Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 42

    Microbiological bioindication factors and bioremediation of disturbed forest ecosystems of Siberia
: материалы временных коллективов / N. D. Sorokin [и др.] // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 184-186. - Библиогр. в конце ст.

Аннотация: Microbial community and population amounts, as well as functional activity, can be concluded to indicate level of human-caused forest ecosystem disturbance at early stage of anthropogenesis. This study identified mocroorganisms useful for bioremediation of disturbed components of forest ecosystems differing in disturbance level. Application of biologically active agents (bacteria and microscopic fungi) was shown to be useful for restoring and improving soil conditions during bioremediation (sanation).

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Sorokin, Nikolay Dmitriyevich; Сорокин, Николай Дмитриевич; Grodnitskaya, Irina Dmitriyevna; Гродницкая, Ирина Дмитриевна; Pashenova, Natal'ya Veniaminovna; Пашенова, Наталья Вениаминовна; Yevgrafova, Svetlana Yur'yevna; Евграфова, Светлана Юрьевна; Yelistratova, E.N.; Елистратова Э.Н.

    Microbial activity of peat soils of boggy larch forests and bogs in the permafrost zone of central Evenkia
/ I. D. Grodnitskaya [et al.] // Eurasian Soil Sci. - 2013. - Vol. 46, Is. 1. - P61-73, DOI 10.1134/S1064229313010043. - Cited References: 39. - This work was supported by the Russian Foundation for Basic Research (project nos. 09-04-01380-a, 11-05-00374-a, and 11-04-01884-a) and by the Ministry of Education and Science of the Russian Federation (project no. 2.1.1/6611). . - 13. - ISSN 1064-2293
РУБ Soil Science

Кл.слова (ненормированные):
cryogenic soils -- boggy larch forests -- oligo-mesotrophic bog -- microbiological activity -- SIR method

Аннотация: The microbial activity of peat soils was studied in boggy larch forests and in an oligo-mesotrophic bog in the basins of the Kochechum and Nizhnaya Tunguska rivers (central Evenkia). It was found that the organic matter transformation in the peat soils of all the plots is mainly performed by oligotrophic bacteria composing 88-98% of the total bacterial complex. The major contribution to the organic matter destruction belonged to the heterotrophic microorganisms, the activity of which depended on the permafrost depth and the soil temperature, the soil acidity, and the botanical composition of the peat. Peat soils were characterized by different activities as judged from their microbiological and biochemical parameters. The functioning of microbial communities in the studied ecotopes of the permafrost zone was within the range of natural variations, which pointed to their ecological stability.

Полный текст,
WOS,
Scopus

Держатели документа:
[Grodnitskaya, I. D.
Karpenko, L. V.
Knorre, A. A.
Syrtsov, S. N.] Russian Acad Sci, Sukachev Inst Forestry, Siberian Div, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Grodnitskaya, I.D.; Karpenko, L.V.; Knorre, A.A.; Syrtsov, S.N.

    Biogeochemistry of carbon, major and trace elements in watersheds of northern Eurasia drained to the Arctic Ocean: The change of fluxes, sources and mechanisms under the climate warming prospective
/ O. S. Pokrovsky [et al.] // C. R. Geosci. - 2012. - Vol. 344, Is. 11.12.2013. - P663-677, DOI 10.1016/j.crte.2012.08.003. - Cited References: 81. - This work was supported by ANR "Arctic Metals", LIA "LEAGE", PICS No. 6063, GDRI "CAR WET SIB", grants RFBR-CNRS Nos 12-05-91055, 08-05-00312_a, 07-05-92212-CNRS_a, 08-04-92495-CNRS_a, CRDF RUG1-2980-KR10, Federal Program RF "Kadry" (contract N 14.740.11.0935), and Programs of Presidium RAS and UrORAS. . - 15. - ISSN 1631-0713
РУБ Geosciences, Multidisciplinary

Аннотация: Warming of the permafrost accompanied by the release of ancient soil organic carbon is one of the most significant environmental threats within the global climate change scenario. While the main sites of permafrost carbon processing and its release to the atmosphere are thermokarst (thaw) lakes and ponds, the main carriers of carbon and related major and trace elements from the land to the Arctic ocean are Russian subarctic rivers. The source of carbon in these rivers is atmospheric C consumed by chemical weathering of rocks and amplified by plant uptake and litter decomposition. This multidisciplinary study describes results of more than a decade of observations and measurements of elements fluxes, stocks and mechanisms in the Russian boreal and subarctic zone, from Karelia region to the Kamchatka peninsula, along the gradient of permafrost-free terrain to continuous permafrost settings, developed on various lithology and vegetation types. We offer a comprehensive, geochemically-based view on the functioning of aquatic boreal systems which quantifies the role of the following factors on riverine element fluxes: (1) the specificity of lithological substrate; (2) the importance of organic and organo-mineral colloidal forms, notably during the snowmelt season; (3) the phenomenon of lakes seasonal overturn; (4) the role of permafrost within the small and large watersheds; and (5) the governing role of terrestrial vegetation in element mobilization from rock substrate to the river. Care of such a multiple approach, a first order prediction of the evolution of element stocks and fluxes under scenario of progressive warming in high latitudes becomes possible. It follows the increase of frozen peat thawing in western Siberia will increase the stocks of elements in surface waters by a factor of 3 to 10 whereas the increase of the thickness of active layer, the biomass and the primary productivity all over permafrost-affected zone will bring about a short-term increase of elements stocks in labile reservoir (plant litter) and riverine fluxes by a factor of 2. The change of the plant productivity and community composition under climate warming in central Siberia will be the most important factor of major and trace element fluxes increase (probably a factor of 2) from the soil to the river and, finally, to the Arctic Ocean. (c) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Pokrovsky, Oleg S.
Viers, Jerome
Dupre, Bernard
Audry, Stephane] Univ Toulouse, CNRS IRD OMP, Geosci Environm Toulouse, F-31400 Toulouse, France
[Chabaux, Francois] CNRS, EOST, UMR 7517, CGS, F-67084 Strasbourg, France
[Gaillardet, Jerome] Inst Phys Globe Strasbourg Paris, Equipe Geochim Cosmochim, F-75005 Paris, France
[Prokushkin, Anatoly S.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk, Russia
[Shirokova, Liudmila S.] Russian Acad Sci, Inst Ecol Problems N, Arkhangelsk, Russia
[Kirpotin, Sergey N.] Tomsk State Univ, Tomsk 634050, Russia
[Lapitsky, Sergey A.] Moscow MV Lomonosov State Univ, Geol Fac, Moscow, Russia
[Shevchenko, Vladimir P.] RAS, PP Shirshov Oceanol Inst, Moscow 117901, Russia

Доп.точки доступа:
Pokrovsky, O.S.; Viers, J...; Dupre, B...; Chabaux, F...; Gaillardet, J...; Audry, S...; Prokushkin, A.S.; Shirokova, L.S.; Kirpotin, S.N.; Lapitsky, S.A.; Shevchenko, V.P.

    Symbiotic nitrogen fixation in the alpine community of a lichen heath of the Northwestern Caucasus Region (the Teberda Reserve)
[Text] / M. I. Makarov [et al.] // Eurasian Soil Sci. - 2011. - Vol. 44, Is. 12. - P1381-1388, DOI 10.1134/S1064229311100097. - Cited References: 42. - This work was supported by the Russian Foundation for Basic Research (project nos. 08-04-92890 and 10-04-00780). . - 8. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The symbiotic fixation of atmospheric nitrogen by leguminous plants in the alpine community of a lichen heath at the Teberda State Biosphere Reserve is well adapted to low soil temperature characteristic for the altitude of 2800 m a.s.l. For the determination of the N fixation by isotopic methods (the method of the natural (15)N abundance and the method of isotopic (15)N dilution), Trifolium polyphyllum was taken as the control plant. This plant was used as it does not form symbiosis with the nitrogen-fixing bacteria in the highlands of the Northern Caucasus Region. The contribution of the N fixation to the N nutrition of different leguminous plant species as determined by the natural (15)N abundance method amounted to 28-73% at delta(15)N(0) = 0aEuro degrees and 46-117% at delta(15)N(0) = -1aEuro degrees; for the determination of the N fixation by the method of the isotopic label's dilution, it was 34-97%. The best correlation of the results obtained by these two isotopic methods was observed for the natural fractionation of the N isotopes in the course of the N fixation in the range of -0.5 to -0.7aEuro degrees. The determination of the nitrogenase activity of the roots by the acetylene method confirmed the absence of N fixation in T. polyphyllum and its different contribution to the N nutrition of different species of leguminous plants.

Полный текст,
WOS,
Scopus

Держатели документа:
[Makarov, M. I.
Malysheva, T. I.
Ermak, A. A.
Stepanov, A. L.] Lomonosov Moscow State Univ, Fac Soil Sci, Moscow 119991, Russia
[Onipchenko, V. G.] Lomonosov Moscow State Univ, Fac Biol, Moscow 119991, Russia
[Menyailo, O. V.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Makarov, M.I.; Malysheva, T.I.; Ermak, A.A.; Onipchenko, V.G.; Stepanov, A.L.; Menyailo, O.V.

    Microbial Indication of Soils Contaminated with Industrial Emissions
[Text] / N. D. Sorokin, E. N. Afanasova // Contemp. Probl. Ecol. - 2011. - Vol. 4, Is. 5. - P508-512, DOI 10.1134/S1995425511050092. - Cited References: 26. - The work was carried out with financial support of RAS Programme no. 23, Project 1.3 "Succession Changes in Biodiversity in Technogenic Deteriorated Ecosystems of Siberia." . - 5. - ISSN 1995-4255
РУБ Ecology

Аннотация: Changes in the composition of microbial complexes and their biochemical activity in soil in the vicinity of a strong source of HF emission have been studied. A sharp decrease of the biomass, the number of asporous bacteria and actinomycetes, and a smaller decrease of the number of microscopic fungi has been revealed, along with a decrease in the enzymatic and respiratory activity of contaminated soil with the relative increase in the fraction of sporiferous bacteria. On the basis of the response of introduced population of Bacillus subtilis to different doses of HF, NaF, Na(2)SO(3) microbiological norm-fixing for technogenic soil ecosystems has been carried out.

Полный текст,
WOS,
Scopus

Держатели документа:
[Sorokin, N. D.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Afanasova, E. N.] Siberian Fed Univ, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Sorokin, N.D.; Afanasova, E.N.

    Tree species affect atmospheric CH4 oxidation without altering community composition of soil methanotrophs
[Text] / O. V. Menyailo, W. R. Abraham, R. . Conrad // Soil Biol. Biochem. - 2010. - Vol. 42, Is. 1. - P101-107, DOI 10.1016/j.soilbio.2009.10.005. - Cited References: 50. - We thank Esther Surges for the isotope ratio measurements, Svetlana Dedysh and Peter Frenzel for discussion of the data. The funding was provided by the Alexander von Humboldt Foundation, Marie Curie Fellowship and by the Russian President Award for best professors awarded to OVM. . - 7. - ISSN 0038-0717
РУБ Soil Science

Аннотация: Plant species exert strong effects on ecosystem functions and one of the emerging, and difficult to test hypotheses, is that plants alter soil functions through changing the community structure of soil microorganisms. We tested the hypothesis for atmospheric CH4 oxidation by using soil samples from a Siberian afforestation experiment and exposing them to C-13-CH4. We determined the activity of the soil methanotrophs under different tree species at three levels of initial CH4 concentration (30, 200 and 1000 ppm) thus distinguishing the activities of low- and high-affinity methanotrophs. Half of the samples were incubated with C-13-enriched CH4 (99.9%) and half with C-12-CH4. This allowed an estimation of the amount of C-13 incorporated into individual PLFAs and determination of PLFAs of methanotrophs involved in CH4 oxidation at the different CH4 concentrations. Tree species strongly altered the activity of atmospheric CH4 oxidation without appearing to change the composition of high-affinity methanotrophs as evidenced by PLFA C-13 labeling. The low diversity of atmospheric CH4 oxidizers, presumably belonging to the UCS alpha group, may explain the lack of tree species effects on the composition of soil methanotrophs. We submit that the observed tree species effects on atmospheric CH4 oxidation indicate an effect on biomass or cell-specific activities rather than by a community change and this may be related to the impact of the tree species on soil N cycling. (C) 2009 Elsevier Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Menyailo, Oleg V.] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Menyailo, Oleg V.
Conrad, Ralf] Max Planck Inst Terr Microbiol, D-35043 Marburg, Germany
[Abraham, Wolf-Rainer] Helmholtz Ctr Infect Res, D-38124 Braunschweig, Germany

Доп.точки доступа:
Menyailo, O.V.; Abraham, W.R.; Conrad, R...

    Ecological characteristics of the Microflora development in the forest cryogenic soils in the north of Central Siberia
[Text] / N. . Sorokin [et al.] // Contemp. Probl. Ecol. - 2008. - Vol. 1, Is. 6. - P652-657, DOI 10.1134/S1995425508060064. - Cited References: 14. - The study was conducted with the financial support of the Integration Project of SB RAS no. 24, the project of the RFBR-Yenisei 07-04-96812, as well as with the support of the Ministry of Education and Science of the Russian Federation and the American Foundation for Civic Research and Development, grant no. RUX0-002-KR-06, program "Fundamental Research and Higher Education". . - 6. - ISSN 1995-4255
РУБ Ecology
Рубрики:
MICROBIAL BIOMASS

Аннотация: The paper focuses on investigating the densities of different ecological trophic groups of soil microorganisms, cellulose decomposition rates, and respiration of cryogenic forest soils in the north of Central Siberia and those of the southern taiga subzone, including those affected by surface wildfires. Psychrotolerant bacteria and micromycetes were found to dominate these soil complexes. The biological activity of the upper soil horizon in the north appeared to be close to that in the south, although the growing season in the former area is shorter compared to the latter.

Полный текст,
WOS

Держатели документа:
[Sorokin, N. D.
Evgrafova, S. Yu.
Grodnitskaya, I. D.
Bogorodskaya, A. V.] RAS, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Sorokin, N...; Evgrafova, S...; Grodnitskaya, I...; Bogorodskaya, A...

    The influence of tree species on the biomass of denitrifying bacteria in gray forest soils
[Text] / O. V. Menyailo // Eurasian Soil Sci. - 2007. - Vol. 40, Is. 3. - P302-307, DOI 10.1134/S1064229307030088. - Cited References: 11 . - 6. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The biomass of two groups of microorganisms was studied in gray forest soils under six tree species (spruce, Scotch pine, Arolla pine, larch, birch, and aspen) and in the soil of a layland (a clearing in the forest) using kinetic methods. The biomass was the highest in the soil of the layland. The lowest (19.4 mu g C/g of soil) biomass of heterotrophic microorganisms was found in the soil under the birch trees, and the highest one (41.7 and 32.0 mu g C/g), under the pine and spruce ones. The biomass of denitrifying microorganisms was lower by thirty times than that of the heterotrophic ones. In the soils under the pine and spruce trees (8.4 and 9.2 mu g C/g, respectively), the biomass of the denitrifying microorganisms was the lowest; under the birch and larch trees, it was the highest (16.7 and 13.7 mu g C/g).

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Menyailo, O.V.

    Application of microbes to the soils of Siberian tree nurseries
[Text] / I. D. Grodnitskaya, N. D. Sorokin // Eurasian Soil Sci. - 2007. - Vol. 40, Is. 3. - P329-334, DOI 10.1134/S106422930703012X. - Cited References: 22 . - 6. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The introduction of Trichoderma viride spores (10(8) CFU per 1 cm(2)) essentially changed the structure of micromycetes in the soils of tree nurseries in Krasnoyarsk region. During the first 20 days, in the variants with dark gray forest soils and podzolized chernozems, the total number of fungi decreased by 3-4 and 1.5 times, respectively, as compared to that in the control plots. During the intense development of the introduced microbes, the species composition of the soil fungi changed considerably. The treatment of Scots pine seeds with metabolites of Trichoderma fungi, as well as Pseudomonas and Bacillus bacteria, in the form of water suspensions, biopreparations, and dry spores promoted an increase in the yield of seedlings and improve their morphometric parameters. At the end of the growing period, the treatment with Trichoderma and the biopreparation on its basis increased these parameters, on average, by 18-70%, and the treatment with bacteria increased the same parameters by 13-15%. The application of microbial preparations improved the phytosanitary state of the soils in the studied tree nurseries. The use of the strains of indigenous microorganisms might be feasible for solving bioremediation problems more successfully in particular regions.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Grodnitskaya, I.D.; Sorokin, N.D.

    Biological activity of forest cryogenic soils in Central Evenkia
[Text] / N. D. Sorokin, S. Y. Evgrafova // Eurasian Soil Sci. - 1999. - Vol. 32, Is. 5. - P578-582. - Cited References: 21 . - 5. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The quantitative composition of various trophic groups of microorganisms and the enzyme activity of forest cryogenic soils in Central Evenkia was studied. The preferential development of complexes of psychrotolerant bacteria and micromycetes was found. During a short growing period, the biological activity of upper organic horizons in northern soils is comparable with that in southern taiga soils of Siberia. The microflora and biological activity of southern taiga soils in Central Siberia is understood rather completely. At the same time, information on the biogenic properties of forest soils in northern Siberian regions is scarce, though there are representative data on sylvicultural, soil, physiological, and biochemical studies of forest biogeocenoses.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Forest Inst, Siberian Div, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Sorokin, N.D.; Evgrafova, S.Y.

    Bacterial diseases of conifer seedlings in forest nurseries of central Siberia
[Text] / I. D. Grodnitskaya, A. B. Gukasyan // Microbiology. - 1999. - Vol. 68, Is. 2. - P189-193. - Cited References: 25 . - 5. - ISSN 0026-2617
РУБ Microbiology

Кл.слова (ненормированные):
nurseries -- conifer seedlings -- bacterioses -- phytopathogenic bacteria -- accompanying microflora

Аннотация: In forest nurseries of Siberia, the following diseases of the conifer seedlings were observed: necroses and chloroses of needles (causative agent, Xanthomonas ampelina); bacterial blight of needles and stems (Pseudomonas syringae); vascular bacteriosis (P. solanacearum); blackening and drying of terminal buds, needle bases, and stems (P. fluorescence); tumor formation at the root collar (Agrobacterium radiobacter and A. tumefaciens); wilting and lodging of the young growth due to the injury of the root system (Bacillus mycoides and B. mesentericus).

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forest, Krasnoyarsk, Russia

Доп.точки доступа:
Grodnitskaya, I.D.; Gukasyan, A.B.

    Microbial complexes of hydromorphic soils in the Selenga River delta (Baikal region)
[Text] / N. D. Sorokin [et al.] // Eurasian Soil Sci. - 2006. - Vol. 39, Is. 7. - P765-770, DOI 10.1134/S1064229306070106. - Cited References: 14 . - 6. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The number and the biomass of microorganisms were determined in the soils of the floodplain and islands in the Selenga River delta. The population of fungi in the soils studied was low. The number of saprotrophic prokaryote microorganisms varied from 10(6)-10(8) CFU/g of soil in the upper horizons to 10(4)-10(5) CFU/g in the lower horizons of the soils. This pattern is typical for most zonal soils. The microbial biomass in the floodplain soils was 2-4 times as high as that in the soils of the islands. The number of microorganisms of different ecologic-trophic groups participating in the nitrogen and carbon mobilization was much lower than that in the hydromorphic soils of the Transbaikal region or in the cryogenic soils of the Angara River basin (Irkutsk district). The low coefficient of microbiological mineralization and the low coefficient showing the lack of nitrogen (coefficient of oligotrophness) in the soils indicated the weak processes of organic matter decomposition in the soils studied. During the season investigated (August-September), the bacterial complexes in all the soils were dominated by bacteria of the genera Bacillus, Pseudomonas, and Aquaspirillum. In the floodplain soils, streptomycetes constituted a considerable part of the microbial complexes of the floodplain soils, whereas, in the soils of the islands, their number was minor.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia
Russian Acad Sci, Siberian Div, Inst Gen & Expt Biol, Ulan Ude 670047, Russia

Доп.точки доступа:
Sorokin, N.D.; Makushkin, E.O.; Korsunov, V.M.; Afanasova, E.N.; Shakhmatova, E.Y.

    Changing land use reduces soil CH(4) uptake by altering biomass and activity but not composition of high-affinity methanotrophs
[Text] / O. V. Menyailo [et al.] // Glob. Change Biol. - 2008. - Vol. 14, Is. 10. - P2405-2419, DOI 10.1111/j.1365-2486.2008.01648.x. - Cited References: 62. - We thank Esther Surges for the isotope ratio measurements, V. Menyailo and V. Novikov for the help with field flux measurements, A. Pimenov for botanical description of the grassland and P. Frenzel for discussion of the data. We are deeply grateful to the staff of Soil Science Department of the Institute of Forest in Krasnoyarsk for creation and maintaining the afforestation experiment over the last 35 years. The work was funded by the US Civilian Research and Development Foundation (USA) and by the Alexander von Humboldt Foundation (Germany). . - 15. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Forest ecosystems assimilate more CO(2) from the atmosphere and store more carbon in woody biomass than most nonforest ecosystems, indicating strong potential for afforestation to serve as a carbon management tool. However, converting grasslands to forests could affect ecosystem-atmosphere exchanges of other greenhouse gases, such as nitrous oxide and methane (CH(4)), effects that are rarely considered. Here, we show that afforestation on a well-aerated grassland in Siberia reduces soil CH(4) uptake by a factor of 3 after 35 years of tree growth. The decline in CH(4) oxidation was observed both in the field and in laboratory incubation studies under controlled environmental conditions, suggesting that not only physical but also biological factors are responsible for the observed effect. Using incubation experiments with (13)CH(4) and tracking (13)C incorporation into bacterial phospholipid fatty acid (PLFA), we found that, at low CH(4) concentrations, most of the (13)C was incorporated into only two PLFAs, 18 : 1 omega 7 and 16 : 0. High CH(4) concentration increased total (13)C incorporation and the number of PLFA peaks that became labeled, suggesting that the microbial assemblage oxidizing CH(4) shifts with ambient CH(4) concentration. Forests and grasslands exhibited similar labeling profiles for the high-affinity methanotrophs, suggesting that largely the same general groups of methanotrophs were active in both ecosystems. Both PLFA concentration and labeling patterns indicate a threefold decline in the biomass of active methanotrophs due to afforestation, but little change in the methanotroph community. Because the grassland consumed CH(4) at a rate five times higher than forest soils under laboratory conditions, we concluded that not only biomass but also cell-specific activity was higher in grassland than in afforested plots. While the decline in biomass of active methanotrophs can be explained by site preparation (plowing), inorganic N (especially NH(4)(+)) could be responsible for the change in cell-specific activity. Overall, the negative effect of afforestation of upland grassland on soil CH(4) uptake can be largely explained by the reduction in biomass and to a lesser extent by reduced cell-specific activity of CH(4)-oxidizing bacteria.

Полный текст,
WOS,
Scopus

Держатели документа:
[Menyailo, Oleg V.] Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Menyailo, Oleg V.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Menyailo, Oleg V.
Conrad, Ralf] Max Planck Inst Terr Microbiol, D-35043 Marburg, Germany
[Hungate, Bruce A.] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86001 USA
[Hungate, Bruce A.] No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86001 USA
[Abraham, Wolf-Rainer] Helmholtz Ctr Infect Res, D-38124 Braunschweig, Germany

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.; Abraham, W.R.; Conrad, R...

    Interactive effects of tree species and soil moisture on methane consumption
[Text] / O. V. Menyailo, B. A. Hungate // Soil Biol. Biochem. - 2003. - Vol. 35, Is. 4. - P625-628, DOI 10.1016/S0038-0717(03)00018-X. - Cited References: 16 . - 4. - ISSN 0038-0717
РУБ Soil Science
Рубрики:
ARTIFICIAL AFFORESTATION EXPERIMENT
Кл.слова (ненормированные):
forest soils -- CH4 oxidation -- soil moisture -- tree species effects

Аннотация: Methane consumption by temperate forest soils is a major sink for this important greenhouse gas, but little is known about how tree species influence CH4 uptake by soils. Here, we show that-six common tree species in Siberian boreal and temperate forests significantly affect potential CH4 consumption in laboratory microcosms. Overall, soils under hardwood species (aspen and birch) consumed CH4 at higher rates than soils under coniferous species and grassland. While NH4+ addition often reduces CH4 uptake, we found no effect of NH(4)(+)addition, possibly because of the relatively high ratio of CH4-to-NH4+ in our incubations. The effects of soil moisture strongly depended on plant species. An increase in soil moisture enhanced CH4 consumption in soils under spruce but had the opposite effect under Scots pine and larch. Under other species, soil moisture did not affect CH4 consumption. These results could be explained by specific responses of different groups of CH4-oxidizing bacteria to elevated moisture. (C) 2003 Elsevier Science Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
RAS, SB, Inst Forest, Krasnoyarsk 660036, Russia
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86011 USA

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.

    Tree species and moisture effects on soil sources of N2O: Quantifying contributions from nitrification and denitrification with O-18 isotopes
[Text] / O. V. Menyailo, B. A. Hungate // J. Geophys. Res.-Biogeosci. - 2006. - Vol. 111, Is. G2. - Ст. G02022, DOI 10.1029/2005JG000058. - Cited References: 36 . - 8. - ISSN 0148-0227
РУБ Environmental Sciences + Geosciences, Multidisciplinary

Аннотация: Nitrous oxide (N2O) is an important greenhouse gas and participates in the destruction of stratospheric ozone. Soil bacteria produce N2O through denitrification and nitrification, but these processes differ radically in substrate requirements and responses to the environment. Understanding the controls over N2O efflux from soils, and how N2O emissions may change with climate warming and altered precipitation, require quantifying the relative contributions from these groups of soil bacteria to the total N2O flux. Here we used ammonium nitrate (NH4NO3, including substrates for both processes) in which the nitrate has been enriched in the stable isotope of oxygen, O-18, to partition microbial sources of N2O, arguing that a molecule of N2O carrying the O-18 labeled will have been produced by denitrification. We compared the influences of six common tree species on the relative contributions of nitrification and denitrification to N2O flux from soils, using soils from the Siberian afforestation experiment. We also altered soil water content, to test whether denitrification becomes a dominant source of N2O when soil water content increases. Tree species altered the proportion of nitrifier and denitrifier-derived N2O. Wetter soils produced more N2O from denitrification, though the magnitude of this effect varied among tree species. This indicates that the roles of denitrification and nitrification vary with tree species, and, that tree species influence soil responses to increased water content.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, SB RAS, Inst Forest, Krasnoyarsk, Russia
No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86011 USA

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.

    Environmental and Human Health Issues of Silver Nanoparticles Applications
/ R. R. Khaydarov [et al.] // NATO Science for Peace and Security Series C: Environmental Security. - 2011. - Vol. 112. - P117-127, DOI 10.1007/978-94-007-1235-5_9 . -

Кл.слова (ненормированные):
Bacteria -- Consumer product -- Cytotoxicity -- Environment -- Fungi -- Human health -- Nanomaterial -- Nanoparticle -- Nanosilver -- Silver

Аннотация: The significant growth in applications of silver nanoparticles across -various branches of industry as well as in consumer products has caused concerns that nanosilver may have a toxic effect on the environment and human health and may have implications for eco-terorism. This paper presents research on antimicrobial effects of silver nanoparticles. We studied the cytotoxicity of silver nanoparticles via an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium-bromid) assay that measures cell activity through the mitochondrial cleavage of a molecule that exhibits a change of colour that can be measured spectrophotometrically. NIH-3T3 (Swiss mouse embryo), HEP-G2 (human hepatocellular carcinoma), A-549 (human lung carcinoma), PC-12 (rat adrenal pheochromocytoma), and Colo-320 (human colon adenocarcinoma) cells were chosen in order to study different possible absorption paths of nanoparticles into the organism and various areas of particle accumulation in the body. The obtained MTT test results have shown that silver nanoparticles with concentrations of ∼1-10 ppm entering the body from air or liquid suspensions can present a potential risk to human health. © Springer Science+Business Media B.V. 2011.

Scopus

Держатели документа:
Institute of Nuclear Physics, Tashkent, Uzbekistan
V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russian Federation
Institute of Technical Chemistry, Gottfried-Wilhelm-Leibniz University, Hannover, Germany
Department of Environmental Engineering, Yonsei University, Wonju, South Korea

Доп.точки доступа:
Khaydarov, R.R.; Khaydarov, R.A.; Evgrafova, S.; Wagner, S.; Cho, S.Y.

    Using silver nanoparticles as an antimicrobial agent
/ R. R. Khaydarov [et al.] // NATO Science for Peace and Security Series A: Chemistry and Biology. - 2011. - P169-177, DOI 10.1007/978-94-007-0217-2-18 . -
Аннотация: Antimicrobial and antifungal properties of silver nanoparticles, silver ions, acrylate paint and cotton fabric impregnated with Ag nanoparticles were assessed against Escherichia coli (Gram-negative bacterium); Staphylococcus aureus and Bacillus subtilis (Gram-positive bacteria); Aspergillus niger, Aureobasidium pullulans and Penicillium phoeniceum (cosmopolitan saprotrophic fungi). The silver ions used in the bacterial susceptibility tests were released from pure silver electrodes using a 12 V battery-operated direct current generator. The water-based silver colloidal solution was obtained by electroreduction of silver ions in water. Nanosilver was less effective against E. coli, S. aureus, B. subtilis and P. phoeniceum compared to silver ions. However silver nanoparticles have prolonged bactericidal effect as a result of continuous release of Ag ions in sufficient concentration and thus nanoparticles can be more suitable in some bactericidal applications. The synthesized silver nanoparticles added to water paints or cotton fabrics have demonstrated a pronounced antibacterial and antifungal effect. В© 2011 Springer Science+Business Media B.V.

Scopus

Держатели документа:
Institute of Nuclear Physics, Tashkent, Uzbekistan
V.N. Sukachev Institute of Forestry, SB RAS, Krasnoyarsk, Russian Federation
Department of Materials Engineering, ARC Centre of Excellence for Design in Light Metals, Monash University, Clayton, VIC, Australia

Доп.точки доступа:
Khaydarov, R.R.; Khaydarov, R.A.; Evgrafova, S.; Estrin, Y.

    Land-use change under different climatic conditions: Consequences for organic matter and microbial communities in Siberian steppe soils
/ N. Bischoff [et al.] // Agric. Ecosyst. Environ. - 2016. - Vol. 235. - P253-264, DOI 10.1016/j.agee.2016.10.022 . - ISSN 0167-8809

Кл.слова (ненормированные):
Climate -- Land-use change -- PLFA -- Semi-arid region -- Soil microbial community -- Soil organic matter -- Steppe soil -- Fungi -- Posibacteria

Аннотация: The Kulunda steppe is part of the greatest conversion areas of the world where 420,000 km2 grassland have been converted into cropland between 1954 and 1963. However, little is known about the recent and future impacts of land-use change (LUC) on soil organic carbon (OC) dynamics in Siberian steppe soils under various climatic conditions. By investigating grassland vs. cropland soils along a climatic gradient from forest to typical to dry steppe types of the Kulunda steppe, our study aimed to (i) quantify the change of OC stocks (0–60 cm) after LUC from grassland to cropland as function of climate, (ii) elucidate the concurrent effects on aggregate stability and different functional soil organic matter (OM) fractions (particulate vs. mineral-bound OM), and (iii) assess climate- and LUC-induced changes in the microbial community composition and the contribution of fungi to aggregate stability based on phospholipid fatty acid (PLFA) profiles. Soil OC stocks decreased from the forest steppe (grassland: 218 ± 17 Mg ha?1) over the typical steppe (153 ± 10 Mg ha?1) to the dry steppe (134 ± 11 Mg ha?1). Across all climatic regimes, LUC caused similar OC losses of 31% (95% confidence interval: 17–43%) in 0–25 cm depth and a concurrent decline in aggregate stability, which was not related to the amount of fungal PLFA. Density fractionation revealed that the largest part of soil OM (>90% of total OC) was associated with minerals and <10% of C existed in particulate OM. While LUC induced smaller relative losses of mineral-associated OC than particulate OC, the absolute decline in total OC stocks was largely due to losses of OM bound to minerals. This result together with the high 14C ages of mineral-bound OM in croplands (500–2900 yrs B.P.) suggests that mineral-bound OM comprises, in addition to stable OC, also management-susceptible labile OC. The steppe type had a larger impact on microbial communities than LUC, with a larger relative abundance of gram-positive bacteria and less fungi under dry conditions. Our results imply that future drier climate conditions in the Siberian steppes will (i) result in smaller OC stocks on a biome scale but (ii) not alter the effect of LUC on soil OC, and (iii) change the microbial community composition more than the conversion from grassland to cropland. © 2016 Elsevier B.V.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Soil Science, Leibniz Universitat Hannover, Herrenhauser Stra?e 2, Hannover, Germany
VN Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50, Krasnoyarsk, Russian Federation
Institute for Water and Environmental Problems, Siberian Branch of the Russian Academy of Sciences, Molodezhnaya Street 1, Barnaul, Russian Federation
Faculty of Biology, Altai State University, Prospekt Lenina 61a, Barnaul, Russian Federation
Institute of Biostatistics, Leibniz Universitat Hannover, Herrenhauser Stra?e 2, Hannover, Germany
Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle (Saale), Germany
Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 3, Halle, Saale, Germany

Доп.точки доступа:
Bischoff, N.; Mikutta, R.; Shibistova, O.; Puzanov, A.; Reichert, E.; Silanteva, M.; Grebennikova, A.; Schaarschmidt, F.; Heinicke, S.; Guggenberger, G.

    SOIL MICROBIAL ASSEMBLAGES OF CRYOGENIC SOILS IN LARCH STANDS OF CENTRAL SIBERIA
/ E. Koryagina, S. Evgrafova // WATER RESOURCES, FOREST, MARINE AND OCEAN ECOSYSTEMS CONFERENCE : STEF92 TECHNOLOGY LTD, 2016. - 16th International Multidisciplinary Scientific Geoconference, SGEM2016 (NOV 02-05, 2016, Vienna, AUSTRIA). - P499-506. - (International Multidisciplinary Scientific GeoConference-SGEM). - Cited References:9 . -
РУБ Ecology + Water Resources

Аннотация: The ecological features of microbial assemblages development in Central Evenkia forest soils (64 degrees 15'N, 100 degrees 13'E) were investigated on permanently installed sites on the right shore of river Kochechum on south- and north-exposition slopes, which differed in intensity of solar radiation, thickness of litter and seasonally thawed soil horison. We studied mineral soil layer 0-5 and 5-10 cm, including ground cover (moss and lichen sinusia). The structure of microbocenoses was examined by method of surface. inoculation on Petri dishes, microbial biomass and basal respiration by kinetic methods. According to the study conducted, oligotropic and copiotrophic group of microorganisms dominated in composition of microbocenoses in Central Evenkia cryogenic soils, what was due to the peculiarities of cryogenic soils of this region. Low soil temperatures, periodic soil overwetting and drying, slightly acid reaction of soil environment explained predominant development of bacteria in composition of microbial complexes (87-95%) in comparison with fungi. Our observations showed, that mineralisation processes proceeded more intensively in ground cover of moss sinusia in comparison with lichen sinusia, where the values of mineralisation coefficients were higher in the top mineral soil layers. Microbial biomass of examined cryogenic soils in natural conditions was concentrated mainly in litter subhorison in a moss and lichen sinusia. The analysis of microbial basal respiration revealed similar tendencies. The values of microbial metabolic coefficient revealed high disturbance ratio of ecological-trophic status of microbial communities, when only a small part of microbial pool is metabolically active.

WOS

Держатели документа:
RAS, SB, VN Sukachev Inst Forest, FRC,KSC, Krasnoyarsk, Russia.

Доп.точки доступа:
Koryagina, Ekaterina; Evgrafova, Svetlana

    Microbiological transformation of carbon and nitrogen compounds in forest soils of Central Evenkia
/ N. D. Sorokin [et al.] // Eurasian Soil Sci. - 2017. - Vol. 50, Is. 4. - P476-482, DOI 10.1134/S1064229317040123. - Cited References:20. - The work was supported in part by the Presidium of the Siberian Branch of the Russian Academy of Sciences (project no. 30.17 "Living Nature: Biodiversity") and the Russian Foundation for Basic Research (project no. 16-34-01128). . - ISSN 1064-2293. - ISSN 1556-195X
РУБ Soil Science
Рубрики:
TAIGA
Кл.слова (ненормированные):
cryogenic soils -- slopes of northern and southern exposures -- microbial -- complexes -- CO2 and CH4 emission -- respiratory activity -- ammonium and -- nitrate nitrogen

Аннотация: It has been found that the total productivity of bacteria and micromycetes in the 0- to 50-cm layer of homogeneous cryozems (Cryosols) on slopes of northern and southern exposures varies from 1.2 to 1.4 t/ha, respectively, and the calculated content of microbial carbon varies in the range 0.7-0.9 t/ha. The respiratory activity of the upper soil layer is 2.5-2.6 mu g C-CO2/(g h); the potential methane formation capacity reaches 0.13 nmol CH4/(m(2) day) for soils on slopes of northern exposure and 0.16 nmol CH4/(m(2) day) for slopes of southern exposure. Accumulation of sorbed ammonium is recorded in the range 15-17 mg NH4/100 g soil in summer. The increase of temperature in the upper horizons of soils on slopes of southern exposure by 5A degrees C compared to the northern slopes results in only an insignificant increase in the emission of CO2 and CH4. The accumulation of sorbed ammonium and nitrate nitrogen in homogeneous cryozems during the vegetation period is comparable to that in gray forest soils of the southern taiga subzone of the Middle Siberia.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Sorokin, N. D.; Aleksandrov, D. E.; Grodnitskaya, I. D.; Evgrafova, S. Yu.; Presidium of the Siberian Branch of the Russian Academy of Sciences [30.17]; Russian Foundation for Basic Research [16-34-01128]