Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 2

    Siberian spruce tree ring anatomy: imprint of development processes and their high-temporal environmental regulation
/ E. A. Babushkina [et al.] // Dendrochronologia. - 2019. - Vol. 53. - P114-124, DOI 10.1016/j.dendro.2018.12.003 . - ISSN 1125-7865

Кл.слова (ненормированные):
altitudinal gradient -- cell chronology -- climate–growth relationship -- digital wood anatomy -- Picea obovata -- tracheidogram -- Picea -- Picea obovata

Аннотация: Wood anatomy was offered as spatiotemporal proxy record for tracheid differentiation kinetics due to its advantages in terms of much longer cover period and less demanding measurements. In this study, external and internal regulation of earlywood-to-latewood transition and properties of latewood of Picea obovata Ledeb were considered. The values and interrelations between cell number, tree ring width, maximal and mean radial cell diameter, maximal cell wall thickness and position of the transition to thick-walled tracheids were investigated within site and along the altitudinal gradient. Correlations with moving 21-day climatic series were used to estimate high-resolutional external influences. Relationships between tree ring traits are spatially stable and close within one stage of differentiation and between cells production and expansion. Relationships between sites differ in upper and lower parts of the gradient. Most of traits respond to the primary limiting factors near summer solstice; however, maximal cell wall thickness responds positively to the temperatures at the + 10 °C threshold. Altitudinal anatomical patterns revealed interaction of intrinsic and external factors in the regulation of tracheid differentiation. Timing of climatic response highlighted role of photoperiod as a trigger in the earlywood-to-latewood transition, and crucial role of the growth season ending for latewood development. © 2018 Elsevier GmbH

Scopus,
Смотреть статью,
WOS

Держатели документа:
Khakass Technical Institute, Siberian Federal University, 27 Shchetinkina, Abakan, 655017, Russian Federation
Siberian Federal University, 79 Svobodny, Krasnoyarsk, 660041, Russian Federation
Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, 50/28 Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Babushkina, E. A.; Belokopytova, L. V.; Zhirnova, D. F.; Vaganov, E. A.

    Spatial classification of moisture-sensitive pine and larch tree-ring chronologies within Khakass–Minusinsk Depression, South Siberia
/ L. V. Belokopytova, D. M. Meko, D. F. Zhirnova [et al.] // Trees Struct. Funct. - 2021, DOI 10.1007/s00468-021-02196-7 . - Article in press. - ISSN 0931-1890
Аннотация: Key message: Growth patterns of Scots pine and Siberian larch under water deficit across an intermontane valley in South Siberia depend not only on landscape physiography but on species-specific climatic sensitivity and phenology. Abstract: The wide intermountain Khakass–Minusinsk Depression (KhMD) in southern Siberia presents an ideal setting for studying the potential impacts of a warming climate on forest ecosystems. The Centre of Continental Asia has one of the most intense rates of warming in the Northern Hemisphere, and the KhMD has multiple tree species of proven dendroclimatic value growing in drought-stressed environments. Investigation was aimed at spatial patterns of tree growth and its climate response across the KhMD for two main conifer species of moisture-deficient habitats, Scots pine (Pinus sylvestris L.) and Siberian larch (Larix sibirica Ledeb.). Correlation and cluster analysis were applied to a recently developed network of 15 tree-ring chronologies. Hierarchical classifications were based on the inter-chronology correlation matrix and on correlations of chronologies with monthly climate variables. Results underscore the general influence of hot-dry conditions on reducing growth and suggest a spatial grouping of chronologies governed by physiography and modified by species-dependent ecophysiological response to climate. Both applied classifications agree on the designation of geographically oriented clusters. A purely geographic grouping is broken, however, by species-specific climate dependence and phenology in deciduous Larix and evergreen Pinus. A differential ability to utilize melting snowpack in spring is advanced as a possible explanation for chronologies abandoning physiographically defined clusters. Such inter-species heterogeneity can manifest itself in the intensity of the climate change impact on vegetation, and lead to prospects of significant species composition changes in ecosystems. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Scopus

Держатели документа:
Khakass Technical Institute, Siberian Federal University, Abakan, Russian Federation
Laboratory of Tree-Ring Research, University of Arizona, Tucson, United States
Siberian Federal University, Krasnoyarsk, Russian Federation
Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Belokopytova, L. V.; Meko, D. M.; Zhirnova, D. F.; Babushkina, E. A.; Vaganov, E. A.