Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 2

    Nitrogen dynamics in Turbic Cryosols from Siberia and Greenland
/ B. Wild [et al.] // Soil Biology and Biochemistry. - 2013. - Vol. 67. - P85-93, DOI 10.1016/j.soilbio.2013.08.004 . - ISSN 0038-0717

Кл.слова (ненормированные):
Arctic -- Cryoturbation -- Ecological stoichiometry -- Nitrification -- Nitrogen availability -- Nitrogen mineralization -- Nitrogen transformation -- Protein depolymerization -- Soil organic matter -- Tundra -- Arctic -- Cryoturbation -- Ecological stoichiometry -- Nitrogen availability -- Nitrogen mineralization -- Nitrogen transformations -- Protein depolymerization -- Soil organic matters -- Tundra -- Amino acids -- Biogeochemistry -- Decay (organic) -- Depolymerization -- Mineralogy -- Nitrification -- Nitrogen -- Organic compounds -- Permafrost -- Proteins -- Soils -- arctic environment -- cryoturbation -- decomposition -- freezing -- microbial community -- mineralization -- nitrification -- nitrogen -- nitrogen cycle -- permafrost -- protein -- soil horizon -- soil organic matter -- stoichiometry -- subsoil -- thawing -- transformation -- tundra -- Arctic -- Greenland -- Siberia

Аннотация: Turbic Cryosols (permafrost soils characterized by cryoturbation, i.e., by mixing of soil layers due to freezing and thawing) are widespread across the Arctic, and contain large amounts of poorly decomposed organic material buried in the subsoil. This cryoturbated organic matter exhibits retarded decomposition compared to organic material in the topsoil. Since soil organic matter (SOM) decomposition is known to be tightly linked to N availability, we investigated N transformation rates in different soil horizons of three tundra sites in north-eastern Siberia and Greenland. We measured gross rates of protein depolymerization, N mineralization (ammonification) and nitrification, as well as microbial uptake of amino acids and NH4 + using an array of 15N pool dilution approaches. We found that all sites and horizons were characterized by low N availability, as indicated by low N mineralization compared to protein depolymerization rates (with gross N mineralization accounting on average for 14% of gross protein depolymerization). The proportion of organic N mineralized was significantly higher at the Greenland than at the Siberian sites, suggesting differences in N limitation. The proportion of organic N mineralized, however, did not differ significantly between soil horizons, pointing to a similar N demand of the microbial community of each horizon. In contrast, absolute N transformation rates were significantly lower in cryoturbated than in organic horizons, with cryoturbated horizons reaching not more than 32% of the transformation rates in organic horizons. Our results thus indicate a deceleration of the entire N cycle in cryoturbated soil horizons, especially strongly reduced rates of protein depolymerization (16% of organic horizons) which is considered the rate-limiting step in soil N cycling. В© 2013 The Authors.

Scopus,
Полный текст

Держатели документа:
University of Vienna, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
Austrian Polar Research Institute, 1090 Vienna, Austria
University of South Bohemia, Department of Ecosystems Biology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
Leibniz Universitat Hannover, Institut fur Bodenkunde, Herrenhauser Strasse 2, 30419 Hannover, Germany
International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361 Laxenburg, Austria
Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, St. Zolotodolinskaya 101, 630090 Novosibirsk, Russian Federation
VN Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Akademgorodok, 660036 Krasnoyarsk, Russian Federation
University of Vienna, Department of Ecogenomics and Systems Biology, Althanstrasse 14, 1090 Vienna, Austria
University of Bergen, Department of Biology/Centre for Geobiology, Allegaten 41, 5007 Bergen, Norway
Northeast Scientific Station, Pacific Institute for Geography, Far-East Branch of Russian Academy of Sciences, 678830 Chersky, Republic of Sakha, Russian Federation

Доп.точки доступа:
Wild, B.; Schnecker, J.; Barta, J.; Capek, P.; Guggenberger, G.; Hofhansl, F.; Kaiser, C.; Lashchinsky, N.; Mikutta, R.; Mooshammer, M.; Santruckova, H.; Shibistova, O.; Urich, T.; Zimov, S.A.; Richter, A.

    Amino acid production exceeds plant nitrogen demand in Siberian tundra
/ B. Wild [et al.] // Environ. Res. Lett. - 2018. - Vol. 13, Is. 3. - Ст. 034002, DOI 10.1088/1748-9326/aaa4fa. - Cited References:85. - This study is part of the CryoCARB project (Long-term Carbon Storage in Cryoturbated Arctic Soils), co-funded by the Austrian Science Fund (FWF): I370-B17, the German Federal Ministry of Education and Research (03F0616A), the Czech Ministry of Education, Youth and Sports (MSM 7E10073-CryoCARB), the Russian Ministry of Education and Science (No. 14.B25.31.0031), the Swedish Research Council (824-2009-77357), and the Norwegian Research Fund (NFR): NFR-200411, and was further supported by a JPI Climate Project (COUP-Austria; BMWFW-6.020/0008) awarded to Andreas Richter. Jiri Barta and Tim Urich received additional funding from the Czech Science Foundation (16-18453S). . - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: Arctic plant productivity is often limited by low soil N availability. This has been attributed to slow breakdown of N-containing polymers in litter and soil organic matter (SOM) into smaller, available units, and to shallow plant rooting constrained by permafrost and high soil moisture. Using N-15 pool dilution assays, we here quantified gross amino acid and ammonium production rates in 97 active layer samples from four sites across the Siberian Arctic. We found that amino acid production in organic layers alone exceeded literature-based estimates of maximum plant N uptake 17-fold and therefore reject the hypothesis that arctic plant N limitation results from slow SOM breakdown. High microbial N use efficiency in organic layers rather suggests strong competition of microorganisms and plants in the dominant rooting zone. Deeper horizons showed lower amino acid production rates per volume, but also lower microbial N use efficiency. Permafrost thaw together with soil drainage might facilitate deeper plant rooting and uptake of previously inaccessible subsoil N, and thereby promote plant productivity in arctic ecosystems. We conclude that changes in microbial decomposer activity, microbial N utilization and plant root density with soil depth interactively control N availability for plants in the Arctic.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Univ Vienna, Dept Microbiol & Ecosyst Sci, Vienna, Austria.
Austrian Polar Res Inst, Vienna, Austria.
Univ Gothenburg, Dept Earth Sci, Gothenburg, Sweden.
Stockholm Univ, Dept Environm Sci & Analyt Chem, Stockholm, Sweden.
Stockholm Univ, Bolin Ctr Climate Res, Stockholm, Sweden.
Univ Vienna, Dept Ecogen & Syst Biol, Vienna, Austria.
Univ South Bohemia, Dept Ecosyst Biol, Ceske Budejovice, Czech Republic.
Leibniz Univ Hannover, Inst Soil Sci, Hannover, Germany.
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk, Russia.
Stockholm Univ, Dept Phys Geog, Stockholm, Sweden.
Stanford Univ, Dept Earth Sci, Stanford, CA 94305 USA.
Russian Acad Sci, Cent Siberian Bot Garden, Siberian Branch, Novosibirsk, Russia.
Martin Luther Univ Halle Wittenberg, Soil Sci & Soil Protect, Halle, Saale, Germany.
Univ New Hampshire, Dept Nat Resources & Environm, Durham, NH 03824 USA.
Univ Lancaster, Lancaster Environm Ctr, Lancaster, England.
Ernst Moritz Arndt Univ Greifswald, Inst Microbiol, Greifswald, Germany.

Доп.точки доступа:
Wild, Birgit; Alves, Ricardo J. Eloy; Barta, Jiri; Capek, Petr; Gentsch, Norman; Guggenberger, Georg; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Prommer, Judith; Schnecker, Joerg; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Richter, Andreas; Alves, Ricardo; Austrian Science Fund (FWF) [I370-B17]; German Federal Ministry of Education and Research [03F0616A]; Czech Ministry of Education, Youth and Sports [MSM 7E10073-CryoCARB]; Russian Ministry of Education and Science [14.B25.31.0031]; Swedish Research Council [824-2009-77357]; Norwegian Research Fund (NFR) [NFR-200411]; JPI Climate Project (COUP-Austria) [BMWFW-6.020/0008]; Czech Science Foundation [16-18453S]