Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 20

    Landscape controls of CH4 fluxes in a catchment of the forest tundra ecotone in northern Siberia
[Text] / H. . Flessa [et al.] // Glob. Change Biol. - 2008. - Vol. 14, Is. 9. - P2040-2056, DOI 10.1111/j.1365-2486.2008.01633.x. - Cited References: 68 . - 17. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Terrestrial ecosystems in northern high latitudes exchange large amounts of methane (CH4) with the atmosphere. Climate warming could have a great impact on CH4 exchange, in particular in regions where degradation of permafrost is induced. In order to improve the understanding of the present and future methane dynamics in permafrost regions, we studied CH4 fluxes of typical landscape structures in a small catchment in the forest tundra ecotone in northern Siberia. Gas fluxes were measured using a closed-chamber technique from August to November 2003 and from August 2006 to July 2007 on tree-covered mineral soils with and without permafrost, on a frozen bog plateau, and on a thermokarst pond. For areal integration of the CH4 fluxes, we combined field observations and classification of functional landscape structures based on a high-resolution Quickbird satellite image. All mineral soils were net sinks of atmospheric CH4. The magnitude of annual CH4 uptake was higher for soils without permafrost (1.19 kg CH4 ha(-1) yr(-1)) than for soils with permafrost (0.37 kg CH4 ha(-1) yr(-1)). In well-drained soils, significant CH4 uptake occurred even after the onset of ground frost. Bog plateaux, which stored large amounts of frozen organic carbon, were also a net sink of atmospheric CH4 (0.38 kg CH4 ha(-1) yr(-1)). Thermokarst ponds, which developed from permafrost collapse in bog plateaux, were hot spots of CH4 emission (approximately 200 kg CH4 ha(-1) yr(-1)). Despite the low area coverage of thermokarst ponds (only 2.1% of the total catchment area), emissions from these sites resulted in a mean catchment CH4 emission of 3.8 kg CH4 ha(-1) yr(-1). Export of dissolved CH4 with stream water was insignificant. The results suggest that mineral soils and bog plateaux in this region will respond differently to increasing temperatures and associated permafrost degradation. Net uptake of atmospheric CH4 in mineral soils is expected to gradually increase with increasing active layer depth and soil drainage. Changes in bog plateaux will probably be much more rapid and drastic. Permafrost collapse in frozen bog plateaux would result in high CH4 emissions that act as positive feedback to climate warming.

WOS,
Scopus,
Полный текст

Держатели документа:
[Flessa, Heiner] Univ Gottingen, Buesgen Inst, D-37077 Gottingen, Germany
[Rodionov, Andrej] Univ Cottbus, Chair Soil Protect & Recultivat, D-03046 Cottbus, Germany
[Rodionov, Andrej
Guggenberger, Georg] Univ Halle Wittenberg, Inst Agr & Nutr Sci, D-06108 Halle, Germany
[Fuchs, Hans
Magdon, Paul] Univ Gottingen, Inst Forest Management, D-37077 Gottingen, Germany
[Shibistova, Olga
Zrazhevskaya, Galina
Mikheyeva, Natalia] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Kasansky, Oleg A.] SB RAS, Permafrost Inst Yakutsk, Field Stn Igarka, Igarka 663200, Russia
[Blodau, Christian] Univ Bayreuth, Dept Hydrol, D-95440 Bayreuth, Germany

Доп.точки доступа:
Flessa, H...; Rodionov, A...; Guggenberger, G...; Fuchs, H...; Magdon, P...; Shibistova, O...; Zrazhevskaya, G...; Mikheyeva, N...; Kasansky, O.A.; Blodau, C...

    Fluxes of dissolved organic matter in larch forests in the cryolithozone of central Siberia
[Text] / A. S. Prokushkin [et al.] // Russ. J. Ecol. - 2008. - Vol. 39, Is. 3. - P151-159, DOI 10.1134/S1067413608030016. - Cited References: 33 . - 9. - ISSN 1067-4136
РУБ Ecology
Рубрики:
LATITUDE SOILS
   CARBON

   PERMAFROST

   NITROGEN

Кл.слова (ненормированные):
dissolved organic matter -- larch biogeocenoses -- drainage basin -- permafrost -- creek -- export

Аннотация: Fluxes of dissolved organic matter (DOM) in larch biogeocenoses and its export from the drainage basin have been studied in the zone of continuous permafrost. A comparative assessment of DOM input into the soil has been made on slopes of northern and southern exposures (as variants reflecting the current state and warming). The dynamics of DOM export in a creek depending on the increasing depth of the active soil horizon in the drainage area have been revealed. It is concluded that an increase in the depth of the seasonally thawing layer induced by global warming will not have any significant effect on the amount of annual DOM export. Reduction of DOM export may be expected upon a decrease in litter stocks under the effect of their mineralization and forest fires.

Полный текст,
WOS,
Scopus

Держатели документа:
[Guggenberger, H.] Univ Halle Wittenberg, D-06108 Halle, Saale, Germany
[Prokushkin, A. S.
Tokareva, I. V.
Prokushkin, S. G.
Abaimov, A. P.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Prokushkin, A.S.; Tokareva, I.V.; Prokushkin, S.G.; Abaimov, A.P.; Абаимов Анатолий Платонович; Guggenberger, H...

    Organic carbon and total nitrogen variability in permafrost-affected soils in a forest tundra ecotone
[Text] / A. . Rodionov [et al.] // Eur. J. Soil Sci. - 2007. - Vol. 58, Is. 6. - P1260-1272, DOI 10.1111/j.1365-2389.2007.00919.x. - Cited References: 44 . - 13. - ISSN 1351-0754
РУБ Soil Science

Аннотация: Soils of the high latitudes are expected to respond sensitively to climate change, but still little is known about carbon and nitrogen variability in them. We investigated the 0.44-km(2) Little Grawijka Creek catchment of the forest tundra ecotone (northern Krasnoyarsk Krai, Russian Federation) in order (i) to relate the active-layer thickness to controlling environmental factors, (ii) to quantify soil organic carbon (SOC) and total nitrogen (NT) stocks, and (iii) to assess their variability with respect to different landscape units. The catchment was mapped on a 50 x 50 m grid for topography, dominant tree and ground vegetation, organic-layer and moss-layer thickness, and active-layer thickness. At each grid point, bulk density, and SOC and NT concentrations were determined for depth increments. At three selected plots, 2-m deep soil cores were taken and analysed for SOC, NT and C-14. A shallow active layer was found in intact raised bogs at plateaux situations and in mineral soils of north-northeast (NNE) aspect. Good drainage and greater solar insolation on the south-southwest (SSW) slopes are reflected in deeper active layers or lack of permafrost. Organic carbon stocks to a soil depth of 90 cm varied between 5 and 95 kg m(-2). The greatest stocks were found in the intact raised bogs and on the NNE slopes. Canonical correspondence analysis indicates the dominant role of active-layer thickness for SOC and NT storage. The 2-m soil cores suggest that permafrost soils store about the same amount of SOC from 90 to 200 cm as in the upper 90 cm. Most of this deep SOC pool was formed in the mid-Holocene (organic soils) and the late Pleistocene (mineral soils). Our results showed that even within a small catchment of the forest tundra, active-layer thickness and, hence, SOC and NT storage vary greatly within the landscape mosaic. This has to be taken into account when using upscaling methods such as remote sensing for assessing SOC and NT storage and cycling at a regional to continental level.

WOS,
Scopus

Держатели документа:
Univ Halle Wittenberg, Inst Agr & Ernahrungswissensch, D-06108 Halle, Germany
Univ Gottingen, Inst Bodenkunde & Waldernahrung, D-37077 Gottingen, Germany
Max Planck Inst Biogeochem, D-07745 Jena, Germany
SB RAS, Field Stn Igarka Permafrost Inst Yakutsk, Igarka 663200, Russia
SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Rodionov, A...; Flessa, H...; Grabe, M...; Kazansky, O.A.; Shibistova, O...; Guggenberger, G...

    Oxidoreductase activity of peat soils as an indicator of the degree of biochemical transformation of drained and forested bogs in West Siberia
[Text] / T. T. Efremova, T. M. Ovchinnikova // Biol. Bull. - 2007. - Vol. 34, Is. 3. - P297-302, DOI 10.1134/S1062359007030132. - Cited References: 12 . - 6. - ISSN 1062-3590
РУБ Biology

Аннотация: Multivariate analysis unambiguously demonstrated the differentiation of oxidoreductase activity (catalase, peroxidase, and dehydrogenase) in peat soils after a 20-25-year period of bog drainage and afforestation. The enzyme activity depended on the drainage depth. A statistical model has been developed to predict the degree of humification of peat organic matter from peroxidase activity and moisture of drained soils. Soil peroxidase activity can be an important indicator of the degree of biochemical transformation of drained and forested bogs.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Efremova, T.T.; Ovchinnikova, T.M.

    Multiparametric analysis of soil properties in the drained forest bogs of Western Siberia
[Text] / T. T. Efremova, T. M. Ovchinnikova, V. G. Sukhovol'skii // Eurasian Soil Sci. - 2006. - Vol. 39, Is. 6. - P588-596, DOI 10.1134/S1064229306060020. - Cited References: 26 . - 9. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The application of multiparametric statistical methods has confirmed that peat soils are different in the degree of their drainage and properties because of their modification during a 20 - 25 year period of artificial drainage operation. The following sequence represents the relative significance of the contribution to the soil changes of the parameters studied: groundwater table air capacity pH T-0 Eh water-soluble: C Fe3+ and the activity of soil oxidoreductases in the following sequence: peroxidase catalase dehydrogenase. The necessity to supplement the substantive - genetic principle of the classification of drained peat soils with characterization of their water regime is substantiated.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Efremova, T.T.; Ovchinnikova, T.M.; Sukhovol'skii, V.G.

    Wildfires in northern Siberian larch dominated communities
/ V. I. Kharuk [et al.] // Environmental Research Letters. - 2011. - Vol. 6, Is. 4. - Ст. 045208, DOI 10.1088/1748-9326/6/4/045208 . - ISSN 1748-9318

Аннотация: The fire history of the northern larch forests within the permafrost zone in a portion of northern Siberia (∼66°N, 100°E) was studied. Since there is little to no human activity in this area, fires within the study area were mostly caused by lightning. Fire return intervals (FRI) were estimated on the basis of burn marks on tree stems and dates of tree natality. FRI values varied from 130 to 350yr with a 200 50yr mean. For southerly larch dominated communities, FRI was found to be shorter (77 20yr at ∼ 61°N, and 82 7at 64°N), and it was longer at the northern boundary (∼71°) of larch stands (320 50yr). During the Little Ice Age period in the 16th-18th centuries, FRI was approximately twice as long those as recorded in this study. Fire caused changes in the soil including increases in soil drainage and permafrost thawing depth, and a radial growth increase to about twice the background value (with more than six times observed in extreme cases). This effect may simulate the predicted warming impact on the larch growth in the permafrost zone. © 2011 IOP Publishing Ltd.

Scopus

Держатели документа:
V N Sukachev Institute of Forest, Krasnoyarsk 660036, Russian Federation
NASA's Goddard Space Flight Center, CODE 618, Greenbelt, MD 20771, United States

Доп.точки доступа:
Kharuk, V.I.; Ranson, K.J.; Dvinskaya, M.L.; Im, S.T.

    Landcover attributes from ICESat GLAS data in central Siberia
/ K. J. Ranson [et al.] // International Geoscience and Remote Sensing Symposium (IGARSS). - 2004. - Vol. 2: 2004 IEEE International Geoscience and Remote Sensing Symposium Proceedings: Science for Society: Exploring and Managing a Changing Planet. IGARSS 2004 (20 September 2004 through 24 September 2004, Anchorage, AK) Conference code: 64488. - P753-756 . -
Аннотация: NASA's ICESat Geoscience Laser Altimeter System (GLAS) was launched in January 2003 and collected lidar data during February and September of that year. Lidar is a laser altimeter that measures the distance from the instrument to the surface by measuring the time elapsed between the pulse emission and the reflected return. The returned signal may identify multiple returns originating from trees, buildings and other objects and permits the calculation of their height. Sampling the returns at discrete time intervals enables backscatter profiles to be constructed. Lidar data can provide estimates of other structural parameters such as biomass, stand volume and leaf area. This study used GLAS data acquired over our study sites in central Siberia to examine the signal as a source of information of forest stand characteristics. Example lidar profiles are presented and preliminary analysis is described. The results indicate that GLAS profile information may be useful for understanding MODIS landcover classes.

Scopus

Держатели документа:
NASA's Goddard Space Flight Center, Code 923, Greenbelt, MD, United States
Department of Geography, University of Maryland, College Park, United States
Sci. Systems and Applications, Inc., Seabrook, MD, United States
V.N. Sukachev Institute of Forest, Academgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ranson, K.J.; Sun, G.; Kovacs, K.; Kharuk, V.I.

    Formation and properties of litter of forest biogeocoenoses in the middle Angara region
/ E. P. Popova, V. N. Gorbachev // Soviet Soil Science. - 1988. - Vol. 20, Is. 4. - P13-20 . - ISSN 0038-5832
Аннотация: The thickness and reserves of litter are shown to increase with impeded drainage of habitats of a topoecological profile. This leads to a less favorable soil temperature regime, slower rate of liter decomposition, and accumulation in the carbon and nitrogen supply of many inert nonhydrolyzable compounds, thereby, adversely affecting the productivity of tree stands. -Journal summary

Scopus

Держатели документа:
V.N.Sukachev Inst. of Forestry & Wood, Siberian Branch, USSR Academy of Sciences, Krasnoyarsk, Akademgorodok, USSR.

Доп.точки доступа:
Popova, E.P.; Gorbachev, V.N.

    Биологическая продуктивность как показатель лесообразовательного процесса в болотном лесу: Доклад на междунар. симпоз. в Финляндии
[Текст] / Ф. З. Глебов, Л. С. Толейко // Proceedings of the International Simposium of forest drainage 2nd-6th, September 1974, Juwaskyla-Oulu, Finland. - 1974. - С. 47-55



Доп.точки доступа:
Толейко, Л.С.; Glebov, F.Z.

    Nutrient uptake along a fire gradient in boreal streams of Central Siberia
[Text] / L. A. Diemer [et al.] // Freshw. Sci. - 2015. - Vol. 34, Is. 4. - P1443-1456, DOI 10.1086/683481. - Cited References:63. - We thank the Russian and American researchers and volunteers and the University of New Hampshire (UNH) Water Quality Analysis Laboratory technicians for their assistance in the field and laboratory. Special thanks to Alison Appling, Wilfred Wollheim, Jody Potter, and 2 anonymous referees for their suggestions on the manuscript. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 147640. We also acknowledge the research support of the Russian Fund for Basic Research No. 14-05-00420 and the Russian Ministry of Education No. 14.B25.31.0031. This research was taken from a thesis submitted to the Graduate School at the University of New Hampshire as part of the requirements for completion of a MS degree (Diemer 2014). . - ISSN 2161-9549. - ISSN 2161-9565
РУБ Ecology + Marine & Freshwater Biology

Аннотация: Fire can transform the boreal forest landscape, thereby leading to potential changes in the loading of organic matter and nutrients to receiving streams and in the retention or transformation of these inputs within the drainage network. We used the Tracer Additions for Spiraling Curve Characterization (TASCC) method to conduct 17 nutrient-addition experiments (9 single additions of NO3- and 8 combined additions of NH4+ and PO43-) in 5 boreal headwater streams underlain by continuous permafrost and draining watersheds with a range of burn histories (4->100 y since last burn) in the Nizhnyaya Tunguska River watershed in Central Siberia. Hydrology, ambient nutrient concentration, and the ratio of dissolved organic C (DOC) to nutrients drove rates of nutrient uptake in the streams. Nutrients were taken up with greater efficiency and magnitude under conditions with high flow and reduced diffusive boundary layer (DBL), regardless of watershed burn history. Ambient molar ratio of DOC: PO43- explained some variation in ambient uptake velocity (upsilon(f)) for NH4+ and PO43-. We also observed tight coupling between ambient rates of NH4+ and PO43- uptake across the watershed burn-history gradient. These data suggest that fire-driven changes in stream chemistry may alter N and P retention and subsequent export of materials to downstream receiving waters. Climate change is likely to enhance the frequency and intensity of boreal forest fires and alter the extent of permafrost. Therefore, understanding the interactions among C, N, and P in these Arctic systems has important implications for global biogeochemical cycling.

WOS,
Scopus

Держатели документа:
Univ New Hampshire, Dept Nat Resources, Durham, NH 03824 USA.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk, Russia.

Доп.точки доступа:
Diemer, Laura A.; McDowell, William H.; Wymore, Adam S.; Prokushkin, Anatoly S.; National Science Foundation Graduate Research Fellowship Program [147640]; Russian Fund for Basic Research [14-05-00420]; Russian Ministry of Education [14.B25.31.0031]

    Dynamics of water mass in the Central Siberia permafrost zone based on gravity survey from the grace satellites
/ S. T. Im, V. I. Kharuk // Izv. Atmos. Ocean Phys. - 2015. - Vol. 51, Is. 8. - P806-818, DOI 10.1134/S0001433815080046 . - ISSN 0001-4338

Кл.слова (ненормированные):
GRACE -- gravimetric survey -- permafrost thawing -- permafrost zone of Siberia

Аннотация: The GRACE gravimetric survey is applied to analyze the equivalent water mass anomalies (EWMAs) in the permafrost zone of Central Siberia. Variations in EWMAs are related to precipitation, air temperature, potential evapotranspiration, and soil composition (drainage conditions). The EWMA dynamics demonstrates two periods. The period of 2003–2008 is characterized by a positive trend. The one of 2008–2012 shows a decrease in the trend with a simultaneous increase by 30–70% of EWMA dispersion in the background of growth (up to 40%) of precipitation variability. The rate of water mass increment demonstrates a positive correlation with the sand and gravel contents in soil (r = 0.72) and a negative one with clay content (r =–0.69 to–0.77). For Taimyr Peninsula, there is a deficit of residual water mass (~250 mm for the period of 2012–2013) indicating the deeper thawing of permafrost soils. In the Central Siberian Plateau, the indicator of more intensive permafrost thawing (and that of an increase in active layer thickness) is a considerable trend of water mass increase (2003–2008). The increasing trend of the largest Siberian rivers (Yenisei and Lena) is revealed in the period of 2003–2012. © 2015, Pleiades Publishing, Ltd.

Scopus,
WOS

Держатели документа:
Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, buiding 28, Krasnoyarsk, Russian Federation
Institute of Economy, Management, and Nature Use, Siberian Federal University, ul. Kirenskogo 266, Krasnoyarsk, Russian Federation
Reshetnev Siberian State Aerospace University, pr. imeni gazety “Krasnoyarskii rabochii” 31, building A, Krasnoyarsk, Russian Federation
Institute of Space and Information Technologies, Siberian Federal University, pr. Svobodnyi 79, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Im, S. T.; Kharuk, V. I.

    Fate of carbohydrates and lignin in north-east Siberian permafrost soils
/ T. T. Dao [et al.] // Soil Biol. Biochem. - 2018. - Vol. 116. - P311-322, DOI 10.1016/j.soilbio.2017.10.032 . - ISSN 0038-0717
Аннотация: Permafrost soils preserve huge amounts of organic carbon (OC) prone to decomposition under changing climatic conditions. However, knowledge on the composition of soil organic matter (OM) and its transformation and vulnerability to decomposition in these soils is scarce. We determined neutral sugars and lignin-derived phenols, released by trifluoroacetic acid (TFA) and CuO oxidation, respectively, within plants and soil density fractions from the active layer and the upper permafrost layer at three different tundra types (shrubby grass, shrubby tussock, shrubby lichen) in the Northeast Siberian Arctic. The heavy fraction (HF; >1.6 g mL?1) was characterized by a larger enrichment of microbial sugars (hexoses vs. pentoses) and more pronounced lignin degradation (acids vs. aldehydes) as compared to the light fraction (LF; <1.6 g mL?1), showing the transformation from plant residue-dominated particulate OM to a largely microbial imprint in mineral-associated OM. In contrast to temperate and tropical soils, total neutral sugar contents and galactose plus mannose to arabinose plus xylose ratios (GM/AX) decreased in the HF with soil depth, which may indicate a process of effective recycling of microbial biomass rather than utilizing old plant materials. At the same time, lignin-derived phenols increased and the degree of oxidative decomposition of lignin decreased with soil depth, suggesting a selective preservation of lignin presumably due to anaerobiosis. As large parts of the plant-derived pentoses are incorporated in lignocelluloses and thereby protected against rapid decomposition, this might also explain the relative enrichment of pentoses with soil depth. Hence, our results show a relatively large contribution of plant-derived OM, particularly in the buried topsoil and subsoil, which is stabilized by the current soil environmental conditions but may become available to decomposers if permafrost degradation promotes soil drainage and improves the soil oxygen supply. © 2017

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Soil Science, Leibniz University Hannover, Germany
Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Germany
VN Sukachev Institute of Forest, Krasnoyarsk, Russian Federation
Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
Austrian Polar Research Institute, Vienna, Austria
Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, United States
Department of Ecosystem Biology, University of South Bohemia, Ceske Budejovice, Czech Republic
Department of Biology, Centre for Geobiology, University of Bergen, Bergen, Norway
Department of Bioscience, Center for Geomicrobiology, Aarhus, Denmark
Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
Institute of Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany

Доп.точки доступа:
Dao, T. T.; Gentsch, N.; Mikutta, R.; Sauheitl, L.; Shibistova, O.; Wild, B.; Schnecker, J.; Barta, J.; Capek, P.; Gittel, A.; Lashchinskiy, N.; Urich, T.; Santruckova, H.; Richter, A.; Guggenberger, G.

    Amino acid production exceeds plant nitrogen demand in Siberian tundra
/ B. Wild [et al.] // Environ. Res. Lett. - 2018. - Vol. 13, Is. 3. - Ст. 034002, DOI 10.1088/1748-9326/aaa4fa. - Cited References:85. - This study is part of the CryoCARB project (Long-term Carbon Storage in Cryoturbated Arctic Soils), co-funded by the Austrian Science Fund (FWF): I370-B17, the German Federal Ministry of Education and Research (03F0616A), the Czech Ministry of Education, Youth and Sports (MSM 7E10073-CryoCARB), the Russian Ministry of Education and Science (No. 14.B25.31.0031), the Swedish Research Council (824-2009-77357), and the Norwegian Research Fund (NFR): NFR-200411, and was further supported by a JPI Climate Project (COUP-Austria; BMWFW-6.020/0008) awarded to Andreas Richter. Jiri Barta and Tim Urich received additional funding from the Czech Science Foundation (16-18453S). . - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: Arctic plant productivity is often limited by low soil N availability. This has been attributed to slow breakdown of N-containing polymers in litter and soil organic matter (SOM) into smaller, available units, and to shallow plant rooting constrained by permafrost and high soil moisture. Using N-15 pool dilution assays, we here quantified gross amino acid and ammonium production rates in 97 active layer samples from four sites across the Siberian Arctic. We found that amino acid production in organic layers alone exceeded literature-based estimates of maximum plant N uptake 17-fold and therefore reject the hypothesis that arctic plant N limitation results from slow SOM breakdown. High microbial N use efficiency in organic layers rather suggests strong competition of microorganisms and plants in the dominant rooting zone. Deeper horizons showed lower amino acid production rates per volume, but also lower microbial N use efficiency. Permafrost thaw together with soil drainage might facilitate deeper plant rooting and uptake of previously inaccessible subsoil N, and thereby promote plant productivity in arctic ecosystems. We conclude that changes in microbial decomposer activity, microbial N utilization and plant root density with soil depth interactively control N availability for plants in the Arctic.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Univ Vienna, Dept Microbiol & Ecosyst Sci, Vienna, Austria.
Austrian Polar Res Inst, Vienna, Austria.
Univ Gothenburg, Dept Earth Sci, Gothenburg, Sweden.
Stockholm Univ, Dept Environm Sci & Analyt Chem, Stockholm, Sweden.
Stockholm Univ, Bolin Ctr Climate Res, Stockholm, Sweden.
Univ Vienna, Dept Ecogen & Syst Biol, Vienna, Austria.
Univ South Bohemia, Dept Ecosyst Biol, Ceske Budejovice, Czech Republic.
Leibniz Univ Hannover, Inst Soil Sci, Hannover, Germany.
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk, Russia.
Stockholm Univ, Dept Phys Geog, Stockholm, Sweden.
Stanford Univ, Dept Earth Sci, Stanford, CA 94305 USA.
Russian Acad Sci, Cent Siberian Bot Garden, Siberian Branch, Novosibirsk, Russia.
Martin Luther Univ Halle Wittenberg, Soil Sci & Soil Protect, Halle, Saale, Germany.
Univ New Hampshire, Dept Nat Resources & Environm, Durham, NH 03824 USA.
Univ Lancaster, Lancaster Environm Ctr, Lancaster, England.
Ernst Moritz Arndt Univ Greifswald, Inst Microbiol, Greifswald, Germany.

Доп.точки доступа:
Wild, Birgit; Alves, Ricardo J. Eloy; Barta, Jiri; Capek, Petr; Gentsch, Norman; Guggenberger, Georg; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Prommer, Judith; Schnecker, Joerg; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Richter, Andreas; Alves, Ricardo; Austrian Science Fund (FWF) [I370-B17]; German Federal Ministry of Education and Research [03F0616A]; Czech Ministry of Education, Youth and Sports [MSM 7E10073-CryoCARB]; Russian Ministry of Education and Science [14.B25.31.0031]; Swedish Research Council [824-2009-77357]; Norwegian Research Fund (NFR) [NFR-200411]; JPI Climate Project (COUP-Austria) [BMWFW-6.020/0008]; Czech Science Foundation [16-18453S]

    The biophysical climate mitigation potential of boreal peatlands during the growing season
/ M. Helbig, J. M. Waddington, P. Alekseychik [et al.] // Environ. Res. Lett. - 2020. - Vol. 15, Is. 10. - Ст. 104004, DOI 10.1088/1748-9326/abab34. - Cited References:109. - This work is part of the Boreal Water Futures project and supported through the Global Water Futures research program. We thank all the EC flux tower teams for sharing their data. We are grateful to Myroslava Khomik, Adam Green, Inke Forbrich, Eric Kessel, Gordon Drewitt, and Pasi Kolari for helping with data preparation and to Inke Forbrich on feedback on an earlier version of the manuscript.; I M acknowledges funding from ICOS-FINLAND (Grant 281255), Finnish Center of Excellence (Grant 307331), and EU Horizon-2020 RINGO project (Grant 730944). A P acknowledges funding through the research project #18-45-243003 (RFBR and Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science) and support for flux tower sites RU-ZOP and RU-ZOB through the Max Planck Society. A D and J T acknowledges funding from US National Science foundation #DEB-1440297 and DOE Ameriflux Network Management Project award to ChEAS core site cluster. T A B, A G B, and R J acknowledge support received through grants from the Fluxnet Canada ResearchNetwork (2002-2007; NSERC, CFCAS, and BIOCAP) and the Canadian Carbon Program (2008-2012; CFCAS) and by an NSERC (Climate Change and Atmospheric Research) Grant to the Changing Cold Regions Network (CCRN; 2012-2016) and an NSERC Discovery Grant. H I and M U acknowledge support by the Arctic Challenge for Sustainability II (ArCS II) project (JPMXD1420318865). J K and A V acknowledge funding by RFBR project number 19-04-01234-a. B A acknowledges funding through NASA, NSERC, BIOCAP Canada, the Canadian Foundation for Climate and Atmospheric Sciences, and the Canadian Foundation for Innovation for flux measurements at CA-MAN and through the Canadian Forest Service, the Natural Sciences and Engineering Research Council of Canada (NSERC), the FLUXNET-Canada Network (NSERC, the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), and BIOCAP Canada), the Canadian Carbon Program (CFCAS), Parks Canada, and the Program of Energy Research and Development (PERD). O S acknowledges funding by the Canada Research Chairs, Canada Foundation for Innovation Leaders Opportunity Fund, and Natural Sciences and Engineering Research Council Discovery Grant Programs. L B F acknowledges funding from the Natural Sciences and Engineering Research Council of Canada (NSERC), the FLUXNET-Canada Network (NSERC, the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), and BIOCAP Canada), and the Canadian Carbon Program (CFCAS). M B N, M O L, M P, and J C gratefully acknowledge funding from the Swedish research infrastructures SITES and ICOS Sweden and research grants from Kempe Foundations, (#SMK-1743); VR (#2018-03966) and Formas, (#2016-01289) and M P gratefully acknowledges funding from Knut and Alice Wallenberg Foundation (#2015.0047).; M W acknowledge funding by the German Research Foundation (Grant Wi 2680/2-1) and the European Union (Grant 36993). B R K R and L K acknowledge support by the Cluster of Excellence 'CliSAP' (EXC177) of the University of Hamburg, funded by the German Research Foundation. H I acknowledges JAMSTEC and IARC/UAF collaboration study (JICS) and Arctic Challenge for Sustainability Project (ArCS). E H acknowledges the support of the FLUXNET-Canada Network, the Canadian Carbon Program, and Ontario Ministry of the Environment, Conservation and Parks. E L acknowledges funding by RFBR and Government of the KhantyMansi Autonomous Okrug -Yugra project #18-44-860017 and grant of the Yugra State University (13-01-20/39). M G and P T acknowledge NSERC funding (RDCPJ514218). M A, M K, A L. and J P T acknowledge the support by the Ministry of Transport and Communication through ICOS-Finland, Academy of Finland (grants 296888 and 308511), and Maj and Tor Nessling Foundation. T M acknowledge funding by Yakutian Scientific Center of Siberian Branch of Russian Academy of Sciences (Grant FWRS-2020-0012). . - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests-the dominant boreal forest type-and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a similar to 20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 degrees C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (similar to 45 degrees N) and decrease toward the northern limit of the boreal biome (similar to 70 degrees N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining.

WOS

Держатели документа:
McMaster Univ, Sch Earth Environm & Soc, Hamilton, ON, Canada.
Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada.
Univ Helsinki, Inst Atmospher & Earth Syst Res Phys, Fac Sci, Helsinki, Finland.
Nat Resources Inst Finland LUKE, Bioecon & Environm, Helsinki, Finland.
Univ Manitoba, Dept Soil Sci, Winnipeg, MB, Canada.
Finnish Meteorol Inst, Helsinki, Finland.
Environm & Climate Change Canada, Climate Res Div, Saskatoon, SK, Canada.
Univ Saskatchewan, Global Inst Water Secur, Saskatoon, SK, Canada.
Univ British Columbia, Fac Land & Food Syst, Vancouver, BC, Canada.
Michigan State Univ, Dept Geog Environm & Spatial Sci, E Lansing, MI 48824 USA.
Swedish Univ Agr Sci, Dept Forest Ecol & Management, Umea, Sweden.
Univ Wisconsin, Dept Atmospher Sci & Ocean Sci, Madison, WI USA.
Worcester State Univ, Dept Earth Environm & Phys, Worcester, MA USA.
Univ Alaska, Inst Arctic Biol, Fairbanks, AK 99775 USA.
Univ Lethbridge, Dept Biol Sci, Lethbridge, AB, Canada.
Univ Copenhagen, Dept Geosci & Nat Resource Management, Copenhagen, Denmark.
Univ Quebec Montreal Geotop, Montreal, PQ, Canada.
Swedish Univ Agr Sci, Dept Ecol, Uppsala, Sweden.
McGill Univ, Dept Geog, Montreal, PQ, Canada.
Lund Univ, Ctr Environm & Climate Res, Lund, Sweden.
Carleton Univ, Dept Geog & Environm Studies, Ottawa, ON, Canada.
Natl Agr & Food Res Org, Inst Agroenvironm Sci, Tsukuba, Ibaraki, Japan.
Univ Laval, Dept Genie Civil & Genie Eaux, Quebec City, PQ, Canada.
Shinshu Univ, Dept Environm Sci, Fac Sci, Matsumoto, Nagano, Japan.
Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Moscow, Russia.
Univ Hamburg, Inst Soil Sci, Hamburg, Germany.
Yugra State Univ, Ctr Environm Dynam & Climate Changes, Khanty Mansiysk, Russia.
Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden.
Wilfrid Laurier Univ, Cold Reg Res Ctr, Waterloo, ON, Canada.
Russian Acad Sci, Inst Biol Problems Cryolithozone, Siberian Branch, Yakutsk, Russia.
Nagoya Univ, Grad Sch Bioagr Sci, Nagoya, Aichi, Japan.
Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON, Canada.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst, Krasnoyarsk, Russia.
Univ Arkansas, Dept Biol & Agr Engn, Fayetteville, AR 72701 USA.
Univ Montreal, Dept Geog, Montreal, PQ, Canada.
Univ Montreal, Ctr Etud Nord, Montreal, PQ, Canada.
McGill Univ, Dept Nat Resource Sci, Ste Anne De Bellevue, PQ, Canada.
Univ Eastern Finland, Sch Forest Sci, Joensuu, Finland.
Osaka Prefecture Univ, Grad Sch Life & Environm Sci, Sakai, Osaka, Japan.
Univ Helsinki, Inst Atmospher & Earth Syst Res Forest Sci, Fac Agr & Forestry, Helsinki, Finland.
Ernst Moritz Arndt Univ Greifswald, Inst Bot & Landscape Ecol, Greifswald, Germany.
Univ Alberta, Dept Renewable Resources, Edmonton, AB, Canada.

Доп.точки доступа:
Helbig, Manuel; Waddington, James M.; Alekseychik, Pavel; Amiro, Brian; Aurela, Mika; Barr, Alan G.; Black, T. Andrew; Carey, Sean K.; Chen, Jiquan; Chi, Jinshu; Desai, Ankur R.; Dunn, Allison; Euskirchen, Eugenie S.; Flanagan, Lawrence B.; Friborg, Thomas; Garneau, Michelle; Grelle, Achim; Harder, Silvie; Heliasz, Michal; Humphreys, Elyn R.; Ikawa, Hiroki; Isabelle, Pierre-Erik; Iwata, Hiroki; Jassal, Rachhpal; Korkiakoski, Mika; Kurbatova, Juliya; Kutzbach, Lars; Lapshina, Elena; Lindroth, Anders; Lofvenius, Mikaell Ottosson; Lohila, Annalea; Mammarella, Ivan; Marsh, Philip; Moore, Paul A.; Maximov, Trofim; Nadeau, Daniel F.; Nicholls, Erin M.; Nilsson, Mats B.; Ohta, Takeshi; Peichl, Matthias; Petrone, Richard M.; Prokushkin, Anatoly; Quinton, William L.; Roulet, Nigel; Runkle, Benjamin R. K.; Sonnentag, Oliver; Strachan, Ian B.; Taillardat, Pierre; Tuittila, Eeva-Stiina; Tuovinen, Juha-Pekka; Turner, Jessica; Ueyama, Masahito; Varlagin, Andrej; Vesala, Timo; Wilmking, Martin; Zyrianov, Vyacheslav; Schulze, Christopher; ICOS-FINLAND [281255]; Finnish Center of Excellence [307331]; EU Horizon-2020 RINGO project [730944]; Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science [18-45-243003]; RFBRRussian Foundation for Basic Research (RFBR) [18-45-243003, 19-04-01234-a]; Max Planck SocietyMax Planck SocietyFoundation CELLEX; US National Science foundationNational Science Foundation (NSF) [DEB-1440297]; DOE Ameriflux Network Management ProjectUnited States Department of Energy (DOE); Fluxnet Canada ResearchNetwork (2002-2007; NSERC); Fluxnet Canada ResearchNetwork (2002-2007; CFCAS); Fluxnet Canada ResearchNetwork (2002-2007; BIOCAP); Canadian Carbon Program (2008-2012; CFCAS); NSERC (Climate Change and Atmospheric Research); NSERC Discovery GrantNatural Sciences and Engineering Research Council of Canada; Arctic Challenge for Sustainability II (ArCS II) project [JPMXD1420318865]; NASANational Aeronautics & Space Administration (NASA); BIOCAP Canada; Canadian Foundation for Climate and Atmospheric Sciences; Natural Sciences and Engineering Research Council of Canada (NSERC)Natural Sciences and Engineering Research Council of Canada; FLUXNET-Canada Network (NSERC); FLUXNET-Canada Network (Canadian Foundation for Climate and Atmospheric Sciences (CFCAS)); FLUXNET-Canada Network (BIOCAP Canada); Parks Canada; Program of Energy Research and Development (PERD)Natural Resources Canada; Canada Research ChairsCanada Research ChairsCGIAR; Natural Sciences and Engineering Research CouncilNatural Sciences and Engineering Research Council of Canada; Canadian Carbon Program (CFCAS); Canada Foundation for Innovation Leaders Opportunity FundCanada Foundation for Innovation; Kempe Foundations [SMK-1743]; VRSwedish Research Council [2018-03966]; FormasSwedish Research Council Formas [2016-01289]; Knut and Alice Wallenberg FoundationKnut & Alice Wallenberg Foundation [2015.0047]; German Research FoundationGerman Research Foundation (DFG) [Wi 2680/2-1]; European UnionEuropean Union (EU) [36993]; Cluster of Excellence 'CliSAP' of the University of Hamburg - German Research Foundation [EXC177]; FLUXNET-Canada Network; Canadian Carbon Program; Ontario Ministry of the Environment, Conservation and Parks; Yugra State University [13-01-20/39]; NSERCNatural Sciences and Engineering Research Council of Canada [RDCPJ514218]; Ministry of Transport and Communication through ICOS-Finland; Academy of FinlandAcademy of Finland [296888, 308511]; Maj and Tor Nessling Foundation; Yakutian Scientific Center of Siberian Branch of Russian Academy of Sciences [FWRS-2020-0012]; RFBRRussian Foundation for Basic Research (RFBR); Government of the KhantyMansi Autonomous Okrug -Yugra project [18-44-860017]; Swedish research infrastructure SITES Sweden; Swedish research infrastructure ICOS Sweden; Global Water Futures research program; NSERCNatural Sciences and Engineering Research Council of Canada; Canadian Foundation for InnovationCanada Foundation for Innovation; Canadian Forest ServiceNatural Resources CanadaCanadian Forest Service

    Phytomass Reserves and Distribution of Biogenic Elements in Gmelin Larch Stands in Central Evenkia (Using the Example of a Small Drainage Basin)
/ S. G. Prokushkin, O. A. Zyryanova, A. S. Prokushkin // Biol. Bull. - 2021. - Vol. 48, Is. 1. - P84-93, DOI 10.1134/S1062359021010118. - Cited References:41 . - ISSN 1062-3590. - ISSN 1608-3059
РУБ Biology

Аннотация: For the first time, for a small watershed in Central Evenkia, using the method of model trees, a change in the composition and structure, as well as in the phytomass and biogenic elements reserves in larch forests, depending on the age of the stands, was revealed. It was found that the main mass-forming components in the phytomass of all stands are the trunk and root fractions. The proportion of the trunk phytomass increases and the proportion of branches and needles decreases with age. It was found that the composition of the roots changes little with the age of the stand, which confirms the hypothesis of the annual primary carbon investment into larch roots in the permafrost zone. It is shown that the largest carbon reserves are accumulated in overmature stands, while nitrogen reserves accumulates in the needles of young stands.

WOS

Держатели документа:
Russian Acad Sci, Fed Res Ctr, Sukachev Inst Forests, Siberian Branch,Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Prokushkin, S. G.; Zyryanova, O. A.; Prokushkin, A. S.

    Direct and longer-term carbon emissions from arctic-boreal fires: A short review of recent advances
/ S. Veraverbeke, C. J.F. Delcourt, E. Kukavskaya [et al.] // Curr. Opin. Environ. Sci. Health. - 2021. - Vol. 23. - Ст. 100277, DOI 10.1016/j.coesh.2021.100277 . - ISSN 2468-5844

Кл.слова (ненормированные):
Arctic -- Boreal -- Carbon -- Fire -- Permafrost -- Tundra

Аннотация: Increases in arctic-boreal fires can switch these biomes from a long-term carbon (C) sink to a source of atmospheric C through direct fire emissions and longer-term emissions from soil respiration. We here review advances made by the arctic-boreal fire science community over the last three years. Landscapes of intermediate drainage tend to experience the highest C combustion, dominated by soil C emissions, because of relatively thick and periodically dry organic soils. These landscapes may also induce a climate warming feedback through combustion and postfire respiration of legacy C, including from permafrost thaw and degradation. Legacy C is soil C that had escaped burning in the previous fire. Data shortages from fires in tundra ecosystems and Eurasian boreal forests limit our understanding of C emissions from arctic-boreal fires. Interactions between fire, topography, vegetation, soil, and permafrost need to be considered when estimating climate feedbacks of arctic-boreal fires. © 2021 The Author(s)

Scopus

Держатели документа:
Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences – Separate Subdivision of the FRC KSC SB RAS, Krasnoyarsk, Russian Federation
Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
Woodwell Climate Research Center, Falmouth, MA, United States

Доп.точки доступа:
Veraverbeke, S.; Delcourt, C. J.F.; Kukavskaya, E.; Mack, M.; Walker, X.; Hessilt, T.; Rogers, B.; Scholten, R. C.

    Direct and longer-term carbon emissions from arctic-boreal fires: A short review of recent advances
/ S. Veraverbeke, CJF Delcourt, E. Kukavskaya [et al.] // Curr. Opin. Environ. Sci. Health. - 2021. - Vol. 23. - Ст. 100277, DOI 10.1016/j.coesh.2021.100277. - Cited References:39. - The authors thank the reviewers for their suggestions on the manuscript. Sander Veraverbeke thanks funding support from the Netherlands Organisation for Scientific Research (NWO) through his Vidi grant `Fires pushing trees North' (016. Vidi.189.070). Brendan Rogers acknowledges support from the National Aeronautics and Space Administration (NASA) Arctic-Boreal Vulnerability Experiment (NNX15AU56A) and the Gordon and Betty Moore Foundation (Grant #8414). Elena Kukavskaya thanks funding support from the RFBR, Government of the Krasnoyarsk krai and the Krasnoyarsk regional foundation of scientific and scientific-technical support (Grant #20-44-242004). . - ISSN 2468-5844

Кл.слова (ненормированные):
Arctic -- Boreal -- Carbon -- Fire -- Permafrost -- Tundra

Аннотация: Increases in arctic-boreal fires can switch these biomes from a long-term carbon (C) sink to a source of atmospheric C through direct fire emissions and longer-term emissions from soil respiration. We here review advances made by the arcticboreal fire science community over the last three years. Landscapes of intermediate drainage tend to experience the highest C combustion, dominated by soil C emissions, because of relatively thick and periodically dry organic soils. These landscapes may also induce a climate warming feedback through combustion and postfire respiration of legacy C, including from permafrost thaw and degradation. Legacy C is soil C that had escaped burning in the previous fire. Data shortages from fires in tundra ecosystems and Eurasian boreal forests limit our understanding of C emissions from arcticboreal fires. Interactions between fire, topography, vegetation, soil, and permafrost need to be considered when estimating climate feedbacks of arctic-boreal fires. (C) 2021 The Author(s). Published by Elsevier B.V.

WOS

Держатели документа:
Vrije Univ Amsterdam, Fac Sci, Amsterdam, Netherlands.
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, FRC KSC SB RAS,Separate Subdiv, Krasnoyarsk, Russia.
No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ 86011 USA.
Woodwell Climate Res Ctr, Falmouth, MA USA.

Доп.точки доступа:
Veraverbeke, Sander; Delcourt, Clement J. F.; Kukavskaya, Elena; Mack, Michelle; Walker, Xanthe; Hessilt, Thomas; Rogers, Brendan; Scholten, Rebecca C.; Netherlands Organisation for Scientific Research (NWO)Netherlands Organization for Scientific Research (NWO) [016. Vidi.189.070]; National Aeronautics and Space Administration (NASA) Arctic-Boreal Vulnerability Experiment [NNX15AU56A]; Gordon and Betty Moore FoundationGordon and Betty Moore Foundation [8414]; RFBR, Government of the Krasnoyarsk krai; Krasnoyarsk regional foundation of scientific and scientific-technical support [20-44-242004]

    Lignin Preservation and Microbial Carbohydrate Metabolism in Permafrost Soils
/ T. T. Dao, R. Mikutta, L. Sauheitl [et al.] // J. Geophys. Res.-Biogeosci. - 2022. - Vol. 127, Is. 1. - Ст. e2020JG006181, DOI 10.1029/2020JG006181. - Cited References:122. - Financial support was provided by the German Federal Ministry of Education and Research (03F0616A) within the ERANET EUROPOLAR project CryoCARB. T.T. Dao is grateful for financial support from Vietnamese Education, O. Shibistova acknowledges funding from the National Science Foundation of China and Russian Foundation for Basic Research (NSFC-RFBR joint project No 19-54-53026), and A. Richter, B. Wild and J. Schnecker appreciate the financial support from the Austrian Science Fund (FWF - I370-B17). We thank all members of the CryoCARB project team for their incredible team spirit. We are grateful to the technical staff of the Institute of Soil Science in Hannover for great laboratory assistance. Open access funding enabled and organized by Projekt DEAL. . - ISSN 2169-8953. - ISSN 2169-8961
РУБ Environmental Sciences + Geosciences, Multidisciplinary

Аннотация: Permafrost-affected soils in the northern circumpolar region store more than 1,000 Pg soil organic carbon (OC), and are strongly vulnerable to climatic warming. However, the extent to which changing soil environmental conditions with permafrost thaw affects different compounds of soil organic matter (OM) is poorly understood. Here, we assessed the fate of lignin and non-cellulosic carbohydrates in density fractionated soils (light fraction, LF vs. heavy fraction, HF) from three permafrost regions with decreasing continentality, expanding from east to west of northern Siberia (Cherskiy, Logata, Tazovskiy, respectively). In soils at the Tazovskiy site with thicker active layers, the LF showed smaller OC-normalized contents of lignin-derived phenols and plant-derived sugars and a decrease of these compounds with soil depth, while a constant or even increasing trend was observed in soils with shallower active layers (Cherskiy and Logata). Also in the HF, soils at the Tazovskiy site had smaller contents of OC-normalized lignin-derived phenols and plant-derived sugars along with more pronounced indicators of oxidative lignin decomposition and production of microbial-derived sugars. Active layer deepening, thus, likely favors the decomposition of lignin and plant-derived sugars, that is, lignocelluloses, by increasing water drainage and aeration. Our study suggests that climate-induced degradation of permafrost soils may promote carbon losses from lignin and associated polysaccharides by abolishing context-specific preservation mechanisms. However, relations of OC-based lignin-derived phenols and sugars in the HF with mineralogical properties suggest that future OM transformation and carbon losses will be modulated in addition by reactive soil minerals.

WOS

Держатели документа:
Leibniz Univ Hannover, Inst Soil Sci, Hannover, Germany.
Martin Luther Univ Halle Wittenberg, Soil Sci & Soil Protect, Halle, Germany.
VN Sukachev Inst Forest, Krasnoyarsk, Russia.
Univ Vienna, Dept Microbiol & Ecosyst Sci, Vienna, Austria.
Stockholm Univ, Dept Environm Sci & Analyt Chem, Stockholm, Sweden.
Stockholm Univ, Bolin Ctr Climate Res, Stockholm, Sweden.
Univ South Bohemia, Dept Ecosyst Biol, Ceske Budejovice, Czech Republic.
Univ South Bohemia, Fac Sci, Ctr Polar Ecol, Ceske Budejovice, Czech Republic.
Univ Bergen, Ctr Geobiol, Dept Biol, Bergen, Norway.
Ctr Geomicrobiol, Dept Biosci, Aarhus, Denmark.
Russian Acad Sci, Cent Siberian Bot Garden, Siberian Branch, Novosibirsk, Russia.
Ernst Moritz Arndt Univ, Inst Microbiol, Greifswald, Germany.
Austrian Polar Res Inst, Vienna, Austria.

Доп.точки доступа:
Dao, Thao Thi; Mikutta, Robert; Sauheitl, Leopold; Gentsch, Norman; Shibistova, Olga; Wild, Birgit; Schnecker, Joerg; Barta, Jiri; Capek, Petr; Gittel, Antje; Lashchinskiy, Nikolay; Urich, Tim; Santruckova, Hana; Richter, Andreas; Guggenberger, Georg; German Federal Ministry of Education and Research within the ERANET EUROPOLAR project CryoCARB [03F0616A]; Vietnamese Education; National Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [19-54-53026]; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [19-54-53026]; Austrian Science FundAustrian Science Fund (FWF) [FWF - I370-B17]; Projekt DEAL

    Запасы фитодетрита и его биогенных элементов в лиственничниках малого водосборного бассейна Центральной Эвенкии
[Текст] / С. Г. Прокушкин, А. Е. Петренко, О. А. Зырянова, А. С. Прокушкин // Сибирский лесной журнал. - 2022. - № 6. - С. 34-44, DOI 10.15372/SJFS20220604 . - ISSN 2311-1410
ГРНТИ

Аннотация: В работе отмечены основные источники фитодетрита в ненарушенных лиственничниках криолитозны Центральной Эвенкии. Рассмотрена зависимость распределения запасов фитодетрита и отдельных его компонентов от возраста древостоев (молодняки, спелые и перестойные) и типов леса. Все эти насаждения сформировались на территории малого водосборного бассейна в Центральной Эвенкии после сильных низовых пожаров в начале и в последних десятилетиях XX в. Выявлено неравномерное распределение запасов подстилки как в возрастных группах, так и типах леса. Отмечены существенные погодичные колебания поступления опада за 7-летний период наблюдений. В составе опада преобладает хвоя - 84.8-93.2 % от всей массы, тогда как ветви и кора лиственницы ( Larix Mill.) и листья березы ( Betula L.) составляют всего 3.0-3.2, 4.5-2.6 и 7.7-<1 % соответственно. Установлено, что по степени накопления фитодетрита в основных типах лиственничников рассматриваемого бассейна они располагаются в следующем убывающем порядке: багульниково-зеленомошные, бруснично-зеленомошные, кустарничково-зеленомошные. Запасы подстилок в них варьируют от 2.4 до 76.3 т/га. Общий запас подстилки на территории бассейна составляет 133 038 т, из них на лиственничники приходится 103 916 т с преобладанием спелых и перестойных - 4966 и 61 188 т соответственно. В лиственничниках криолитозоны фитодетрит формируется в основном за счет подстилки мохово-лишайникового покрова. Роль опада с надземных органов и мортмассы корней незначительна. Во всех случаях с увеличением возраста древостоев наблюдается возрастание массы подстилки. Выявлена роль отдельных компонентов фитодетрита в депонировании биогенных элементов с существенным преобладаниием в них углерода и азота и незначительным содержанием фосфора и калия как дополнительных источников минерального питания в лесных биогеоценозах криолитозоны и отмечена низкая скорость их поступления в почву в процессе минерализации детрита
The article notes the main sources of phytodetritus in undisturbed cryolithic larch forests of Central Evenkia. The features of the distribution of phytodetritus stocks and its individual components depending on the age of forest stands (young, mature and overmature) and forest types are considered. All these stands were formed on the territory of a small drainage basin in Central Evenkia after intensive ground fires in the early and last decades of the 20th century. An uneven distribution of litter stocks was revealed both in age groups and forest types. Significant annual fluctuations in litter stocks over 7-year observation period were also noted. The composition of the litter is dominated by needles - 84.8-93.2% of the total mass, while the branches and bark of larch ( Larix Mill.) and birch ( Betula L.) leaves account for only 3.0-3.2, 4.5-2.6, and 7.7-< 1 %, respectively. It was established that according to the degree of accumulation of phytodetritus in the main types of larch forests of the basin under consideration, they are arranged in the following descending order: ledum green moss, red berry green moss, shrub green moss. Litter stocks in them vary from 2.4 to 76.3 t/ha. The total stock of litter in the territory of the basin is 133038 tons, of which 103916 tons fall on larch forests, with a predominance of mature and overmature - 4966 and 61188 tons, respectively. In larch forests of the permafrost zone, phytodetritus is formed mainly due to the litter of the moss-lichen cover. The role of litter from aboveground organs and root mortmass is insignificant. In all cases, with an increase in the age of forest stands, an increase in the mass of the litter is observed. The role of individual components of phytodetritus in the deposition of biogenic elements was revealed, with a significant predominance of carbon and nitrogen in them and an insignificant content of phosphorus and potassium as additional sources of mineral nutrition in forest biogeocenoses of the permafrost zone, and a low rate of their entry into the soil in the process of detritus mineralization was noted.

РИНЦ

Держатели документа:
ИЛ СО РАН : 660036, Красноярск, Академгородок, 50, стр. 28

Доп.точки доступа:
Петренко, Алексей Евгеньевич; Petrenko, Aleksey Evgen'yevich; Зырянова, Ольга Александровна; Прокушкин, Анатолий Станиславович; Prokushkin, Anatoly Stanislavovich
630.114.444:577.152.1:631.417(571.1)
Е 92

    Сезонная активность почвенной пероксидазы в осушенных болотных сосняках Западной Сибири: системно-экологический анализ
[Текст] : статья / Т. Т. Ефремова, С. П. Ефремов, А. Ф. Аврова // Почвоведение. - 2023. - № 10. - С. 1244-1258, DOI 10.31857/S0032180X23600774 . - ISSN 0032-180X
   Перевод заглавия: SEASONAL ACTIVITY OF SOIL PEROXIDASE IN DRAINED SWAMP PINE FORESTS OF WESTERN SIBERIA: SYSTEMATIC-ECOLOGICAL ANALYSIS
УДК

Аннотация: Изучали мезотрофное болото, осушенное 25 лет назад (географические координаты 56°23′710″ N, 84°34′043″ E). В торфяных почвах (Histosols) средневзвешенная за сезон активность пероксидазы (базовый уровень) составила в режиме слабой гидромелиорации 14.4, умеренной – 21.9, интенсивной – 70 ед. (мл йода на 1 г сух. навески за 2 мин). Основная закономерность развития сезонных колебаний активности пероксидазы описывается полиномом второго порядка. Значения и знаки параметров параболического тренда показывают, что средняя активность пероксидазы еженедельно снижалась на 4.4, 7.6 и 15.2 ед. с еженедельным средним ускорением на 0.31, 0.59 и 1.54 ед. с июня по октябрь в режиме слабого, умеренного и интенсивного осушения соответственно. Сезонные колебания активности пероксидазы относительно базового уровня характеризуется июньским увеличением прироста, максимальным в слое 0–10 см. В июле наблюдается снижение темпов прироста: в режиме слабого и умеренного осушения процесс охватывает весь почвенный профиль в августе, в условиях глубокого осушения – в октябре. Активность фермента достоверно положительно связана с объемной влажностью и величиной рН, отрицательно – с окислительно-восстановительным потенциалом и разнонаправлено – с температурой почв. При оценке вклада условий почвенной среды в сезонную динамику пероксидазы создается эффект взаимозаменяемости экологических градиентов. Методом канонического анализа установлено, что индексы детерминации объясняют совокупное воздействие обсуждаемого множества на 52–74%, главным фактором, регулирующим сезонную активность пероксидазы, является гидротермический режим: в условиях слабого осушения в большей мере под воздействием температуры, интенсивного – влажности, умеренного осушения – влажности и температуры. Активность пероксидазы и глубина гумификации торфяных почв разной степени осушения взаимосвязаны на 87%.
We studied a mesotrophic swamp drained 25 years ago, in the northern part of the Ob and Tom rivers (geographical coordinates 56°23′710″ N, 84°34′043″ E). In forest peat soils (0–30 cm), the weighted average of peroxidase activity for the season (base level) was in the mode of weak hydro reclamation 14.4, moderate – 21.9, intensive 70 units (ml I/g of abs. dry sample in 2 min). Second-order parabola is a most adequate function of the main trend of the development of seasonal fluctuations in peroxidase activity. Numerical values and signs of the parabolic trend parameters show that from June to October, the average peroxidase activity decreased weekly by 4.4, 7.6 and 15.2 units with weekly average acceleration by 0.31, 0.59 and 1.54 units in the mode of weak, moderate and intensive drainage, respectively. The seasonal wave of peroxidase activity relative to the baseline level is characterized by a June increase in growth rates, the maximum in the 0–10 cm layer. In July, there is a decrease in the growth rate according to the depth of reclamation: in the mode of weak and moderate drainage the process already covers the entire soil profile in August, in conditions of intensive drainage – in October. The enzyme activity is significantly positively related with soil bulk moisture and pH, negatively – with redox potential and multidirectionally – with soil temperature. Environmental conditions act as duplicate parameters when assessing their contribution to the seasonal dynamics of peroxidase, creating the effect of interchangeability of environmental gradients. Canonical determination indices approximate the cumulative impact of the discussed set by 52–74%, depending on the depth of reclamation. Canonical weights show that the main factor regulating the seasonal activity of peroxidase is the hydrothermal regime. According to canonical correlations, in conditions of weak drainage, to a greater extent under the influence of temperature, intensive – humidity, moderate drainage – humidity and temperature. The differentiated contribution of peroxidase activity in the formation of the humus state of peat soils of different degrees of drainage was revealed

Статья в РИНЦ

Держатели документа:
ИЛ СО РАН : 660036, Красноярск, Академгородок, 50, стр. 28

Доп.точки доступа:
Ефремова, Тамара Тимофеевна; Ефремов, Станислав Петрович; Yefryemov S.P.; Аврова, Ада Федоровна; Avrova Ada Fyedorovna; Efremova T.T.