Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 7

    Uses of tree saps in northern and eastern parts of Europe
/ I. . Svanberg [et al.] // Acta Soc. Bot. Pol. - 2012. - Vol. 81, Is. 4. - P343-357, DOI 10.5586/asbp.2012.036. - Cited References: 176 . - 15. - ISSN 0001-6977
РУБ Plant Sciences

Аннотация: In this article we review the use of tree saps in northern and eastern Europe. Published accounts by travellers, ethnologists and ethnobotanists were searched for historical and contemporary details. Field observations made by the authors have also been used. The presented data shows that the use of tree sap has occurred in most north and eastern European countries. It can be assumed that tree saps were most used where there were extensive stands of birch or maple trees, as these two genera generally produce the largest amount of sap. The taxa most commonly used have been Betula pendula, B. pubescens, and Acer platanoides, but scattered data on the use of several other taxa are presented. Tree sap was used as a fresh drink, but also as an ingredient in food and beverages. It was also fermented to make light alcoholic products like ale and wine. Other folk uses of tree saps vary from supplementary nutrition in the form of sugar, minerals and vitamins, to cosmetic applications for skin and hair and folk medicinal use. Russia, Ukraine, Belarus, Estonia, Latvia and Lithuania are the only countries where the gathering and use of sap (mainly birch sap) has remained an important activity until recently, due to the existence of large birch forests, low population density and the incorporation of sap into the former Soviet economic system. It is evident that gathering sap from birch and other trees was more widespread in earlier times. There are records indicating extensive use of tree saps from Scandinavia, Poland, Slovakia and Romania, but it is primarily of a historical character. The extraction of tree sap in these countries is nowadays viewed as a curiosity carried out only by a few individuals. However, tree saps have been regaining popularity in urban settings through niche trading.

WOS,
Scopus

Держатели документа:
[Soukand, Renata] Estonian Literary Museum, EE-51003 Tartu, Estonia
[Svanberg, Ingvar] Uppsala Univ, Uppsala Ctr Russian & Eurasian Studies, S-75120 Uppsala, Sweden
[Luczaj, Lukasz] Univ Rzeszow, Dept Bot & Biotechnol Econ Plants, PL-36100 Kolbuszowa, Poland
[Kalle, Raivo] Estonian Univ Life Sci, Inst Vet Med & Anim Sci, EE-51014 Tartu, Estonia
[Zyryanova, Olga] Russian Acad Sci, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Denes, Andrea] Janus Pannonius Museum, Nat Hist Dept, H-7601 Pecs, Hungary
[Papp, Nora] Univ Pecs, Dept Pharmacognosy, H-7624 Pecs, Hungary
[Nedelcheva, Aneli] Sofia Univ St Kliment Ohridski, Dept Bot, Sofia 1164, Bulgaria
[Seskauskaite, Daiva] Kaunas Forestry & Environm Engn Univ Appl Sci, LT-53101 Kaunas, Lithuania
[Kolodziejska-Degorska, Iwona] Warsaw Univ Bot Garden, PL-00478 Warsaw, Poland
[Kolodziejska-Degorska, Iwona] Univ Warsaw, Inst Interdisciplinary Res Artes Liberales, PL-00046 Warsaw, Poland
[Kolosova, Valeria] Russian Acad Sci, Inst Linguist Studies, St Petersburg 199053, Russia

Доп.точки доступа:
Svanberg, I...; Soukand, R...; Luczaj, L...; Kalle, R...; Zyryanova, O...; Denes, A...; Papp, N...; Nedelcheva, A...; Seskauskaite, D...; Kolodziejska-Degorska, I...; Kolosova, V...

    An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods
/ A. J. Dolman [et al.] // Biogeosciences. - 2012. - Vol. 9, Is. 12. - P5323-5340, DOI 10.5194/bg-9-5323-2012. - Cited References: 90. - The authors would like to acknowledge the inspiration of the Global Carbon Project's RECCAP team that laid the basis for the present work. A. J. D. and T. C. acknowledge partial support from the EU FP7 Coordination Action on Carbon Observing System (COCOS, grant agreement no. 212196 and the Operational Global Carbon Observing System (GEOCARBON, grant agreement no: 283080). A. S. and D. S. acknowledge support from European Union Grants FP7-212535 (Project CC-TAME), FP7-244122 (GHG-Europe), FP7-283080 (GEO-Carbon) and by the Global Environmental Forum, Japan (Project GEF-2).E.-D. S., N. T. and A. J. D. acknowledge support from the Russian "Megagrant" 11.G34.31.0014 from 30 November 2010 to E.-D. Schulze by the Russian Federation and the Siberian Federal University to support research projects by leading scientists at Russian Institutions of higher education. . - 18. - ISSN 1726-4170
РУБ Ecology + Geosciences, Multidisciplinary

Аннотация: We determine the net land to atmosphere flux of carbon in Russia, including Ukraine, Belarus and Kazakhstan, using inventory-based, eddy covariance, and inversion methods. Our high boundary estimate is -342 TgC yr(-1) from the eddy covariance method, and this is close to the upper bounds of the inventory-based Land Ecosystem Assessment and inverse models estimates. A lower boundary estimate is provided at -1350 TgC yr(-1) from the inversion models. The average of the three methods is -613.5 TgC yr(-1). The methane emission is estimated separately at 41.4 Tg C yr(-1). These three methods agree well within their respective error bounds. There is thus good consistency between bottom-up and top-down methods. The forests of Russia primarily cause the net atmosphere to land flux (-692 TgC yr(-1) from the LEA. It remains however remarkable that the three methods provide such close estimates (-615, -662, -554 TgC yr(-1)) for net biome production (NBP), given the inherent uncertainties in all of the approaches. The lack of recent forest inventories, the few eddy covariance sites and associated uncertainty with upscaling and undersampling of concentrations for the inversions are among the prime causes of the uncertainty. The dynamic global vegetation models (DGVMs) suggest a much lower uptake at -91 TgC yr(-1), and we argue that this is caused by a high estimate of heterotrophic respiration compared to other methods.

WOS,
Scopus

Держатели документа:
[Dolman, A. J.
Chen, T.
van der Molen, M. K.
Marchesini, L. Belelli] Vrije Univ Amsterdam, Dept Earth Sci, NL-1081 HV Amsterdam, Netherlands
[Shvidenko, A.
Schepaschenko, D.] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria
[Ciais, P.] CEA CNRS UVSQ, IPSL LSCE, Ctr Etud Orme Merisiers, F-91191 Gif Sur Yvette, France
[Tchebakova, N.] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Tchebakova, N.] SIF SB RAS, Krasnoyarsk, Russia
[Tchebakova, N.] Siberian Fed Univ, Krasnoyarsk, Russia
[van der Molen, M. K.] Wageningen Univ, Dept Meteorol & Air Qual, Wageningen, Netherlands
[Maximov, T. C.] RAS, Inst Biol Problems Cryolithozone, Siberian Branch, Yakutsk, Russia
[Maksyutov, S.] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki 3058506, Japan
[Schulze, E. -D.] Max Planck Inst Biogeochem, Jena, Germany

Доп.точки доступа:
Dolman, A.J.; Shvidenko, A...; Schepaschenko, D...; Ciais, P...; Tchebakova, N...; Chen, T...; van der Molen, M.K.; Marchesini, L.B.; Maximov, T.C.; Maksyutov, S...; Schulze, E.D.

    Climate-induced mortality of spruce stands in Belarus
[Text] / V. I. Kharuk [et al.] // Environ. Res. Lett. - 2015. - Vol. 12, Is. 12. - Ст. 125006, DOI 10.1088/1748-9326/10/12/125006. - Cited References:54. - The Russian Science Foundation (grant #14-24-00112) primarily supported this research. Additional support for K J Ranson by NASA's Terrestrial Ecology program is acknowledged. . - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: The aim of this work is an analysis of the causes of spruce (Picea abies L.) decline and mortality in Belarus. The analysis was based on forest inventory and Landsat satellite (land cover classification, climate variables (air temperature, precipitation, evaporation, vapor pressure deficit, SPEI drought index)), and GRACE-derived soil moisture estimation (equivalent of water thickness anomalies, EWTA). We found a difference in spatial patterns between dead stands and all stands (i.e., before mortality). Dead stands were located preferentially on relief features with higher water stress risk (i.e., higher elevations, steeper slopes, south and southwestern exposure). Spruce mortality followed a series of repeated droughts between 1990 and 2010. Mortality was negatively correlated with air humidity (r = -0.52), and precipitation (r = -0.57), and positively correlated with the prior year vapor pressure deficit (r = 0.47), and drought increase (r = 0.57). Mortality increased with the increase in occurrence of spring frosts (r = 0.5), and decreased with an increase in winter cloud cover (r = -0.37). Spruce mortality was negatively correlated with snow water accumulation (r = -0.81) and previous year anomalies in water soil content (r = -0.8). Weakened by water stress, spruce stands were attacked by pests and phytopathogens. Overall, spruce mortality in Belarussian forests was caused by drought episodes and drought increase in synergy with pest and phytopathogen attacks. Vast Picea abies mortality in Belarus and adjacent areas of Russia and Eastern Europe is a result of low adaptation of that species to increased drought. This indicates the necessity of spruce replacement by drought-tolerant indigenous (e.g., Pinus sylvestris, Querqus robur) or introduced (e.g., Larix sp. or Pseudotsuga menzieslii) species to obtain sustainable forest growth management.

WOS

Держатели документа:
VN Sukachev Inst Forest SB RAS, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Siberian State Aerosp Univ, Krasnoyarsk, Russia.
NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.

Доп.точки доступа:
Kharuk, Viacheslav I.; Im, Sergei T.; Dvinskaya, Maria L.; Golukov, Alexei S.; Ranson, Kenneth J.; Russian Science Foundation [14-24-00112]; NASA's Terrestrial Ecology program

    Decline of spruce (Picea abies) in forests of Belarus
/ V. I. Kharuk, S. T. Im, M. L. Dvinskaya // Russ. J. Ecol. - 2016. - Vol. 47, Is. 3. - P241-248, DOI 10.1134/S106741361603005X . - ISSN 1067-4136

Кл.слова (ненормированные):
Belarus -- climate change -- decline of conifers -- spruce stands -- water stress

Аннотация: The decline of spruce stands in Belarus has been analyzed in relation to the dynamics of climatic variables. The results show that this process is correlated with the amount of precipitation, moisture deficit, index of aridity, relative air humidity, and evapotranspiration. Frosts at the onset of the growing season enhance tree die-off, while increase in cloud cover has a favorable effect on the state of spruce stands. Damage to trees occurs mainly in areas with elevated and convex topography and slopes of southwestern aspect, increasing on steeper slopes. The level of die-off is most closely correlated with conditions of the previous year, which is explained by the impact of biological factors (pest insects and phytopathogens) on tree stands already affected by water stress. The decline of spruce stands on a mass scale is also observed in neighboring regions of Russia and counties of East Europe, which is evidence for a low adaptability of spruce to current climate change, including the increasing frequency and severity of dry periods. © 2016, Pleiades Publishing, Ltd.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/28, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodnyi pr. 79, Krasnoyarsk, Russian Federation
Siberian State Aerospace University, pr. Krasnoyarskii Rabochii 31, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kharuk, V. I.; Im, S. T.; Dvinskaya, M. L.

    Between ash dieback and emerald ash borer: Two Asian invaders in Russia and the future of ash in Europe
/ D. L. Musolin [et al.] // Baltic For. - 2017. - Vol. 23, Is. 1. - P316-333 . - ISSN 1392-1355

Кл.слова (ненормированные):
Agrilus planipennis -- Ash -- Ash dieback -- Buprestidae -- Chalara fraxinea -- Emerald ash borer -- Forest -- Forest health -- Forest pests -- Fraxinus -- Hymenoscyphus fraxineus -- Pathogen -- Plant resistance

Аннотация: Four ash species are native to Russia (Fraxinus excelsior, F. angustifolia, F. chinensis, F. mandshurica) while F. pennsylvanica was introduced from North America. Ash forests cover 666 300 ha (0.1% of total forest area of Russia) and constitute a volume of 77.91 mln m3. Ash is widely used in the greening of populated places, around fields and along inter-city roads. We review the current situation with two recent invaders – ash dieback fungus Hymenoscyphus fraxineus (Ascomycota) and emerald ash borer Agrilus planipennis (Coleoptera). Hymenoscyphus fraxineus was likely accidentally introduced from Asia to Western Europe, expanded its range eastward and by 2014 reached Moscow, whereas A. planipennis was accidentally introduced from Asia to Moscow Region, expanded its range in all directions but most noticeably southwards. By 2012, A. planipennis reached Smolensk Region bordering Belarus, and by 2013, Voronezh Region bordering Ukraine. At least between Belarus and Moscow city, the ranges of invaders overlap. Both species are a threat to the native as well as introduced ash in Europe. We list known records of two invaders in Russia (as of 2016) and for A. planipennis also review food plants, seasonal cycle, dispersal, parasitoids and susceptibility of different ash species. We analyze the synergetic effect of two invaders on ash in the area of overlapped ranges and potential losses of biological diversity associated with ash decline and conclude that the future of ash in Europe is precarious. The following directions of actions in Eurasia are proposed: (1) studies of resistance mechanisms to both agents in Asian ash species (first of all, F. chinensis and F. mandshurica) and hybrids between Asian and European or North-American ash species, (2) studies on selection of resistant ash forms and hybrids (to both agents), (3) controlled introduction of resistant Asian ash species, (4) slowing down of expansions of A. planipennis to Western Europe and H. fraxineus within Russia, (5) studies of natural control agents, (6) monitoring of invasions and sanitary condition of ash, and (7) studies on synergetic effect of H. fraxineus and A. planipennis on ash. © Lithuanian Research Centre for Agriculture and Forestry.

Scopus

Держатели документа:
Department of Forest Protection, Wood Science and Game Management, Saint Petersburg State Forest Technical University, Institutskiy per., 5, Saint Petersburg, Russian Federation
Department of Biogeography and Environmental Protection, St. Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, Russian Federation
Department of Selection, Reforestation and Chemical Thinning, Saint Petersburg Forestry Research Institute, Institutskiy av., 21, St. Petersburg, Russian Federation
Department of Forest Protection and Wood Science, Belarusian State Technological University, Sverdlova str., 13a, Minsk, Belarus
Department of Forest Zoology, V.N. Sukachev Institute of Forest, Federal Research Center «Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences», Akademgorodok 50, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Musolin, D. L.; Selikhovkin, A. V.; Shabunin, D. A.; Zviagintsev, V. B.; Baranchikov, Y. N.

    Brown bear attacks on humans: a worldwide perspective
/ G. Bombieri [et al.] // Sci Rep. - 2019. - Vol. 9. - Ст. 8573, DOI 10.1038/s41598-019-44341-w. - Cited References:52. - We would like to thank Aleksander Trajce, Raido Kont, Gerard Baars, Ivan Kos and Dusan Toholj for providing helpful information on brown bears. G.B. was financially supported by a collaboration contract with the MUSE -Museo delle Scienze (Trento, Italy). V.P. was financially supported by (1) the Excellence Project CGL2017-82782-P financed by the Spanish Ministry of Science, Innovation and Universities, the Agencia Estatal de Investigacion (AEI) and the Fondo Europeo de Desarrollo Regional (FEDER, EU), and (2) Modalidad Grupos de Investigacion Consolidados, Principado de Asturias (IDI/2018/000151). M.M.D. was financially supported by the Spanish Ramon y Cajal grant RYC-2014-16263. N.S., C.B. and A. G. were partly supported by the National Centre for Research and Development (GLOBE POL-NOR/198352/85/2013) and the National Science Centre in Poland (DEC-2013/08/M/NZ9/00469; 2016/22/Z/NZ8/00121; 2017/25/N/NZ8/02861). E.R., J.N., A.F., N.S., and C.B. were supported by the Agencia Estatal de Investigacion from the Ministry of Economy, Industry and Competitiveness, Spain (project CGL2017-83045-R AEI/FEDER EU, co-financed with FEDER). Data from Russia were collected as part of the monitoring program of Russian nature reserves, Chronicles of Nature, and financially supported by the Academy of Finland grant 250444 and the Russian Science Foundation grant 18-14-00093. . - ISSN 2045-2322
РУБ Multidisciplinary Sciences

Аннотация: The increasing trend of large carnivore attacks on humans not only raises human safety concerns but may also undermine large carnivore conservation efforts. Although rare, attacks by brown bears Ursus arctos are also on the rise and, although several studies have addressed this issue at local scales, information is lacking on a worldwide scale. Here, we investigated brown bear attacks (n = 664) on humans between 2000 and 2015 across most of the range inhabited by the species: North America (n = 183), Europe (n = 291), and East (n = 190). When the attacks occurred, half of the people were engaged in leisure activities and the main scenario was an encounter with a female with cubs. Attacks have increased significantly over time and were more frequent at high bear and low human population densities. There was no significant difference in the number of attacks between continents or between countries with different hunting practices. Understanding global patterns of bear attacks can help reduce dangerous encounters and, consequently, is crucial for informing wildlife managers and the public about appropriate measures to reduce this kind of conflicts in bear country.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Oviedo Univ, UO CSIC PA, UMIB, Res Unit Biodivers, Campus Mieres, Mieres, Spain.
Museo Sci, Sez Zool Vertebrati, Corso Lavoro & Sci 3, I-38123 Trento, Italy.
CSIC, Estn Biol Donana, Dept Conservat Biol, Calle Americo Vespucio S-N, E-41092 Seville, Spain.
CSIC, Inst Pirena Ecol, Avda Nuestra Senora de la Victoria 16, Jaca 22700, Spain.
Polish Acad Sci, Inst Nat Conservat, Warsaw, Poland.
Duzce Univ, Fac Forestry, Dept Wildlife Ecol & Management, Duzce, Turkey.
Kondinskie Lakes Natl Pk, Sovietsky, Russia.
Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Moscow, Russia.
Russian Acad Sci, Ural Branch, Inst Plant & Anim Ecol, Moscow, Russia.
Sikhote Alin State Nat Biosphere Reserve, Pinezhsky, Russia.
Off Natl Chasse & Faune Sauvage, Besancon, France.
Environm Protect Agcy, LIFEURSUS Project, Voluntary, Romania.
Univ Roma La Sapienza, Dept Biol & Biotechnol, Rome, Italy.
Balkani Wildlife Soc, Sofia, Bulgaria.
Ivan Franko Natl Univ Lviv, Dept Zool, Lvov, Ukraine.
Univ Lisbon, Inst Agron, Ctr Appl Ecol Prof Baeta Neves InBIO, Lisbon, Portugal.
Tyumen State Univ, Tyumen, Russia.
Prov Autonoma Trento, Forest & Wildlife Serv, Trento, Italy.
Govt Carinthia, Nat Conservat, Carinthia, Austria.
Slovak Wildlife Soc, Liptovsky Hradok, Slovakia.
Finnish Wildlife Agcy, Helsinki, Finland.
Univ Zagreb, Dept Biol, Zagreb, Croatia.
Univ Tehran, Fac Nat Resources, Dept Environm Sci, POB 4111, Karaj 3158777871, Iran.
Altai State Nat Biosphere Reserve, Barnaul, Russia.
ARCTUROS, Civil Soc Protect & Management Wildlife & Nat Env, Aetos 53075, Florina, Greece.
Russian Acad Sci, Forest Res Inst, Karelian Res Ctr, Petrozavodsk, Russia.
Hingansky, Moscow, Russia.
Lviv Forestry & Wood Technol Univ, Lvov, Ukraine.
Nat Resources Inst, Rovaniemi, Finland.
Russian Res Inst Game Management & Fur Farming, Dept Anim Ecol, 79 Preobrazhenskaya Str, Kirov 610000, Russia.
Russian Acad Sci, Komi Sci Ctr, Inst Biol, Petrozavodsk, Russia.
State Nat Reserve Stolby, Krasnoyarsk, Russia.
Univ Ljubljana, Biotech Fac, Dept Forestry, Ljubljana, Slovenia.
Univ Helsinki, Helsinki, Finland.
Russian Acad Sci, Fed Ctr Integrated Arctic Res, Moscow, Russia.
Estonian Environm Agcy, Tallinn, Estonia.
Macedonian Ecol Soc, Skopje, Macedonia.
Univ Gottingen, Dept Wildlife Sci, Gottingen, Germany.
CALLISTO Wildlife & Nat Conservat Soc, Vasilikos, Greece.
Krasnoyarsk State Pedag Univ VP Astafieva, State Nat Reserve Tungusky, Krasnoyarsk, Russia.
Univ Jiroft, Fac Nat Resources, Dept Environm Sci, Jiroft, Iran.
Generalitat Catalonia, Terr & Sustainabil Dept, Barcelona, Spain.
Assoc Biol Divers Conservat, Focsani, Romania.
FSBI Zeya State Nat Reserve, Zeya, Russia.
State Nat Reserve Olekminsky, Filatova 6, Olekminsk 678100, Rebublic Sakha, Russia.
Pinezhsky State Nat Reserve, Pinezhsky, Russia.
Norwegian Environm Agcy, Wildlife Sect, Trondheim, Norway.
Russian Acad Sci, FEB RAS, Pacific Geog Inst, 7 Radio St, Vladivostok, Russia.
Far Eastern Fed Univ, 8 Sukhanova St, Vladivostok, Russia.
Russian Acad Sci, VN Sukachev Inst Forest SB, Krasnoyarsk, Russia.
Kyiv Zoo, Dept Sci Res & Int Collaborat, Kiev, Ukraine.
Natl Acad Sci, Inst Zool, Minsk, BELARUS.
Norwegian Inst Nat Res, Trondheim, Norway.
Norwegian Univ Life Sci, Fac Environm Sci & Nat Resource Management, As, Norway.
Poloniny Natl Pk, Snina, Poland.
State Nat Reserve Malaya Sosva, Sovetsky, Russia.
Hedmark Univ Coll, Fac Appl Ecol & Agr Sci, Elverum, Norway.
Tatra Natl Pk, Zakopane, Poland.

Доп.точки доступа:
Bombieri, G.; Naves, J.; Penteriani, V.; Selvas, N.; Fernandez-Gil, A.; Lopez-Bao, J., V; Ambarli, H.; Bautista, C.; Bespalova, T.; Bobrov, V.; Bolshakov, V.; Bondarchuk, S.; Camarra, J. J.; Chiriac, S.; Ciucci, P.; Dutsov, A.; Dykyy, I.; Fedriani, J. M.; Garcia-Rodriguez, A.; Garrote, P. J.; Gashev, S.; Groff, C.; Gutleb, B.; Haring, M.; Harkonen, S.; Huber, D.; Kaboli, M.; Kalinkin, Y.; Karamanlidis, A. A.; Karpin, V.; Kastrikin, V.; Khlyap, L.; Khoetsky, P.; Kojola, I.; Kozlow, Y.; Korolev, A.; Korytin, N.; Kozsheechkin, V.; Krofel, M.; Kurhinen, J.; Kuznetsova, I.; Larin, E.; Levykh, A.; Mamontov, V.; Mannil, P.; Melovski, D.; Mertzanis, Y.; Meydus, A.; Mohammadi, A.; Norberg, H.; Palazon, S.; Patrascu, L. M.; Pavlova, K.; Pedrini, P.; Quenette, P. Y.; Revilla, E.; Rigg, R.; Rozhkov, Y.; Russo, L. F.; Rykov, A.; Saburova, L.; Sahlen, V.; Saveljev, A. P.; Seryodkin, I., V; Shelekhov, A.; Shishikin, A.; Shkvyria, M.; Sidorovich, V.; Sopin, V.; Stoen, O.; Stofik, J.; Swenson, J. E.; Tirski, D.; Vasin, A.; Wabakken, P.; Yarushine, L.; Zwijacz-Kozica, T.; Delgado, M. M.; Lopez-Bao, Jose Vicente; Ambarli, Huseyin; Spanish Ministry of Science, Innovation and Universities [CGL2017-82782-P]; Agencia Estatal de Investigacion (AEI); Fondo Europeo de Desarrollo Regional (FEDER, EU); Modalidad Grupos de Investigacion Consolidados, Principado de Asturias [IDI/2018/000151]; Spanish Ramon y Cajal grant [RYC-2014-16263]; National Centre for Research and Development [GLOBE POL-NOR/198352/85/2013]; National Science Centre in Poland [DEC-2013/08/M/NZ9/00469, 2016/22/Z/NZ8/00121, 2017/25/N/NZ8/02861]; Agencia Estatal de Investigacion from the Ministry of Economy, Industry and Competitiveness, Spain [CGL2017-83045-R AEI/FEDER EU]; FEDER; Academy of Finland [250444]; Russian Science Foundation [18-14-00093]; MUSE -Museo delle Scienze (Trento, Italy)

    Meiosis during Microsporogenesis in Siberian Spruce (Picea obovata Ledeb.) in the South of Central Siberia
/ E. V. Bazhina, M. I. Cedaeva, E. N. Muratova // Russ. J. Dev. Biol. - 2019. - Vol. 50, Is. 3. - P113-123, DOI 10.1134/S1062360419030020. - Cited References:61. - The work was supported by the budget project of Sukachev Institute of Forest, Federal Research Center Krasnoyarsk Science Center (Siberian Branch, Russian Academy of Sciences), project no. 0356-20160301, and the Russian Foundation for Basic Research of Belarus, project no. 18-54-00010. . - ISSN 1062-3604. - ISSN 1608-3326
РУБ Developmental Biology
Рубрики:
POLLEN MOTHER CELLS
   ABIES-SIBIRICA LEDEB.

   PINUS-SYLVESTRIS

Кл.слова (ненормированные):
Siberian spruce -- microsporogenesis -- meiosis -- chromosomes -- meiotic -- irregularities

Аннотация: The results of meiosis studies during microsporogenesis in Siberian spruce (Picea obovata Ledeb.) in the forest ecosystems of the south of Central Siberia are presented. Meiosis features and different types of irregularities were detected. The features of male organ development show a high level of the Siberian spruce's adaptation to the extreme climate of Siberia.

WOS,
Смотреть статью

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Fed Res Ctr, Krasnoyarsk Sci Ctr,Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Bazhina, E., V; Cedaeva, M., I; Muratova, E. N.; Sukachev Institute of Forest, Federal Research Center Krasnoyarsk Science Center (Siberian Branch, Russian Academy of Sciences) [0356-20160301]; Russian Foundation for Basic Research of Belarus [18-54-00010]