climate-vegetation relationships for mapping land cover at continental scales. (C) 2010 Elsevier Inc. All rights reserved.

WOS,
Полный текст,
Scopus

Держатели документа:
[Sulla-Menashe, Damien
Friedl, Mark A.
Woodcock, Curtis E.
Sibley, Adam] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA
[Krankina, Olga N.] Oregon State Univ, Coll Forestry, Dept Forest Sci, Corvallis, OR 97331 USA
[Baccini, Alessandro] Woods Hole Res Ctr, Falmouth, MA 02540 USA
[Sun, Guoqing] NASA, GSFC, Biospher Sci Branch, Greenbelt, MD 20770 USA
[Kharuk, Viacheslav] Acad Gorodok Krasnoyarsk, Sukachev Forest Inst, Forest Ecol & Monitoring Branch, Krasnoyarsk 660036, Russia
[Elsakov, Vladimir] Russian Acad Sci, Inst Biol, Komi Sci Ctr, Syktyvkar 167610, Russia

Доп.точки доступа:
Sulla-Menashe, D...; Friedl, M.A.; Krankina, O.N.; Baccini, A...; Woodcock, C.E.; Sibley, A...; Sun, G.Q.; Kharuk, V...; Elsakov, V...

    Changing regimes: Forested land cover dynamics in Central Siberia 1974 to 2001
[Text] / K. M. Bergen [et al.] // Photogramm. Eng. Remote Sens. - 2008. - Vol. 74, Is. 6. - P787-798. - Cited References: 47 . - 12. - ISSN 0099-1112
РУБ Geography, Physical + Geosciences, Multidisciplinary + Remote Sensing + Imaging Science & Photographic Technology

Аннотация: The twentieth century saw fundamental shifts in northern Eurasian political and land-management paradigms, in Russia culminating in the political transition of 1991, We used the 1972 to 2001 Landsat archive bracketing this transition to observe change trends in southern central Siberian Russia in primarily forested study sites. Landsat resolved conifer, mixed, deciduous and young forest; cuts, burns, and insect disturbance; and wetland, agriculture, bare, urban, and water land covers. Over 70 percent of forest area in the three study sites was likely disturbed prior to 1974. Conifer forest decreased over the 1974 to 2001 study period, with the greatest decrease 1974 to 1990. Logging activity (primarily in conifers) declined more during the 1991 to 2001 post-Soviet period. The area of Young forest increased more during the 1974 to 1990 time period. Deciduous forest increased over both time periods. Agriculture declined over both time periods contributing to forest regrowth in this region.

WOS,
Scopus

Держатели документа:
[Bergen, K. M.
Brown, D. G.] Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA
[Zhao, T.] Florida State Univ, Dept Geog, Tallahassee, FL 32306 USA
[Kharuk, V.] VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Blam, Y.] Inst Econ & Ind Engn, Dept Econ Informat, Novosibirsk, Russia
[Peterson, L. K.] US Forest Serv, Int Programs Outreach & Partnerships Unit, Washington, DC 20005 USA
[Miller, N.] Radiance Technol Inc, Stennis Space Ctr, MS 39529 USA
[Miller, N.] ERIM Int, Ann Arbor, MI USA

Доп.точки доступа:
Bergen, K.M.; Zhao, T...; Kharuk, V...; Blam, Y...; Brown, D.G.; Peterson, L.K.; Miller, N...

    CHANGE IN PHYTOMASS AND NET PRIMARY PRODUCTIVITY FOR SIBERIA FROM THE MIDHOLOCENE TO THE PRESENT
[Text] / R. A. MONSERUD [et al.] // Glob. Biogeochem. Cycle. - 1995. - Vol. 9, Is. 2. - P213-226, DOI 10.1029/95GB00596. - Cited References: 73 . - 14. - ISSN 0886-6236
РУБ Environmental Sciences + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: Phytomass (live plant mass) and net primary productivity are major components of the terrestrial carbon balance. A major location for phytomass storage is the subcontinent of Siberia, which is dominated by extensive reaches of taiga (boreal forest). The responsiveness of the phytomass component of the carbon pool is examined by comparing vegetation in the mid-Holocene (4600-6000 years before present) to modern potential vegetation. The mid-Holocene was warmer and moister in middle and northern Siberia than today, producing conditions ideal for boreal forest growth. As a result, both northern and middle taiga were dominated by shade-tolerant dark-needled species that thrive in moist climates. Today, shade-tolerant dark-needled taiga is restricted to western Siberia and the highlands of central Siberia, with its central and eastern components in the mid-Holocene replaced today by light-demanding light-needled species with lower productivity and phytomass. Total phytomass in Siberia in the mid-Holocene was 105.0 +/- 3.1 Pg, compared to 85.9 +/- 3.2 Pg in modern times, a loss of 19.1 +/- 3.1 Pg of phytomass. The reduction in dark-needled northern and middle taiga classes results in a loss of 28.8 Pg, while the expansion of the corresponding light-needled taiga results in a gain of 13.5 Pg, a net loss of 15.3 Pg. The loss is actually greater, because the modern figures are for potential vegetation and not adjusted for agriculture and other anthropogenic disturbances. Given long periods for vegetation to approach equilibrium with climate, the phytomass component of the carbon pool is responsive to climate change. Changes in net primary productivity (NPP) for Siberia between the mid-Holocene and the present were not as large as changes in phytomass. A minor decrease in NPP (0.6 Pg yr(-1), 10%) has occurred under our cooler modern climate, primarily due to the shift from dark-needled taiga in the mid-Holocene to light-needled taiga today.

Полный текст,
WOS

Держатели документа:
MOSCOW MV LOMONOSOV STATE UNIV,DEPT GEOG,MOSCOW,RUSSIA
OREGON STATE UNIV,DEPT CIVIL ENGN,CORVALLIS,OR 97331
RUSSIAN ACAD SCI,INST FOREST,SIBERIAN BRANCH,KRASNOYARSK,RUSSIA

Доп.точки доступа:
MONSERUD, R.A.; DENISSENKO, O.V.; KOLCHUGINA, T.P.; TCHEBAKOVA, N.M.

    A remote sensing technique for the assessment of stable interannual dynamical patterns of vegetation
/ M. Y. Chernetskiy, A. P. Shevyrnogov, N. F. Ovchinnikova // Proceedings of SPIE - The International Society for Optical Engineering. - 2011. - Vol. 8174: Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII (19 September 2011 through 21 September 2011, Prague) Conference code: 87191. - Ст. 1, DOI 10.1117/12.896748 . -
Аннотация: The time series of various parameters of satellite imagery (NDVI/EVI, temperature) during the growing season were considered in this work. This means that satellite images were considered not like a number of single scenes but like temporal sequences. Using time series enables estimating the integral phenological properties of vegetation. The basis of the developed technique is to use one of the methods of transformation of the multidimensional space in order to get the principal components. The technique is based on considering each dimension of the multidimensional space as satellite imagery for a specific date range. The technique automatically identifies spatial patterns of vegetation that are similar by phenology and growing conditions. Subsequent analysis allowed identification of the belonging of derived classes. Thus, the technique of revealing the spatial distribution of different dynamical vegetation patterns based on the phenological characteristics has been developed. The technique is based on a transformation of the multidimensional space of states of vegetation. Based on the developed technique, areas were obtained with similar interannual trends. В© 2011 SPIE.

Scopus,
WOS

Держатели документа:
Institute of Biophysics of SB RAS, Krasnoyarsk 660036, Akademgorodok, Russian Federation
V.N. Sukachev Institute of Forest of SB RAS, Krasnoyarsk 660036, Akademgorodok, Russian Federation
Siberian Federal University, Kyrensky st., 26, Krasnoyarsk, 660074, Russian Federation

Доп.точки доступа:
Chernetskiy, M.Y.; Shevyrnogov, A.P.; Ovchinnikova, N.F.

    Assessment of pine stands subjected to industrial pollution using ceratocystis laricicola
/ N. -S. Cho [et al.] // Journal of the Faculty of Agriculture, Kyushu University. - 2008. - Vol. 53, Is. 2. - P395-398 . - ISSN 0023-6152

Кл.слова (ненормированные):
Ceratocystis laricicola -- Pinus sylvestris

Аннотация: A method for estimation of tree's condition on activity of defence response in phloem was checked in Pinus sylvestris L. stands located near Krasnoyarsk (Siberia, Russia). The length of necrosis caused by inoculation of phloem of living tree by Ceratocystis laricicola Redf. et Minter was used as the parameter being measured. The field experiments were carried out in two even-aged (about 60 years) pine stands that were approximately equal on structure, productivity, density and recreation loading, but differentiated on degree of industrial pollution. The two permanent sample plots (SP) were founded in the severely polluted stand. The other two SP were placed in the unpolluted pine forest. The amount of pine trees within each SP varied from 200 to 250. From 22 up to 37 pine-trees selected randomly within every SP were inoculated with C. laricicola mycelium (test 1) and its extract (test 2). One inoculation hole per one tree (diameter 7 mm) was made in stem at a height of 1.3 m. Application of the both agents caused necrosis in phloem around the place of inoculation. In the case of fungal inoculation (test 1), the average length of necrosis in the unpolluted forest exceeded significantly the same parameter in the polluted stand: 51.7-79.4mm and 39.4-41.3mm, correspondingly. The action of the fungal metabolites caused the opposite results: in the unpolluted stand the average size of necroses was smaller in comparison with this parameter in the polluted stands 44.5-15.3 mm and 57.9-61.8 mm. The reasons of this difference are discussed. The both agents (C. laricicola mycelium and its extract) were suitable to reveal the difference of tree's condition in polluted and unpolluted pine stands. The application of fungal extract is more preferable in comparison with fungal mycelium because of smaller variability of necrosis size. Besides, the application of extract allows controlling inoculum dose and excludes the dangerous of spreading infection in forests.

Scopus

Держатели документа:
Department of Forest and Forest Products Sciences, Laboratory of Forest Resources Management, Division of Forest Ecosphere Management, Sasaguri, Fukuoka 811-2415, Japan
Wood and Paper Science, Chungbuk National University, Cheongju 361-763, South Korea
Department of Physical and Chemical Biology and Biotechnology of Woody Plants, V. N. Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Cho, N.-S.; Pashenova, N.V.; Choi, T.-H.; Ohga, S.

    Potential influence of the late Holocene climate on settled farming versus nomadic cattle herding in the Minusinsk Hollow, south-central Siberia
/ T. A. Blyakharchuk [et al.] // Environ.Res.Lett. - 2014. - Vol. 9, Is. 6, DOI 10.1088/1748-9326/9/6/065004 . - ISSN 1748-9326
Аннотация: Prehistoric and early historic human cultures are known to be closely connected to and dependent on their natural environments. We test the hypothesis that climate change influenced the means of subsistence of ancient tribes and favored agricultural or cattle herding economic strategies. Our study area is the Khakass-Minusinsk Hollow, located in the foothills of the Sayan Mountains, south-central Siberia, which was, for a few millennia, a buffer zone for human migrations across the Great Eurasian Steppe. Three different methods (the Montane BioClimatic Model, MontBCliM; the biomization method; and the actualizm method) are employed to reconstruct vegetation taken from the fossil pollen of sediment cores in two mountain lakes at eleven time slices related to successive human cultures back to the mid-Holocene. MontBCliM model is used inversely to convert site paleo-vegetation into site paleo-climates. Climate-based regression models are developed and applied to reconstructed climates to evaluate possible pasture and grain crops for these time slices. Pollen-based reconstructions of the climate fluctuations uncovered several dry periods with steppe and forest-steppe and wetter periods with forests since 6000 BP. Grasslands increased by an order of magnitude during the dry periods and provided extensive open space suitable for pastoralism; however, both grain and pasture yields decreased during these dry periods. During wetter climates, both grain and pasture yields increased twofold and supported more fixed human settlements centered around farming and cattle herding. Thus, the dry periods favored pastoralist rather than farming activities. Conversely, tribes that practiced agriculture had some advantage in the wet periods. © 2014 IOP Publishing Ltd.

Scopus,
Полный текст

Держатели документа:
Institute for Monitoring Climatic and Ecological Systems, Siberian Branch, Russian Academy of Sciences, Akademichesky Prospekt 10/3, 643055 Tomsk, Russian Federation
V.N. Sukachev Institute of Forests, Siberian Branch, Russian Academy of Sciences, Academgorodok, 50/28, 660036 Krasnoyarsk, Russian Federation
National Institute of Aerospace (NIA), NASA Langley Research Center, Climate Sciences, 21 Langley Boulevard, Hampton, VA 23681-2199, United States
Tomsk State University, Lenina 36, 634050 Tomsk, Russian Federation

Доп.точки доступа:
Blyakharchuk, T.A.; Tchebakova, N.M.; Parfenova, E.I.; Soja, A.J.

    Comparative multilocus phylogeography of two Palaearctic spruce bark beetles: influence of contrasting ecological strategies on genetic variation
[Text] / F. Mayer [et al.] // Mol. Ecol. - 2015. - Vol. 24, Is. 6. - P1292-1310, DOI 10.1111/mec.13104. - Cited References:112. - We are grateful to four anonymous reviewers for their many suggestions that helped us improve our manuscript. Some of the analyses were performed on the high-performance computer cluster of the Universite libre de Bruxelles (HYDRA), funded by the Belgian Fund for Scientific Research (F.R.S.-FNRS). The authors would like to gratefully thank all contributors of samples cited in Tables S2 and S3 (Supporting information), especially Aurelien Salle for sending us DNA and Bo Langstrom and Niklas Bjorklund for providing valuable contacts to collectors in northern Europe. We thank Yuri Baranchikov, Vladimir Petko, Vyacheslav Tarakanov (institute director from Novosibirsk) and Andrey Kirichenko for their hospitality and help in the field in Russia. We also thank Wang Zhiliang for sending us samples of Ips nitidus. We are thankful to the DSF for support on the field and in particular to Bernard Boutte, Jean-Luc Flot and Louis-Michel Nageleisen and to Olivier Hardy, Marius Gilbert, Christian Stauffer for valuable comments on this study. F.M. was supported by a doctoral grant from the Belgian Fonds pour la Formation a la Recherche dans l'Industrie et l'Agriculture (FRIA) and by an award from the Fonds David and Alice Van Buuren. Financial support to the project was provided by the F.R.S.-FNRS (grant FRFC 2.4.554.09 F). . - ISSN 0962-1083. - ISSN 1365-294X
РУБ Biochemistry & Molecular Biology + Ecology + Evolutionary Biology

Аннотация: While phylogeographic patterns of organisms are often interpreted through past environmental disturbances, mediated by climate changes, and geographic barriers, they may also be strongly influenced by species-specific traits. To investigate the impact of such traits, we focused on two Eurasian spruce bark beetles that share a similar geographic distribution, but differ in their ecology and reproduction. Ips typographus is an aggressive tree-killing species characterized by strong dispersal, whereas Dendroctonus micans is a discrete inbreeding species (sib mating is the rule), parasite of living trees and a poor disperser. We compared genetic variation between the two species over both beetles' entire range in Eurasia with five independent gene fragments, to evaluate whether their intrinsic differences could have an influence over their phylogeographic patterns. We highlighted widely divergent patterns of genetic variation for the two species and argue that the difference is indeed largely compatible with their contrasting dispersal strategies and modes of reproduction. In addition, genetic structure in I.typographus divides European populations in a northern and a southern group, as was previously observed for its host plant, and suggests past allopatric divergence. A long divergence time was estimated between East Asian and other populations of both species, indicating their long-standing presence in Eurasia, prior to the last glacial maximum. Finally, the strong population structure observed in D. micans for the mitochondrial locus provides insights into the recent colonization history of this species, from its native European range to regions where it was recently introduced.

WOS,
Scopus

Держатели документа:
Univ Libre Bruxelles, Lutte Biol & Ecol Spatiale, Brussels, Belgium.
Univ Oxford, Dept Zool, Evolutionary Ecol Infect Dis, Oxford, England.
Swedish Univ Agr Sci, Dept Ecol, Uppsala, Sweden.
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk, Russia.
Univ Libre Bruxelles, Evolutionary Biol & Ecol, Brussels, Belgium.
Norwegian Forest & Landscape Inst, As, Norway.
Univ Nat Resources & Life Sci, Inst Forest Entomol Forest Pathol & Forest Protec, Vienna, Austria.
ИЛ СО РАН

Доп.точки доступа:
Mayer, Francois; Piel, Frederic B.; Cassel-Lundhagen, Anna; Kirichenko, Natalia; Grumiau, Laurent; Okland, Bjorn; Bertheau, Coralie; Gregoire, Jean-Claude; Mardulyn, Patrick; Belgian Fund for Scientific Research (F.R.S.-FNRS); DSF; Belgian Fonds pour la Formation a la Recherche dans l'Industrie et l'Agriculture (FRIA); Fonds David and Alice Van Buuren; F.R.S.-FNRS [FRFC 2.4.554.09 F]

    Properties and bioavailability of particulate and mineral-associated organic matter in Arctic permafrost soils, Lower Kolyma Region, Russia
/ N. Gentsch [et al.] // Eur. J. Soil Sci. - 2015. - Vol. 66, Is. 4. - P722-734, DOI 10.1111/ejss.12269 . - ISSN 1351-0754

Аннотация: Permafrost degradation may cause strong feedbacks of arctic ecosystems to global warming, but this will depend on if, and to what extent, organic matter (OM) is protected against biodegradation by mechanisms other than freezing and anoxia. Here, we report on the amount, chemical composition and bioavailability of particulate (POM) and mineral-associated OM (MOM) in permafrost soils of the East Siberian Arctic. The average total organic carbon (OC) stock across all soils was 24.0 ± 6.7 kg m-2 within 100 cm soil depth. Density fractionation (density cut-off 1.6 g cm-3) revealed that 54 ± 16% of the total soil OC and 64 ± 18% of OC in subsoil horizons was bound to minerals. As well as sorption of OM to clay-sized minerals (R2 = 0.80; P 0.01), co-precipitation of OM with hydrolyzable metals may also transfer carbon into the mineral-bound fraction. Carbon:nitrogen ratios, stable carbon and nitrogen isotopes, 13C-NMR and X-ray photoelectron spectroscopy showed that OM is transformed in permafrost soils, which is a prerequisite for the formation of mineral-organic associations. Mineral-associated OM in deeper soil was enriched in 13C and 15N, and had narrow C:N and large alkyl C:(O-/N-alkyl C) ratios, indicating an advanced stage of decomposition. Despite being up to several thousands of years old, when incubated under favourable conditions (60% water-holding capacity, 15°C, adequate nutrients, 90 days), only 1.5-5% of the mineral-associated OC was released as COinf2/inf. In the topsoils, POM had the largest mineralization but was even less bioavailable than the MOM in subsoil horizons. Our results suggest that the formation of mineral-organic associations acts as an important additional factor in the stabilization of OM in permafrost soils. Although the majority of MOM was not prone to decomposition under favourable conditions, mineral-organic associations host a readily accessible carbon fraction, which may actively participate in ecosystem carbon exchange. © 2015 British Society of Soil Science.

Scopus,
WOS

Держатели документа:
Institut für Bodenkunde, Leibniz Universität Hannover, Herrenhäuser Straße 2, Hannovern, Germany
VN Sukachev Institute of Forest, Akademgorodok 50, Krasnoyarsk, Russian Federation
Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstr. 14, Vienna, Austria
Austrian Polar Research Institute, Althanstra?e 14, Vienna, Austria
Department of Earth Sciences, University of Gothenburg, Guldhedsgatan 5A, Gothenburg, Sweden
Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, United States
Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, Vienna, Austria
Department of Biology, Centre for Geobiology, University of Bergen, Postboks 7803, Bergen, Norway
Department of Bioscience, Norway and Center for Geomicrobiology, Aarhus University, Ny Munkegade 116, Aarhus C, Denmark
Department of Ecosystem Biology, University of South Bohemia, Branisovska 1760, Ceske Budejovice, Czech Republic
Central SiberianBotanical Garden, Siberian Branch of the Russian Academy of Sciences, Zolotodolinskya Street 101, Novosibirsk, Russian Federation
Lehrstuhl fur Bodenkunde, Technische Universitat Munchen, Emil-Ramann Strasse 2, Freising, Germany
Thunen Institute of Climate Smart Agriculture, Bundesallee 50, Braunschweig, Germany

Доп.точки доступа:
Gentsch, N.; Mikutta, R.; Shibistova, O.; Wild, B.; Schnecker, J.; Richter, A.; Urich, T.; Gittel, A.; Santruckova, H.; Barta, J.; Lashchinskiy, N.; Mueller, C.W.; Fuß, R.; Guggenberger, G.

    Response of paddy soil organic carbon accumulation to changes in long-term yield-driven carbon inputs in subtropical China
/ A. Chen [et al.] // Agric. Ecosyst. Environ. - 2016. - Vol. 232. - P302-311, DOI 10.1016/j.agee.2016.08.018 . - ISSN 0167-8809

Кл.слова (ненормированные):
Carbon inputs -- Carbon sequestration -- Long-term experiment -- Paddy field -- Soil organic carbon -- Yield decline -- Oryza sativa

Аннотация: A decrease in C inputs from the return of crop residues to soil has occurred in many regions worldwide in recent years. The effects of this decline in C inputs could provide valuable information for assessing the long-term impact of litter C inputs on soil organic C (SOC) in rice paddy soils. The present study aimed to evaluate the response of rice paddy SOC accumulation to changes in actual C inputs in subtropical China, with emphasis on the response of C accumulation to declining C inputs. For this, we used a long-term field experiment on paddy soil in a rice-rice (Oryza sativa L.) cropping system running from 1990 to 2014. The four treatments were CK (control, no fertilizer), OM (organic matter application), NPK (N, P, and K fertilizer application), and NPKOM (NPK and organic matter application). Organic matter application for the OM and NPKOM treatments included rice straw and green manure that were left in the field after harvest and chopped, along with rice residues with stubbles and roots. In all treatments, C sequestration showed an increasing trend (from 0.207 to 0.880 g kg?1 yr?1) in the early and middle stages of the experiment (1990–2006) followed by a decreasing trend (from ?0.429 to ?0.064 g kg?1 yr?1) in the late stage (2007–2014). The trends were more pronounced for the OM and NPKOM treatments than for their CK and NPK counterparts. The changes in SOC stocks were consistent with changes in C inputs (p < 0.01). During the late stage, yield and litter inputs from crop residues and green manure decreased, quickly affecting SOC stock in paddy soils. This declining trend in annual rice yields was mainly caused by the decline in first rice yields, accounting for 42.3–91.5% of the decrease in annual C inputs. Insufficient P or N and K supply and unfavorable climatic factors (decreases in sunshine duration and both maximum and minimum temperatures) are possible reasons for the decline in first rice yields and green manure biomass in the late stage. Collectively, the results suggest that C stocks in high-productivity paddy soils respond very sensitively to a decline in C inputs. This raises the risk of loss of C stock in paddy soil if, in the long run, a large return of C to soil with crop residues or by other sources, e.g., green manure, cannot be achieved. © 2016 Elsevier B.V.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of SciencesHunan, China
Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Gottingen, Gottingen, Germany
Institute of Soil Science, Leibniz Universitat Hannover, Hannover, Germany
VN Sukachev Institute of Forest, SB-RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Chen, A.; Xie, X.; Dorodnikov, M.; Wang, W.; Ge, T.; Shibistova, O.; Wei, W.; Guggenberger, G.

    Fate of rice shoot and root residues, rhizodeposits, and microbe-assimilated carbon in paddy soil - Part 1: Decomposition and priming effect
/ Z. Zhu [et al.] // Biogeosciences. - 2016. - Vol. 13, Is. 15. - P4481-4489, DOI 10.5194/bg-13-4481-2016 . - ISSN 1726-4170

Аннотация: The input of recently photosynthesized C has significant implications on soil organic C sequestration, and in paddy soils, both plants and soil microbes contribute to the overall C input. In the present study, we investigated the fate and priming effect of organic C from different sources by conducting a 300-day incubation study with four different 13C-labelled substrates: rice shoots (shoot-C), rice roots (root-C), rice rhizodeposits (rhizo-C), and microbe-assimilated C (micro-C). The efflux of both 13CO2 and 13CH4 indicated that the mineralization of C in shoot-C-, root-C-, rhizo-C-, and micro-C-treated soils rapidly increased at the beginning of the incubation and decreased gradually afterwards. The highest cumulative C mineralization was observed in root-C-treated soil (45.4%), followed by shoot-C- (31.9%), rhizo-C- (7.90%), and micro-C-treated (7.70%) soils, which corresponded with mean residence times of 39.5, 50.3, 66.2, and 195 days, respectively. Shoot and root addition increased C emission from native soil organic carbon (SOC), up to 11.4 and 2.3 times higher than that of the control soil by day 20, and decreased thereafter. Throughout the incubation period, the priming effect of shoot-C on CO2 and CH4 emission was strongly positive; however, root-C did not exhibit a significant positive priming effect. Although the total C contents of rhizo-C-(1.89%) and micro-C-treated soils (1.90%) were higher than those of untreated soil (1.81%), no significant differences in cumulative C emissions were observed. Given that about 0.3 and 0.1% of the cumulative C emission were derived from labelled rhizo-C and micro-C, we concluded that the soil organic C-derived emissions were lower in rhizo-C- and micro-C-treated soils than in untreated soil. This indicates that rhizodeposits and microbe-assimilated C could be used to reduce the mineralization of native SOC and to effectively improve soil C sequestration. The contrasting behaviour of the different photosynthesized C substrates suggests that recycling rice roots in paddies is more beneficial than recycling shoots and demonstrates the importance of increasing rhizodeposits and microbe-assimilated C in paddy soils via nutrient management. © 2016 Author(s).

Scopus,
Смотреть статью,
WOS

Держатели документа:
Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, China
Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, China
Institute of Soil Science, Leibniz Universitat Hannover, Hannover, Germany
VN Sukachev Institute of Forest, Siberian Branch, Russian Academy of Science, Krasnoyarsk, Russian Federation
College of Resources and Environment, Southwest University, Chongqing, China

Доп.точки доступа:
Zhu, Z.; Zeng, G.; Ge, T.; Hu, Y.; Tong, C.; Shibistova, O.; He, X.; Wang, J.; Guggenberger, G.; Wu, J.

    Land-use change under different climatic conditions: Consequences for organic matter and microbial communities in Siberian steppe soils
/ N. Bischoff [et al.] // Agric. Ecosyst. Environ. - 2016. - Vol. 235. - P253-264, DOI 10.1016/j.agee.2016.10.022 . - ISSN 0167-8809

Кл.слова (ненормированные):
Climate -- Land-use change -- PLFA -- Semi-arid region -- Soil microbial community -- Soil organic matter -- Steppe soil -- Fungi -- Posibacteria

Аннотация: The Kulunda steppe is part of the greatest conversion areas of the world where 420,000 km2 grassland have been converted into cropland between 1954 and 1963. However, little is known about the recent and future impacts of land-use change (LUC) on soil organic carbon (OC) dynamics in Siberian steppe soils under various climatic conditions. By investigating grassland vs. cropland soils along a climatic gradient from forest to typical to dry steppe types of the Kulunda steppe, our study aimed to (i) quantify the change of OC stocks (0–60 cm) after LUC from grassland to cropland as function of climate, (ii) elucidate the concurrent effects on aggregate stability and different functional soil organic matter (OM) fractions (particulate vs. mineral-bound OM), and (iii) assess climate- and LUC-induced changes in the microbial community composition and the contribution of fungi to aggregate stability based on phospholipid fatty acid (PLFA) profiles. Soil OC stocks decreased from the forest steppe (grassland: 218 ± 17 Mg ha?1) over the typical steppe (153 ± 10 Mg ha?1) to the dry steppe (134 ± 11 Mg ha?1). Across all climatic regimes, LUC caused similar OC losses of 31% (95% confidence interval: 17–43%) in 0–25 cm depth and a concurrent decline in aggregate stability, which was not related to the amount of fungal PLFA. Density fractionation revealed that the largest part of soil OM (>90% of total OC) was associated with minerals and <10% of C existed in particulate OM. While LUC induced smaller relative losses of mineral-associated OC than particulate OC, the absolute decline in total OC stocks was largely due to losses of OM bound to minerals. This result together with the high 14C ages of mineral-bound OM in croplands (500–2900 yrs B.P.) suggests that mineral-bound OM comprises, in addition to stable OC, also management-susceptible labile OC. The steppe type had a larger impact on microbial communities than LUC, with a larger relative abundance of gram-positive bacteria and less fungi under dry conditions. Our results imply that future drier climate conditions in the Siberian steppes will (i) result in smaller OC stocks on a biome scale but (ii) not alter the effect of LUC on soil OC, and (iii) change the microbial community composition more than the conversion from grassland to cropland. © 2016 Elsevier B.V.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Soil Science, Leibniz Universitat Hannover, Herrenhauser Stra?e 2, Hannover, Germany
VN Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50, Krasnoyarsk, Russian Federation
Institute for Water and Environmental Problems, Siberian Branch of the Russian Academy of Sciences, Molodezhnaya Street 1, Barnaul, Russian Federation
Faculty of Biology, Altai State University, Prospekt Lenina 61a, Barnaul, Russian Federation
Institute of Biostatistics, Leibniz Universitat Hannover, Herrenhauser Stra?e 2, Hannover, Germany
Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle (Saale), Germany
Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 3, Halle, Saale, Germany

Доп.точки доступа:
Bischoff, N.; Mikutta, R.; Shibistova, O.; Puzanov, A.; Reichert, E.; Silanteva, M.; Grebennikova, A.; Schaarschmidt, F.; Heinicke, S.; Guggenberger, G.

    Evaluating the Agroclimatic Potential of Central Siberia
/ N. M. Tchebakova [et al.] ; ed.: L. . Mueller, A. K. Sheudshen, F. . Eulenstein // NOVEL METHODS FOR MONITORING AND MANAGING LAND AND WATER RESOURCES IN : SPRINGER INT PUBLISHING AG, 2016. - P287-305. - (Springer Water), DOI 10.1007/978-3-319-24409-9_11. - Cited References:22 . -
РУБ Environmental Sciences + Soil Science + Water Resources

Кл.слова (ненормированные):
Climate change -- Agriculture -- Scenario -- Carbon balance -- Central Siberia

Аннотация: Human beings have traditionally cultivated the fertile soils of the steppe and forest-steppe for agriculture. Forests are predicted to migrate northward in a warmer climate and are likely to be replaced by forest-steppe and steppe ecosystems. We analysed potential climate change impacts on agriculture in south/central Siberia, hypothesizing that agriculture in traditionally cold Siberia may benefit from warming. Current carbon (C) fluxes in agrosystems have also been analysed, as they are important for the development of land use strategies. Potentials for cropping were evaluated based on simple climate indices such as temperature sums above a base of 5 degrees C (GDD(5)), and an annual moisture index (AMI), which is the ratio of GDD5 to annual precipitation. Envelope models which determine crop range, and regression models which determine crop yields, were constructed and applied to climate change scenarios for several time frames: 1960-1990, using historic data; and data taken from HadCM3 B1 and A2 scenarios for 2020 and 2090. Analyses of carbon fluxes in agrosystems showed that plant phytomass and soil humus serve as a principal C sink. Mineralization flux forms from phytodetritus decomposition, and recently formed humus includes portions of "used" mobile humus. Currently, the C balance of agrosystems is slightly in deficit: the C loss is 0.25 t ha(-1) year(-1). From 50 to 85 % of central Siberia is predicted to be climatically suitable for agriculture by the end of the century, and only soil potential would limit crop advance and expansion to the north. Crop production could double. Future Siberian climatic resources could provide the potential for a great variety of crops to grow which previously did not exist on these lands. Traditional Siberian crops could gradually shift as far as 500 km northward (about 50-70 km per decade) if soil conditions are suitable, and new crops which are non-existent today may be introduced in the dry south, which would necessitate irrigation. Agriculture in central Siberia would likely benefit from climate warming. Adaptation measures would sustain and promote food security in a warmer Siberia.

WOS,
Смотреть статью

Держатели документа:
Russian Acad Sci, Siberian Branch SIF SB RAS, VN Sukachev Inst Forest, Akademgorodok 50, Krasnoyarsk 660049, Russia.
Krasnoyarsk State Agr Univ, Mira Str 90, Krasnoyarsk 660049, Russia.
NASA, Langley Res Ctr, 21 Langley Blvd,Mail Stop 420, Irkutsk 664033, Russia.
Russian Acad Sci, Siberian Branch, VB Sochava Inst Geog, Irkutsk 664033, Russia.

Доп.точки доступа:
Tchebakova, Nadezhda M.; Chuprova, Valentina V.; Parfenova, Elena I.; Soja, Amber J.; Lysanova, Galina I.; Mueller, L... \ed.\; Sheudshen, A.K. \ed.\; Eulenstein, F... \ed.\

    A synthesis of radial growth patterns preceding tree mortality
/ M. Cailleret [et al.] // Glob. Change Biol. - 2017. - Vol. 23, Is. 4. - P1675-1690, DOI 10.1111/gcb.13535. - Cited References:86. - This study generated from the COST Action STReESS (FP1106) financially supported by the EU Framework Programme for Research and Innovation HORIZON 2020. We are particularly grateful to Professor Dr. Ute Sass-Klaassen from Wageningen University (the Netherlands), chair of the action, for making this metastudy possible. We also thank members of the Laboratory of Plant Ecology from the University of Ghent (Belgium) for their help while compiling the database; Louise Filion for sharing her dataset; Dario Martin-Benito for providing some For-Clim parameters; the ARC-NZ Vegetation Function Network for supporting the compilation of the Xylem Functional Traits dataset; Edurne Martinez del Castillo for the creation of Fig. 1; and two anonymous reviewers and Phillip van Mantgem (USGS) for their suggestions to improve the quality of the manuscript. MC was funded by the Swiss National Science Foundation (Project Number 140968); SJ by the German Research Foundation (JA 2174/3-1); EMRR by the Research Foundation - Flanders (FWO, Belgium), and by the EU HORIZON 2020 Programme through a Marie Sklodowska-Curie IF Fellowship (No. 659191); LDS by a postdoctoral fellowship from the Portuguese Fundacao para a Ciencia e a Tecnologia (FCT) (SFRH/BPD/70632/2010); TA by the Academy of Finland (Project Nos. 252629 and 276255); JAA by the British Columbia Forest Science Program and the Forest Renewal BC (Canada); BB and WO by the Austrian Science Fund (FWF, Hertha Firnberg Programme Project T667-B16 and FWF P25643-B16); VC, PJ, MS, and VT by the Czech Ministry of Education (MSMT, Project COST CZ Nos.; LD13064 and LD14074); JJC, JCLC, and GSB by the Spanish Ministry of Economy (Projects CGL2015-69186-C21-R, CGL2013-48843-C2-2-R, and CGL2012-32965) and the EU (Project FEDER 0087 TRANSHABITAT); MRC by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the Service de la protection contre les insectes et les maladies du ministere des forets du Quebec (Canada); KC by the Slovenian Research Agency (ARRS) Program P4-0015; AD by the United States Geological Survey (USGS); HD by the French National Research Agency (ANR, DRYADE Project ANR-06VULN-004) and the Metaprogram Adaptation of Agriculture and Forests to Climate Change (AAFCC) of the French National Institute for Agricultural Research (INRA); MD by the Israeli Ministry of Agriculture and Rural Development as a chief scientist and by the Jewish National Fund (Israel); GGI by the Spanish Ministry of Economy and Competitiveness (Project AGL2014-61175-JIN); SG by the Bundesministerium fur Bildung und Forschung (BMBF) through the Project REGKLAM (Grant Number: 01 LR 0802) (Germany); LJH by the Arkansas Agricultural Experiment Station (United States of America) and the United States Department of Agriculture - Forest Service; HH by the Natural Sciences and Engineering Research Council of Canada; AMH by the Spanish Ministry of Science and Innovation (Projects CGL2007-60120 and CSD2008-0040) and by the Spanish Ministry of Education via a FPU Scholarship; VIK by the Russian Science Foundation (Grant #14-24-00112); TKi and RV by the Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET Grant PIP 112-201101-00058 and PIP 112-2011010-0809) (Argentina); TKl by the Weizmann Institute of Science (Israel) under supervision of Professor Dan Yakir, by the Keren Kayemeth LeIsrael (KKL) - Jewish National Fund (JNF) (Alberta-Israel Program 90-9-608-08), by the Sussman Center (Israel), by the Cathy Wills and Robert Lewis Program in Environmental Science (United Kingdom), by the France-Israel High Council for Research Scientific and Technological Cooperation (Project 3-6735), and by the Minerva Foundation (Germany); KK by the project 'Resilience of Forests' of the Ministry of Economic Affairs (the Netherlands - WUR Investment theme KB19); TL by the program and research group P4-0107 Forest Ecology, Biology and Technology (Slovenia); RLV by a postdoctoral fellowship from the Portuguese Fundacao para a Ciencia e a Tecnologia (FCT; SFRH/BPD/86938/2012); RLR by the EU FP7 Programme through a Marie Sklodowska-Curie IOF Fellowship (No. 624473); HM by the Academy of Finland (Grant Nos. 257641 and 265504); SM by Sparkling Science of the Federal Ministry of Science, Research and Economy (BMWFW) of Austria; IM by the Hungarian Scientific Research Fund (No. K101552); JMM by the Circumpolar-Boreal Alberta grants program from the Natural Science and Engineering Research Council of Canada; MP by the EU Project LIFE12 ENV/FI/000409; AMP by a Swiss Research Fellowship (Sciex-NMSch, Project 13.; 272 - OAKAGE); JMS by the American National Science Foundation (Grant 0743498); ABS by the British Columbia Ministry of Forests, Lands and Natural Resource Operations (Canada); DS by the Public Enterprise 'Vojvodinasume' (project Improvement of Lowland Forest Management); MLS by the Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET Grant PIP 11420110100080) and by El Fondo para la Investigacion Cientifica y Tecnologica (FONCyT Grant PICT 2012-2009); RT by the Italian Ministry of Education (University and Research 2008, Ciclo del Carbonio ed altri gas serra in ecosistemi forestali, naturali ed artificiali dell'America Latina: analisi preliminare, studio di fattibilita e comparazione con ecosistemi italiani) and by the EU LIFE+ Project MANFOR C.BD. (Environment Policy and Governance 2009, Managing forests for multiple purposes: carbon, biodiversity and socioeconomic wellbeing); ARW by the Natural Sciences and Engineering Council (NSERC) (Canada) through the University of Winnipeg and by Manitoba Conservation (Canada); and JMV by the Spanish Ministry of Economy and Competitiveness (Grant CGL2013-46808-R). Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Government. . - ISSN 1354-1013. - ISSN 1365-2486
РУБ Biodiversity Conservation + Ecology + Environmental Sciences
Рубрики:
DROUGHT-INDUCED MORTALITY
   WESTERN UNITED-STATES

   PINUS-SYLVESTRIS L.

Кл.слова (ненормированные):
angiosperms -- death -- drought -- growth -- gymnosperms -- pathogens -- ring-width -- tree mortality

Аннотация: Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1-100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade-and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks.

WOS,
Смотреть статью

Держатели документа:
ETH, Forest Ecol, Dept Environm Syst Sci, Inst Terr Ecosyst, Univ Str 22, CH-8092 Zurich, Switzerland.
Univ Ulm, Inst Systemat Bot & Ecol, Albert Einstein Allee 11, D-89081 Ulm, Germany.
CREAF, Campus UAB, Cerdanyola Del Valles 08193, Spain.
Vrije Univ Brussel, Lab Plant Biol & Nat Management APNA, Pl Laan 2, B-1050 Brussels, Belgium.
RMCA, Lab Wood Biol & Xylarium, Leuvensesteenweg 13, B-3080 Tervuren, Belgium.
Univ Coimbra, Dept Life Sci, Ctr Funct Ecol, P-3000456 Coimbra, Portugal.
Univ Helsinki, Dept Forest Sci, POB 27 Latokartanonkaari 7, FIN-00014 Helsinki, Finland.
Univ Victoria, Dept Biol, STN CSC, POB 3020, Victoria, BC V8W 3N5, Canada.
Univ Innsbruck, Inst Bot, Sternwartestr 15, A-6020 Innsbruck, Austria.
Univ Milan, Dipartimento Biosci, Via Giovanni Celoria 26, I-20133 Milan, Italy.
Czech Univ Life Sci, Fac Forestry & Wood Sci, Kamycka 961-129, Prague 16521 6, Suchdol, Czech Republic.
CSIC, IPE, Ave Montanana 1005, Zaragoza 50192, Spain.
Swiss Fed Inst Forest Snow & Landscape Res WSL, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland.
Univ Clermont Auvergne, INRA, Unite Mixte Rech UMR PIAF 547, F-63100 Clermont Ferrand, France.
Univ Laval, Dept Sci Bois & Foret, Ctr Forest Res, Fac Foresterie Geog & Geomat, 2405 Rue Terrasse, Quebec City, PQ G1V 0A6, Canada.
Univ Ljubljana, Biotech Fac, Jamnikarjeva 101, Ljubljana 1000, Slovenia.
US Geol Survey, Western Ecol Res Ctr, 47050 Generals Highway, Three Rivers, CA 93271 USA.
INRA, Ecol Forest Mediterraneennes URFM, Site Agroparc, F-84914 Avignon 9, France.
Univ Bordeaux, Unite Mixte Rech UMR BIOGECO 1202, INRA, F-33615 Pessac, France.
Ben Gurion Univ Negev, Dept Geog & Environm Dev, IL-84105 Beer Sheva, Israel.
Inst Nacl Invest & Tecnol Agr & Alimentaria INIA, Ctr Invest Forestal CIFOR, Carretera La Coruna Km 7-5, Madrid 28040, Spain.
Tech Univ Dresden, Inst Forest Bot & Forest Zool, D-01062 Dresden, Germany.
TU Berlin, Fachgebiet Vegetat Tech & Pflanzenverwendung, Inst Landschaftsarchitektur & Umweltplanung, D-10623 Berlin, Germany.
Univ Arkansas, Dept Entomol, Fayetteville, AR 72701 USA.
Univ Kansas, Dept Ecol & Evolutionary Biol, 1450 Jayhawk Blvd, Lawrence, KS 66045 USA.
Max Planck Inst Biogeochem, Hans Knoll Str 10, D-07745 Jena, Germany.
CSIC, Dept Biogeog & Global Change, Natl Museum Nat Hist MNCN, C Serrano 115Bis, Madrid 28006, Spain.
Desert Bot Garden, Dept Res Conservat & Collect, 1201 N Galvin Pkwy, Phoenix, AZ USA.
Humboldt State Univ, Dept Forestry & Wildland Resources, 1 Harpst St, Arcata, CA 95521 USA.
Russian Acad Sci, Siberian Div, Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
Univ Nacl Comahue, Dept Ecol, Quintral S-N, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina.
Consejo Nacl Invest Cient & Tecn, Inst Invest Biodiversidad & Medio Ambiente INIBOM, Quintral 1250, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina.
ARO, Volcani Ctr, Inst Soil Water & Environm Sci, POB 6, IL-50250 Bet Dagan, Israel.
Wageningen Univ, Alterra Green World Res, Droevendaalse Steeg 1, NL-6700 AA Wageningen, Netherlands.
Leiden Univ, Nat Biodivers Ctr, POB 9517, NL-2300 RA Leiden, Netherlands.
Slovenian Forestry Inst, Dept Yield & Silviculture, Vecna Pot 2, Ljubljana 1000, Slovenia.
Pablo de Olavide Univ, Dept Phys Chem & Nat Syst, Carretera Utrera Km 1, Seville 41013, Spain.
Univ Autonoma Barcelona, Cerdanyola Del Valles 08193, Spain.
Univ Lisbon, Forest Res Ctr, Sch Agr, P-1349017 Lisbon, Portugal.
Mediterranean Univ Reggio Calabria, Dept Agr Sci, I-89060 Reggio Di Calabria, Italy.
Tech Univ Madrid, Forest Genet & Physiol Res Grp, Calle Ramiro de Maeztu 7, Madrid 28040, Spain.
Univ Western Sydney, Hawkesbury Inst Environm, Sci Rd, Richmond, NSW 2753, Australia.
Nat Resources Inst Finland Luke, Viikinkaari 4, Helsinki 00790, Finland.
Univ Debrecen, Dept Bot, Fac Sci & Technol, Egyet Ter 1, H-4032 Debrecen, Hungary.
Nat Resources Canada, Northern Forestry Ctr, Canadian Forest Serv, 5320-122nd St, Edmonton, AB T6H 3S5, Canada.
Technol Educ Inst TEI Stereas Elladas, Dept Forestry & Nat Environm Management, Ag Georgiou 1, Karpenissi 36100, Greece.
Nat Resources Inst Finland Luke, POB 18 Jokiniemenkuja 1, Vantaa 01301, Finland.
Natl Inst Res Dev Forestry Marin Dracea, Eroilor 128, Voluntari 077190, Romania.
Open Univ Cyprus, Fac Pure & Appl Sci, CY-2252 Nicosia, Cyprus.
Univ Cyprus, Dept Biol Sci, POB 20537, CY-1678 Nicosia, Cyprus.
Univ Patras, Dept Biol, Div Plant Biol, Patras 26500, Greece.
Univ Colorado, Dept Geog, Boulder, CO 80309 USA.
No Arizona Univ, Dept Geog Planning & Recreat, POB 15016, Flagstaff, AZ 86011 USA.
Wageningen Univ, Forest Ecol & Forest Management Grp, Droevendaalsesteeg 3a, NL-6708 PB Wageningen, Netherlands.
Univ Novi Sad, Inst Lowland Forestry & Environm, Antona Cehova 13,POB 117, Novi Sad 21000, Serbia.
Univ Molise, Dipartimenti Biosci & Terr, I-86090 C Da Fonte Lappone, Pesche, Italy.
Project Ctr Mt Forests MOUNTFOR, EFI, Via E Mach 1, I-38010 San Michele All Adige, Italy.
CCT CONICET Mendoza, Lab Dendrocronol & Hist Ambiental, Inst Argentino Nivol Glaciol & Ciencias Ambiental, Ave Ruiz Leal S-N,Parque Gen San Martin, RA-5500 Mendoza, Argentina.
Estonian Univ Life Sci, Inst Forestry & Rural Engn, Kreutzwaldi 5, EE-51014 Tartu, Estonia.
Univ Alberta, Boreal Avian Modelling Project, Dept Renewable Resources, 751 Gen Serv Bldg, Edmonton, AB T6G 2H1, Canada.
Univ Minnesota, 600 East 4th St, Morris, MN 56267 USA.
Univ Forestry, Kliment Ohridski St 10, Sofia 1756, Bulgaria.

Доп.точки доступа:
Cailleret, Maxime; Jansen, Steven; Robert, Elisabeth M. R.; Desoto, Lucia; Aakala, Tuomas; Antos, Joseph A.; Beikircher, Barbara; Bigler, Christof; Bugmann, Harald; Caccianiga, Marco; Cada, Vojtech; Camarero, Jesus J.; Cherubini, Paolo; Cochard, Herve; Coyea, Marie R.; Cufar, Katarina; Das, Adrian J.; Davi, Hendrik; Delzon, Sylvain; Dorman, Michael; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J.; Hartmann, Henrik; Heres, Ana-Maria; Hultine, Kevin R.; Janda, Pavel; Kane, Jeffrey M.; Kharuk, Vyacheslav I.; Kitzberger, Thomas; Klein, Tamir; Kramer, Koen; Lens, Frederic; Levanic, Tom; Calderon, R.; Lloret, Francisco; Lobodo-Vale, Raquel; Lombardi, Fabio; Rodriguez, S.; Makinen, Harri; Mayr, Stefan; Meszaros, Ilona; Metsaranta, Juha M.; Minunno, Francesco; Oberhuber, Walter; Papadopoulos, Andreas; Peltoniemi, Mikko; Petritan, Any M.; Rohner, Brigitte; Sanguesa-Barreda, Gabriel; Sarris, Dimitrios; Smith, Jeremy M.; Stan, Amanda B.; Sterck, Frank; Stojanovic, Dejan B.; Suarez, Maria L.; Svoboda, Miroslav; Tognetti, Roberto; Torres-Ruiz, Jose M.; Trotsiuk, Volodymyr; Villalba, Ricardo; Vodde, Floor; Westwood, Alana R.; Wyckoff, Peter H.; Zafirov, Nikolay; Martinez-Vilalta, Jordi; Torres-Ruiz, Jose Manuel; EU [FP1106, FEDER 0087 TRANSHABITAT, LIFE12 ENV/FI/000409]; Swiss National Science Foundation [140968]; German Research Foundation [JA 2174/3-1]; Research Foundation - Flanders (FWO, Belgium); EU HORIZON Programme through a Marie Sklodowska-Curie IF Fellowship [659191]; Portuguese Fundacao para a Ciencia e a Tecnologia (FCT) [SFRH/BPD/70632/2010, SFRH/BPD/86938/2012]; Academy of Finland [252629, 276255, 257641, 265504]; British Columbia Forest Science Program; Forest Renewal BC (Canada); Austrian Science Fund (FWF) [T667-B16, FWF P25643-B16]; Czech Ministry of Education (MSMT) [LD13064, LD14074]; Spanish Ministry of Economy [CGL2015-69186-C21-R, CGL2013-48843-C2-2-R, CGL2012-32965]; Natural Sciences and Engineering Research Council of Canada (NSERC); Service de la protection contre les insectes et les maladies du ministere des forets du Quebec (Canada); Slovenian Research Agency (ARRS) Program [P4-0015]; United States Geological Survey (USGS); French National Research Agency (ANR) [ANR-06VULN-004]; Metaprogram Adaptation of Agriculture and Forests to Climate Change (AAFCC) of the French National Institute for Agricultural Research (INRA); Jewish National Fund (Israel); Spanish Ministry of Economy and Competitiveness [AGL2014-61175-JIN, CGL2013-46808-R]; Bundesministerium fur Bildung und Forschung (BMBF) through the Project REGKLAM (Germany) [01 LR 0802]; Arkansas Agricultural Experiment Station (United States of America); United States Department of Agriculture - Forest Service; Natural Sciences and Engineering Research Council of Canada; Spanish Ministry of Science and Innovation [CGL2007-60120, CSD2008-0040]; Spanish Ministry of Education via a FPU Scholarship; Russian Science Foundation [14-24-00112]; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina) [PIP 112-201101-00058, PIP 112-2011010-0809]; Weizmann Institute of Science (Israel); Keren Kayemeth LeIsrael (KKL) - Jewish National Fund (JNF) [90-9-608-08]; Sussman Center (Israel); Cathy Wills and Robert Lewis Program in Environmental Science (United Kingdom); France-Israel High Council for Research Scientific and Technological Cooperation [3-6735]; Minerva Foundation (Germany); Israeli Ministry of Agriculture and Rural Development; project 'Resilience of Forests' of the Ministry of Economic Affairs [KB19]; program and research group Forest Ecology, Biology and Technology (Slovenia) [P4-0107]; EU through a Marie Sklodowska-Curie IOF Fellowship [624473]; Sparkling Science of the Federal Ministry of Science, Research and Economy (BMWFW) of Austria; Hungarian Scientific Research Fund [K101552]; Natural Science and Engineering Research Council of Canada; Swiss Research Fellowship [13.272 - OAKAGE]; American National Science Foundation [0743498]; British Columbia Ministry of Forests, Lands and Natural Resource Operations (Canada); Public Enterprise 'Vojvodinasume'; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) [PIP 11420110100080]; El Fondo para la Investigacion Cientifica y Tecnologica (FONCyT) [PICT 2012-2009]; Italian Ministry of Education (University and Research, Ciclo del Carbonio ed altri gas serra in ecosistemi forestali, naturali ed artificiali dell'America Latina: analisi preliminare, studio di fattibilita e comparazione con ecosistemi italiani); EU LIFE+ Project MANFOR C.BD. (Environment Policy and Governance, Managing forests for multiple purposes: carbon, biodiversity and socioeconomic wellbeing); Natural Sciences and Engineering Council (NSERC) (Canada) through the University of Winnipeg; Manitoba Conservation (Canada)

    Rice rhizodeposition and carbon stabilisation in paddy soil are regulated via drying-rewetting cycles and nitrogen fertilisation
/ C. T. Atere [et al.] // Biol. Fertil. Soils. - 2017. - Vol. 53, Is. 4. - P407-417, DOI 10.1007/s00374-017-1190-4. - Cited References:66. - This study was financially supported by the National Natural Science Foundation of China (41671292; 41371304), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15020401), the Royal Society Newton Advanced Fellowship (NA150182), and the Recruitment Program of High-end Foreign Experts of the State Administration of Foreign Experts Affairs, awarded to Prof. Georg Guggenberger (GDT20164300013), Public Service Technology Center, Institute of Subtropical Agriculture, Chinese Academy of Sciences. Also, Mr. Cornelius T. Atere acknowledges the PhD training grant from the Nigerian Tertiary Education Trust Fund through the Obafemi Awolowo University, Ile-Ife, Nigeria. . - ISSN 0178-2762. - ISSN 1432-0789
РУБ Soil Science

Аннотация: This study aimed to better understand the stabilisation of rice rhizodeposition in paddy soil under the interactive effects of different N fertilisation and water regimes. We continuously labelled rice ('Zhongzao 39') with (CO2)-C-13 under a combination of different water regimes (alternating flooding-drying vs. continuous flooding) and N addition (250 mg N kg(-1) urea vs. no addition) and then followed C-13 incorporation into plant parts as well as soil fractions. N addition increased rice shoot biomass, rhizodeposition, and formation of C-13 (new plant-derived C) in the rhizosphere soils under both water regimes. By day 22, the interaction of alternating flooding-drying and N fertilisation significantly increased shoot and root C-13 allocations by 17 and 22%, respectively, over the continuous flooding condition. The interaction effect also led to a 46% higher C-13 allocation to the rhizosphere soil. Alone, alternating water management increased C-13 deposition by 43%. In contrast, N addition increased C-13 deposition in rhizosphere soil macroaggregates under both water regimes, but did not foster macroaggregation itself. N treatment also increased C-13 deposition and percentage in microaggregates and in the silt and clay-size fractions of the rhizosphere soil, a pattern that was higher under the alternating condition. Overall, our data indicated that combined N application and a flooding-drying treatment stabilised rhizodeposited C in soil more effectively than other tested conditions. Thus, they are desirable practices for improving rice cropping, capable of reducing cost, increasing water use efficiency, and raising C sequestration.

WOS,
Смотреть статью

Держатели документа:
Chinese Acad Sci, Inst Subtrop Agr, Key Lab Agroecol Proc Subtrop Reg, Changsha 410125, Hunan, Peoples R China.
Chinese Acad Sci, Inst Subtrop Agr, Changsha Res Stn Agr & Environm Monitoring, Changsha 410125, Hunan, Peoples R China.
Bangor Univ, Sch Environm Nat Resources & Geog, Bangor LL57 2UW, Gwynedd, Wales.
Leibniz Univ Hannover, Inst Soil Sci, D-30419 Hannover, Germany.
SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Atere, Cornelius Talade; Ge, Tida; Zhu, Zhenke; Tong, Chengli; Jones, Davey L.; Shibistova, Olga; Guggenberger, Georg; Wu, Jinshui; National Natural Science Foundation of China [41671292, 41371304]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDB15020401]; Royal Society Newton Advanced Fellowship [NA150182]; Recruitment Program of High-end Foreign Experts of the State Administration of Foreign Experts Affairs [GDT20164300013]; Public Service Technology Center, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Nigerian Tertiary Education Trust Fund through the Obafemi Awolowo University, Ile-Ife, Nigeria

    SoilChip-XPS integrated technique to study formation of soil biogeochemical interfaces
/ X. Huang [et al.] // Soil Biol. Biochem. - 2017. - Vol. 113. - P71-79, DOI 10.1016/j.soilbio.2017.05.021 . - ISSN 0038-0717
Аннотация: Many soil functions are modulated by processes at soil biogeochemical interfaces (BGIs). However, characterizing the elemental dynamics at BGIs is hampered by the heterogeneity of soil microenvironments. In order to investigate the processes of BGI formation in an upland soil (Mollisol) and a paddy soil (Oxisol), we developed a SoilChip method by assembling dispersed soil particles onto homogeneous 800-?m-diameter microarray chips and then submerging them in a solution that contained dissolved organic matter (OM) extracted from one of the two soils. The chips with Mollisol particles were incubated at 95–100% humidity, whereas the chips with Oxisol particles were incubated at 100% humidity. Dynamics of individual elements at the soils’ BGIs were quantitatively determined using X-ray photoelectron spectroscopy (XPS). Distinct differences in the soil-microbe complexes and elemental dynamics between the Mollisol and Oxisol BGIs suggested that the formation of specific BGIs resulted from the complex interaction of physical, chemical, and microbial processes. By integrating the SoilChip and XPS, it was possible to elucidate the dynamic formation of the two different soil BGIs under standardized conditions. Therefore, the SoilChip method is a promising tool for investigating micro-ecological processes in soil. © 2017

Scopus,
Смотреть статью,
WOS

Держатели документа:
Key Laboratory of Agro-ecological Processes in the Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
University of Chinese Academy of Sciences, Beijing, China
Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
Institute of Soil Science, Leibniz Universitat Hannover, Hannover, Germany
VN Sukachev Institute of Forest, Russian Academy of Sciences - Siberian Branch, Akademgorodok, Krasnoyarsk, Russian Federation
Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China

Доп.точки доступа:
Huang, X.; Li, Y.; Liu, B.; Guggenberger, G.; Shibistova, O.; Zhu, Z.; Ge, T.; Tan, W.; Wu, J.

    Between ash dieback and emerald ash borer: Two Asian invaders in Russia and the future of ash in Europe
/ D. L. Musolin [et al.] // Baltic For. - 2017. - Vol. 23, Is. 1. - P316-333 . - ISSN 1392-1355

Кл.слова (ненормированные):
Agrilus planipennis -- Ash -- Ash dieback -- Buprestidae -- Chalara fraxinea -- Emerald ash borer -- Forest -- Forest health -- Forest pests -- Fraxinus -- Hymenoscyphus fraxineus -- Pathogen -- Plant resistance

Аннотация: Four ash species are native to Russia (Fraxinus excelsior, F. angustifolia, F. chinensis, F. mandshurica) while F. pennsylvanica was introduced from North America. Ash forests cover 666 300 ha (0.1% of total forest area of Russia) and constitute a volume of 77.91 mln m3. Ash is widely used in the greening of populated places, around fields and along inter-city roads. We review the current situation with two recent invaders – ash dieback fungus Hymenoscyphus fraxineus (Ascomycota) and emerald ash borer Agrilus planipennis (Coleoptera). Hymenoscyphus fraxineus was likely accidentally introduced from Asia to Western Europe, expanded its range eastward and by 2014 reached Moscow, whereas A. planipennis was accidentally introduced from Asia to Moscow Region, expanded its range in all directions but most noticeably southwards. By 2012, A. planipennis reached Smolensk Region bordering Belarus, and by 2013, Voronezh Region bordering Ukraine. At least between Belarus and Moscow city, the ranges of invaders overlap. Both species are a threat to the native as well as introduced ash in Europe. We list known records of two invaders in Russia (as of 2016) and for A. planipennis also review food plants, seasonal cycle, dispersal, parasitoids and susceptibility of different ash species. We analyze the synergetic effect of two invaders on ash in the area of overlapped ranges and potential losses of biological diversity associated with ash decline and conclude that the future of ash in Europe is precarious. The following directions of actions in Eurasia are proposed: (1) studies of resistance mechanisms to both agents in Asian ash species (first of all, F. chinensis and F. mandshurica) and hybrids between Asian and European or North-American ash species, (2) studies on selection of resistant ash forms and hybrids (to both agents), (3) controlled introduction of resistant Asian ash species, (4) slowing down of expansions of A. planipennis to Western Europe and H. fraxineus within Russia, (5) studies of natural control agents, (6) monitoring of invasions and sanitary condition of ash, and (7) studies on synergetic effect of H. fraxineus and A. planipennis on ash. © Lithuanian Research Centre for Agriculture and Forestry.

Scopus

Держатели документа:
Department of Forest Protection, Wood Science and Game Management, Saint Petersburg State Forest Technical University, Institutskiy per., 5, Saint Petersburg, Russian Federation
Department of Biogeography and Environmental Protection, St. Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, Russian Federation
Department of Selection, Reforestation and Chemical Thinning, Saint Petersburg Forestry Research Institute, Institutskiy av., 21, St. Petersburg, Russian Federation
Department of Forest Protection and Wood Science, Belarusian State Technological University, Sverdlova str., 13a, Minsk, Belarus
Department of Forest Zoology, V.N. Sukachev Institute of Forest, Federal Research Center «Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences», Akademgorodok 50, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Musolin, D. L.; Selikhovkin, A. V.; Shabunin, D. A.; Zviagintsev, V. B.; Baranchikov, Y. N.

    Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil
/ Z. Zhu [et al.] // Soil Biol. Biochem. - 2018. - Vol. 121. - P67-76, DOI 10.1016/j.soilbio.2018.03.003 . - ISSN 0038-0717

Кл.слова (ненормированные):
Element stoichiometry -- Extracellular enzyme activity -- Priming effect -- Soil microbial biomass -- Soil organic matter turnover -- Structural equation models -- Biogeochemistry -- Biological materials -- Biomass -- Carbon -- Carbon dioxide -- Enzyme activity -- Enzymes -- Mineralogy -- Organic compounds -- Stoichiometry -- Extracellular enzyme activity -- Priming effects -- Soil microbial biomass -- Soil organic matter turnover -- Structural equation models -- Soils -- agricultural soil -- biomass -- biomineralization -- experimental study -- microbial activity -- numerical model -- nutrient availability -- paddy field -- plant residue -- soil carbon -- soil emission -- soil organic matter -- stoichiometry -- straw -- terrestrial ecosystem -- turnover

Аннотация: Nitrogen (N) and phosphorus (P) availability plays a crucial role in carbon (C) cycling in terrestrial ecosystems. However, the C:N:P stoichiometric regulation of microbial mineralization of plant residues and its impact on the soil priming effect (PE), measured as CO2 and CH4 emission, in paddy soils remain unclear. In this study, the effect of soil C:N:P stoichiometry (regulated by the application of N and P fertilizers) on the mineralization of 13C-labelled rice straw and the subsequent PE was investigated in a 100-day incubation experiment in flooded paddy soil. N and P additions increased straw mineralization by approximately 25% and 10%, respectively. Additions of both N and P led to higher CO2 efflux, but lower CH4 emission. With an increase in the ratios of DOC:NH4 +-N, DOC:Olsen P, and microbial biomass C:N, 13CO2 efflux increased exponentially to a maximum. Compared with sole straw addition, exclusive N addition led to a weaker PE for CO2 emission, whereas exclusive P addition induced a stronger PE for CO2 emission. In contrast, CH4 emitted from native soil organic matter (SOM) was reduced by 7.4% and 46.1% following P and NP application, respectively. Structural equation models suggest that available N had dominant and direct positive effects, whereas microbial biomass stoichiometry mainly exerted negative indirect effects on PE. The stoichiometry of soil enzyme activity directly down-regulated CH4 emission from SOM. Microbes obviously regulate soil C turnover via stoichiometric flexibility to maintain an elemental stoichiometric balance between resources and microbial requirements. The addition of straw in combination with N and P fertilization in paddy soils could therefore meet microbial stoichiometric requirements and regulate microbial activity and extracellular enzyme production, resulting in co-metabolism of fresh C and native SOM. © 2018 Elsevier Ltd

Scopus,
Смотреть статью,
WOS

Держатели документа:
Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, China
Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, China
Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
Institute of Soil Science, Leibniz Universitat Hannover, Hannover, Germany
VN Sukachev Institute of Forest, SB-RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Zhu, Z.; Ge, T.; Luo, Y.; Liu, S.; Xu, X.; Tong, C.; Shibistova, O.; Guggenberger, G.; Wu, J.

    Improved estimates of biomass expansion factors for Russian forests
/ D. Schepaschenko [et al.] // Forests. - 2018. - Vol. 9, Is. 6, DOI 10.3390/f9060312 . - ISSN 1999-4907
Аннотация: Biomass structure is an important feature of terrestrial vegetation. The parameters of forest biomass structure are important for forest monitoring, biomass modelling and the optimal utilization and management of forests. In this paper, we used the most comprehensive database of sample plots available to build a set of multi-dimensional regression models that describe the proportion of different live biomass fractions (i.e., the stem, branches, foliage, roots) of forest stands as a function of average stand age, density (relative stocking) and site quality for forests of the major tree species of northern Eurasia. Bootstrapping was used to determine the accuracy of the estimates and also provides the associated uncertainties in these estimates. The species-specific mean percentage errors were then calculated between the sample plot data and the model estimates, resulting in overall relative errors in the regression model of -0.6%, -1.0% and 11.6% for biomass conversion and expansion factor (BCEF), biomass expansion factor (BEF), and root-to-shoot ratio respectively. The equations were then applied to data obtained from the Russian State Forest Register (SFR) and a map of forest cover to produce spatially distributed estimators of biomass conversion and expansion factors and root-to-shoot ratios for Russian forests. The equations and the resulting maps can be used to convert growing stock volume to the components of both above-ground and below-ground live biomass. The new live biomass conversion factors can be used in different applications, in particular to substitute those that are currently used by Russia in national reporting to the UNFCCC (United Nations Framework Convention on Climate Change) and the FAO FRA (Food and Agriculture Organization's Forest Resource Assessment), among others. © 2018 by the authors.

Scopus,
Смотреть статью,
WOS

Держатели документа:
International Institute for Applied Systems Analysis, Laxenburg, Austria
Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russian Federation
School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
Institute of Forest Siberian Branch Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation
Education and Research Institute of Forestry and Park Gardening, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
Institute of Numerical Mathematics of Russian Academy of Sciences, Ul. Gubkina 8, Moscow, Russian Federation
The Earth Science Museum, M.V. Lomonosov Moscow State University, 1 Leninskiye Gory, GSP-1, Moscow, Russian Federation

Доп.точки доступа:
Schepaschenko, D.; Moltchanova, E.; Shvidenko, A.; Blyshchyk, V.; Dmitriev, E.; Martynenko, O.; See, L.; Kraxner, F.

    Invasive leafminers on woody plants: a global review of pathways, impact, and management
/ N. Kirichenko, S. Augustin, M. Kenis // J. Pest Sci. - 2018. - P1-14, DOI 10.1007/s10340-018-1009-6 . - ISSN 1612-4758

Кл.слова (ненормированные):
Biological control -- Impact -- Invasive species -- Leafminers -- Pathways -- Woody plants

Аннотация: Leafminers are a taxonomically diverse group of endophagous insects. A number of them are pests in forestry, horticulture and agriculture, and some of them have become important invasive species. Here, we discuss the characteristics of invasive leafminers of woody plants. We first present 12 cases of invasive leaf-mining species belonging to four different insect orders. For each of them, we briefly describe their invasion, including pathways of introduction, their impact and management methods and their ecology. We then discuss various aspects of these invasions. Leafminers are introduced to new continents and spread through various pathways such as horticultural trade and accidental transport of adults and pre-imaginal stages in containers and vehicles. They may also spread long distances with air currents. A few species have serious economic impacts as orchard pests, such as the citrus leafminer, Phyllocnistis citrella, or as pests of ornamental plants, such as the horse-chestnut leafminer, Cameraria ohridella. The ecological impact of these species should be better studied, especially those killing native trees, such as the birch leaf-mining weevil, Orchestes fagi, in Canada. Compared to other insect groups, invasive leafminers are usually recruited by a range of native parasitoids, which may or may not succeed in controlling the invasive species. Biological control by introduction of parasitoids from the native range has often been successful to control invasive leafminers. The review ends by short discussions on taxonomic issues and on the use of leafminers as models to study invasion ecology. © 2018 The Author(s)

Scopus,
Смотреть статью,
WOS

Держатели документа:
Sukachev Institute of Forest SB RAS, Akademgorodok 50/28, Krasnoyarsk, Russian Federation
Siberian Federal University, 79 Svobodny pr, Krasnoyarsk, Russian Federation
INRA, UR 633 Zoologie Forestiere, 2163 Avenue de la Pomme de Pin, Orleans, France
Rue des Grillons 1, Delemont, Switzerland

Доп.точки доступа:
Kirichenko, N.; Augustin, S.; Kenis, M.