Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 129

    Net accumulation of CO2 by a mature Siberian forest
/ J. Lloyd, O Shibistova, G. Zrazhevskaya // The first Workshop on information technologies application to problems of biodiversity and dynamics of ecosystems in North Eurasia (WITTA'2001): Selected papers. - Novosibirsk : Institute of Cytology and Genetics, 2002. - С. 97-102


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Lloyd, J.; Лойд Дж.; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна; Zrazhevskaya, Galina Kirillovna; Зражевская, Галина Кирилловна

    Assessing population responses to climate in Pinus sylvestris and Larix spp. of Eurasia with climate-transfer models
/ G.E. Rehfeldt, N.M. Tchebakova, L.I. Milyutin и др // Eurasian Journal of Forest Research. - 2003. - Vol. 6, № 2. - С. 83-98


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Rehfeldt, G.E.; Рефелдт Г.Е.; Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна; Milyutin, Leonid Iosifovich; Милютин, Леонид Иосифович; Parfyenova, Elena Ivanovna; Wykoff, W.R.; Викофф В.Р.; Kuz'mina, Nina Aleksyeyevna

    The conservation and quality of Gmelin larch seeds in cryolithic zone of Central Siberia
: материалы временных коллективов / A. P. Abaimov [и др.] // Proceedings of the eighth symposium on the joint Siberian permafrost studies between Japan and Russia in 1999. - Onogawa : National Institute for Environmental Studies, 2000. - С. 3-9. - рус. - Библиогр. в конце ст.

Аннотация: The obtained experimental data testify that even in the case of stands mortality as a result of ground fires it is right to count on quite successful natural regeneration of Gmelin larch on burned areas. It is right to consider genetically conditioned ability of Larix gmelini to conserve a part of quality seeds in ripe cones for 3-4 years as an adaptive reaction of the species to periodical wildfire impacts which are the main destabilizing factor in high latitudes of real zone in Eurasia.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50 стр. 28

Доп.точки доступа:
Abaimov, Anatoly Platonovich ; Абаимов Анатолий Платонович; Erkalov, A.V.; Еркалов А.В.; Prokushkin, Staniclav Grigor'evich; Прокушкин Станислав Григорьевич; Matsuura, Y.; Матсуура У.

    Boreal forests of Eurasia
: материалы временных коллективов / H. Hytteborn, A.A. Maslov, D.I. Nazimova, L.P. Rysin // Coniferous forests. - Amsterdam et al : Elsevier, 2005. - Т. 6: Ecosystems of the World. - С. 23-99


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Hytteborn, H.; Хиттеборн Ш.; Maslov, A.A.; Маслов А.А.; Nazimova, Dina Ivanovna; Назимова, Дина Ивановна; Rysin, L.P.; Рысин Л.П.

    Separating the climatic signal from tree-ring width and maximum latewood density records
: материалы временных коллективов / // Trees. Structure and Function. - 2007. - Т. 21, № 1. - С. 37-44. - Библиогр. в конце ст.

Аннотация: We propose a technique for separating the climatic signal which is contained in two tree-ring parameters widely used in dendroclimatology. The method is based on the removal of the relationship between tree-ring width and maximum latewood density observed for narrow tree rings from high latitudes. The new technique is tested on data from three larch stands located along the northern timberline in Eurasia. The analysis confirms the great importance of summer temperature for tree radial growth and tree -ring formation. These results are consistent with the known dynamics of tree-ring growth in high latitudes and mechanisms of tree-ring growth in high latitudes and mechanisms of tree-ring formation.

Scopus,
WOS,
Полный текст

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Vaganov, Yevgeny Alexandrovich; Ваганов Евгений Александрович; Hughes, M.K.; Хугес М.К.; Кирдянов, Александр Викторович
Имеются экземпляры в отделах:
ИФ (18.06.2007г. (1 экз.) - Б.ц.) - свободны 1

    The structure and biodiversity after fire disturbance
: материалы временных коллективов / O. A. Zyryanova, V. I. Zyryanov et al // Eurasian Journal of Forest Research. - 2007. - Vol. 10-1. - С. 19-29. - Библиогр. в конце ст.

Аннотация: Larix gmelini is one of the most widespread larch species in northern Eurasia as a whole and in the Rissian Federation dominating here in both the distribution area and the growing stock. Owing to high adaptability and ecological plasticity it occupies different sites within its range and performs well under continuous permafrost conditions. Over an immense area Gmelin larch forests differ in species composition, ecosystem sytucture and the features of natural regeneration. Ground fires are the main force driving larch forest development. Depending upon site conditions, fire intensity and periodicity, fire regimes determine forest age structure, species diversity, spatial-temporal dimensions of larch ecosystems as well- as succession patterns in their trends and rates. Based on the results of long-term investigatiobs we discuss Gmelin larch forest post-fire dynamics in the central part of their distribution in Siberia versus the southeastern part in Priamurye in the Rissian Far East.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Zyryanova, Olga Alexandrovna; Зырянова Ольга Александровна; Zyryanov, Vladimir Ivanovich; Зырянов, Владимир Иванович
Имеются экземпляры в отделах:
ЧЗ (26.06.2007г. (1 экз.) - Б.ц.) - свободны 1

    Extreme events and changes of climatic condition in the Northern Eurasia by tree-ring radial growth
: материалы временных коллективов / O. V. Sidorova // Climate change and their impact on boreal and temperate forests: Abstracts of the International Conference (June 5-7, 2006, Ekaterinburg, Russia). - 2006. - С. 90


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Сидорова, Ольга Владимировна
Имеются экземпляры в отделах:
РСФ (05.02.2008г. (1 экз.) - Б.ц.) - свободны 1
   РСФ
   C61

    Climatic and man-induced patterns of river runoff formation in Central and Northern Eurasia
: absracts / A. A. Onuchin [и др.] // Enviromis. International conference on enviromental observations, modelling and information systems, Tomsk, Russia, July 1-8, 2006: program and abstracts. - 2006. - С. 75-76

Аннотация: The runoff of some Siberian, Central Asia, and Western European rivers is modelled to analyse the relative influence of climate. The runoff data were analysed by multiple regression analysis. Thus a change of runoff formation can be used as an environmental indicator for sustainable land use. The river runoff integrates changes of land surface/atmosphere exchange processes in the entire catchment. These processes can be drastically altered by human land use change.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Onuchin, Alexandr Alexandrovich; Онучин, Александр Александрович; Balzter, H.; Балзтер Х.; Gaparov, K.; Гапаров К.К.; Blyth, E.; Блис Э.; Grekova, Yu.; Грекова Ю.
Имеются экземпляры в отделах:
РСФ (12.03.2008г. (1 экз.) - Б.ц.) - свободны 1

    Vegetation structure along an altitudinal transect an upward shifts of larch in the Putorana Mountains, Northern Siberia, Russia
: материалы временных коллективов / A. V. Kirdyanov [и др.] // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 222-226. - Библиогр. в конце ст.

Аннотация: Larch stand structure and vegetation changes along the longitudinal transect in the Putorana Mountains, Northen Siberia were studied to assess how forest-tundra ecotone has shifted during the last century in an extremely remote and untouched area in Eurasia. In summary, our study demonstrates that ongoing climatic changes led to an upslope expansion of forests in the remote Putorana Mountains, which alters the stand structure and productivity of forest-tundra ecotone. However, these vegetation changes are very likely of minor importance for aboveground carbon sequestration.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Kirdyanov, Alexandr Viktorovich; Кирдянов, Александр Викторович; Knorre, Anastasiya Aleksyeyevna; Кнорре, Анастасия Алексеевна; Fedotova, Elena Viktorovna; Федотова, Елена Викторовна; Vaganov, Yevgeny Alexandrovich; Ваганов Евгений Александрович; Naurzbaev, Mukhtar Mukhametovich; Наурзбаев, Мухтар Мухаметович

    Fire emissions estimates in Siberia: evaluation of uncertainties in area burned, land cover, and fuel consumption
/ E. A. Kukavskaya [et al.] // Can. J. For. Res.-Rev. Can. Rech. For. - 2013. - Vol. 43, Is. 5. - P493-506, DOI 10.1139/cjfr-2012-0367. - Cited References: 65. - The authors gratefully acknowledge financial support from the National Aeronautics and Space Administration (NASA), Land Cover Land Use Change (LCLUC), Terrestrial Ecology (TE), and Inter-DiSciplinary (IDS) projects, all of which fall under the Northern Eurasia Earth Science Partnership Initiative (NEESPI) domain; the Institute of International Education, Fulbright Scholar Program; the Russian Foundation for Basic Research (Grant No. 12-04-31258; FGP "Scientific and scientific-pedagogical staff of innovative Russia"; and the Russian Academy of Sciences. . - 14. - ISSN 0045-5067
РУБ Forestry

Аннотация: Boreal forests constitute the world's largest terrestrial carbon pools. The main natural disturbance in these forests is wildfire, which modifies the carbon budget and atmosphere, directly and indirectly. Wildfire emissions in Russia contribute substantially to the global carbon cycle and have potentially important feedbacks to changing climate. Published estimates of carbon emissions from fires in Russian boreal forests vary greatly depending on the methods and data sets used. We examined various fire and vegetation products used to estimate wildfire emissions for Siberia. Large (up to fivefold) differences in annual and monthly area burned estimates for Siberia were found among four satellite-based fire data sets. Official Russian data were typically less than 10% of satellite estimates. Differences in the estimated proportion of annual burned area within each ecosystem were as much as 40% among five land-cover products. As a result, fuel consumption estimates would be expected to vary widely (3%-98%) depending on the specific vegetation mapping product used and as a function of weather conditions. Verification and validation of burned area and land-cover data sets along with the development of fuel maps and combustion models are essential for accurate Siberian wildfire emission estimates, which are central to balancing the carbon budget and assessing feedbacks to climate change.

WOS

Держатели документа:
[Kukavskaya, Elena A.
Ponomarev, Evgeni I.
Ivanova, Galina A.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Soja, Amber J.] Natl Inst Aerosp, Hampton, VA 23666 USA
[Soja, Amber J.] NASA, Langley Res Ctr, Hampton, VA 23681 USA
[Petkov, Alexander P.
Conard, Susan G.] US Forest Serv, USDA, Rocky Mt Res Stn, Missoula, MT 59808 USA
[Conard, Susan G.] George Mason Univ, Fairfax, VA 22030 USA

Доп.точки доступа:
Kukavskaya, E.A.; Кукавская, Елена Александровна; Soja, A.J.; Petkov, A.P.; Ponomarev, E.I.; Пономарев, Евгений Иванович; Ivanova, G.A.; Иванова, Галина Александровна; Conard, S.G.

    Biogeochemistry of carbon, major and trace elements in watersheds of northern Eurasia drained to the Arctic Ocean: The change of fluxes, sources and mechanisms under the climate warming prospective
/ O. S. Pokrovsky [et al.] // C. R. Geosci. - 2012. - Vol. 344, Is. 11.12.2013. - P663-677, DOI 10.1016/j.crte.2012.08.003. - Cited References: 81. - This work was supported by ANR "Arctic Metals", LIA "LEAGE", PICS No. 6063, GDRI "CAR WET SIB", grants RFBR-CNRS Nos 12-05-91055, 08-05-00312_a, 07-05-92212-CNRS_a, 08-04-92495-CNRS_a, CRDF RUG1-2980-KR10, Federal Program RF "Kadry" (contract N 14.740.11.0935), and Programs of Presidium RAS and UrORAS. . - 15. - ISSN 1631-0713
РУБ Geosciences, Multidisciplinary

Аннотация: Warming of the permafrost accompanied by the release of ancient soil organic carbon is one of the most significant environmental threats within the global climate change scenario. While the main sites of permafrost carbon processing and its release to the atmosphere are thermokarst (thaw) lakes and ponds, the main carriers of carbon and related major and trace elements from the land to the Arctic ocean are Russian subarctic rivers. The source of carbon in these rivers is atmospheric C consumed by chemical weathering of rocks and amplified by plant uptake and litter decomposition. This multidisciplinary study describes results of more than a decade of observations and measurements of elements fluxes, stocks and mechanisms in the Russian boreal and subarctic zone, from Karelia region to the Kamchatka peninsula, along the gradient of permafrost-free terrain to continuous permafrost settings, developed on various lithology and vegetation types. We offer a comprehensive, geochemically-based view on the functioning of aquatic boreal systems which quantifies the role of the following factors on riverine element fluxes: (1) the specificity of lithological substrate; (2) the importance of organic and organo-mineral colloidal forms, notably during the snowmelt season; (3) the phenomenon of lakes seasonal overturn; (4) the role of permafrost within the small and large watersheds; and (5) the governing role of terrestrial vegetation in element mobilization from rock substrate to the river. Care of such a multiple approach, a first order prediction of the evolution of element stocks and fluxes under scenario of progressive warming in high latitudes becomes possible. It follows the increase of frozen peat thawing in western Siberia will increase the stocks of elements in surface waters by a factor of 3 to 10 whereas the increase of the thickness of active layer, the biomass and the primary productivity all over permafrost-affected zone will bring about a short-term increase of elements stocks in labile reservoir (plant litter) and riverine fluxes by a factor of 2. The change of the plant productivity and community composition under climate warming in central Siberia will be the most important factor of major and trace element fluxes increase (probably a factor of 2) from the soil to the river and, finally, to the Arctic Ocean. (c) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Pokrovsky, Oleg S.
Viers, Jerome
Dupre, Bernard
Audry, Stephane] Univ Toulouse, CNRS IRD OMP, Geosci Environm Toulouse, F-31400 Toulouse, France
[Chabaux, Francois] CNRS, EOST, UMR 7517, CGS, F-67084 Strasbourg, France
[Gaillardet, Jerome] Inst Phys Globe Strasbourg Paris, Equipe Geochim Cosmochim, F-75005 Paris, France
[Prokushkin, Anatoly S.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk, Russia
[Shirokova, Liudmila S.] Russian Acad Sci, Inst Ecol Problems N, Arkhangelsk, Russia
[Kirpotin, Sergey N.] Tomsk State Univ, Tomsk 634050, Russia
[Lapitsky, Sergey A.] Moscow MV Lomonosov State Univ, Geol Fac, Moscow, Russia
[Shevchenko, Vladimir P.] RAS, PP Shirshov Oceanol Inst, Moscow 117901, Russia

Доп.точки доступа:
Pokrovsky, O.S.; Viers, J...; Dupre, B...; Chabaux, F...; Gaillardet, J...; Audry, S...; Prokushkin, A.S.; Shirokova, L.S.; Kirpotin, S.N.; Lapitsky, S.A.; Shevchenko, V.P.

РСФ / P91-Фонд

    Prescribed Burning in Russia and Neighbouring Temperate-Boreal Eurasia
[Текст] : монография / Edited by Johann Georg Goldammer. - [Б. м. : б. и.], 2013. - 326 с. - Библиогр.: с. 309-313. - ISBN 978-3-941300-71-2 : Б. ц.



Доп.точки доступа:
Valendik, Erik Nikolayevich; Валендик, Эрик Николаевич; Goldammer, J.G.; Kisilyakhov, Yegor Kirillovich; Кисиляхов, Егор Кириллович; Ivanova, Galina Alexandrovna; Иванова, Галина Александровна; Verkhovets, S.V.; Bryukhanov, Alexandr Viktorovich; Kosov, I.V.; Byambasuren, Oyunsanaa
Экземпляры всего: 1
Фонд (1)
Свободны: Фонд (1)

    Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers
/ E. D. Schulze [et al.] // Biogeosciences. - 2012. - Vol. 9, Is. 4. - P1405-1421, DOI 10.5194/bg-9-1405-2012. - Cited References: 39. - We thank Annett Borner for her help with the artwork, and Dominik Hessenmoller for his help. We also thank Inge Schulze for all her support during the fieldwork. The data processing was supported by the Russian "Megagrant" 11.G34.31.0014 from 30 November 2010 to E. D. Schulze by the Russian Federation and the Siberian Federal University to support research projects by leading scientists at Russian Institutions of higher Education. . - 17. - ISSN 1726-4170
РУБ Ecology + Geosciences, Multidisciplinary

Аннотация: The relative role of fire and of climate in determining canopy species composition and aboveground carbon stocks were investigated. Measurements were made along a transect extending from the dark taiga zone of central Siberia, where Picea and Abies dominate the canopy, into the Larix zone of eastern Siberia. We test the hypotheses that the change in canopy species composition is based (1) on climate-driven performance only, (2) on fire only, or (3) on fire-performance interactions. We show that the evergreen conifers Picea obovata and Abies sibirica are the natural late-successional species both in central and eastern Siberia, provided there has been no fire for an extended period of time. There are no changes in performance of the observed species along the transect. Fire appears to be the main factor explaining the dominance of Larix and of soil carbon. Of lesser influence were longitude as a proxy for climate, local hydrology and active-layer thickness. We can only partially explain fire return frequency, which is not only related to climate and land cover, but also to human behavior. Stand-replacing fires decreased from 300 to 50 yrs between the Yenisei Ridge and the upper Tunguska. Repeated non-stand-replacing surface fires eliminated the regeneration of Abies and Picea. With every 100 yrs since the last fire, the percentage of Larix decreased by 20%. Biomass of stems of single trees did not show signs of age-related decline. Relative diameter increment was 0.41 +/- 0.20% at breast height and stem volume increased linearly over time with a rate of about 0.36 t C ha(-1) yr(-1) independent of age class and species. Stand biomass reached about 130 t C ha(-1)(equivalent to about 520 m(3) ha(-1)). Individual trees of Larix were older than 600 yrs. The maximum age and biomass seemed to be limited by fungal rot of heart wood. 60% of old Larix and Picea and 30% of Pinus sibirica trees were affected by stem rot. Implications for the future role of fire and of plant diseases are discussed.

WOS,
Scopus

Держатели документа:
[Schulze, E. -D.
Mollicone, D.
Ziegler, W.] Max Planck Inst Biogeochem, D-07701 Jena, Germany
[Wirth, C.] Univ Leipzig, Inst Biol, D-04103 Leipzig, Germany
[Mollicone, D.
Achard, F.] Joint Res Ctr, Inst Environm & Sustainabil, I-21027 Ispra, Italy
[von Luepke, N.
Mund, M.] Univ Gottingen, Dept Ecoinformat Bioemetr & Forest Growth, D-37077 Gottingen, Germany
[Prokushkin, A.] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk, Russia
[Scherbina, S.] Centralno Sibirsky Nat Reserve, Bor, Russia

Доп.точки доступа:
Schulze, E.D.; Wirth, C...; Mollicone, D...; von Lupke, N...; Ziegler, W...; Achard, F...; Mund, M...; Prokushkin, A...; Scherbina, S...

    Comparison and assessment of coarse resolution land cover maps for Northern Eurasia
[Text] / D. . Pflugmacher [et al.] // Remote Sens. Environ. - 2011. - Vol. 115, Is. 12. - P3539-3553, DOI 10.1016/j.rse.2011.08.016. - Cited References: 65. - The research was supported by the Land Cover/Land-Use Change Program of the National Aeronautics and Space Administration (grant numbers NNGO6GF54G and NNX09AK88G) and in part by the Asia-Pacific Network for Global Change Research and the Alexander von Humboldt Foundation. We like to thank Dr. Curtis Woodcock for his advice in the early planning of this study, and Gretchen Bracher for preparing graphs. We are also thankful for the comments of two anonymous reviewers that helped to improve this manuscript. . - 15. - ISSN 0034-4257
РУБ Environmental Sciences + Remote Sensing + Imaging Science & Photographic Technology

Аннотация: Information on land cover at global and continental scales is critical for addressing a range of ecological, socioeconomic and policy questions. Global land cover maps have evolved rapidly in the last decade, but efforts to evaluate map uncertainties have been limited, especially in remote areas like Northern Eurasia. Northern Eurasia comprises a particularly diverse region covering a wide range of climate zones and ecosystems: from arctic deserts, tundra, boreal forest, and wetlands, to semi-arid steppes and the deserts of Central Asia. In this study, we assessed four of the most recent global land cover datasets: GLC-2000, GLOBCOVER, and the MODIS Collection 4 and Collection 5 Land Cover Product using cross-comparison analyses and Landsat-based reference maps distributed throughout the region. A consistent comparison of these maps was challenging because of disparities in class definitions, thematic detail, and spatial resolution. We found that the choice of sampling unit significantly influenced accuracy estimates, which indicates that comparisons of reported global map accuracies might be misleading. To minimize classification ambiguities, we devised a generalized legend based on dominant life form types (LFT) (tree, shrub, and herbaceous vegetation, barren land and water). LFT served as a necessary common denominator in the analyzed map legends, but significantly decreased the thematic detail. We found significant differences in the spatial representation of LFT's between global maps with high spatial agreement (above 0.8) concentrated in the forest belt of Northern Eurasia and low agreement (below 0.5) concentrated in the northern taiga-tundra zone, and the southern dry lands. Total pixel-level agreement between global maps and six test sites was moderate to fair (overall agreement: 0.67-0.74, Kappa: 0.41-0.52) and increased by 0.09-0.45 when only homogenous land cover types were analyzed. Low map accuracies at our tundra test site confirmed regional disagreements and difficulties of current global maps in accurately mapping shrub and herbaceous vegetation types at the biome borders of Northern Eurasia. In comparison, tree dominated vegetation classes in the forest belt of the region were accurately mapped, but were slightly overestimated (10%-20%), in all maps. Low agreement of global maps in the northern and southern vegetation transition zones of Northern Eurasia is likely to have important implications for global change research, as those areas are vulnerable to both climate and socio-economic changes. (C) 2011 Elsevier Inc. All rights reserved.

ELSEVIER - полный текст,
WOS,
Scopus

Держатели документа:
[Pflugmacher, Dirk
Krankina, Olga N.
Kennedy, Robert E.
Nelson, Peder] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA
[Cohen, Warren B.] US Forest Serv, USDA, Pacific NW Res Stn, Forestry Sci Lab, Corvallis, OR 97331 USA
[Friedl, Mark A.
Sulla-Menashe, Damien] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA
[Loboda, Tatiana V.] Univ Maryland, Dept Geog, College Pk, MD 20742 USA
[Kuemmerle, Tobias] Potsdam Inst Climate Impact Res PIK, D-14412 Potsdam, Germany
[Dyukarev, Egor] Inst Monitoring Climat & Ecol Syst, Tomsk 634021, Russia
[Elsakov, Vladimir] Russian Acad Sci, Komi Sci Ctr, Inst Biol, Syktyvkar 167610, Russia
[Kharuk, Viacheslav I.] VN Sukachev Inst Forest, Krasnoyarsk, Russia

Доп.точки доступа:
Pflugmacher, D...; Krankina, O.N.; Cohen, W.B.; Friedl, M.A.; Sulla-Menashe, D...; Kennedy, R.E.; Nelson, P...; Loboda, T.V.; Kuemmerle, T...; Dyukarev, E...; Elsakov, V...; Kharuk, V.I.

    Climate change and climate-induced hot spots in forest shifts in central Siberia from observed data
[Text] / N. M. Tchebakova, E. I. Parfenova, A. J. Soja // Reg. Envir. Chang. - 2011. - Vol. 11, Is. 4. - P817-827, DOI 10.1007/s10113-011-0210-4. - Cited References: 65. - This study was supported by grant #10-05-00941 of the Russian Foundation for Basic Research and NASA Research Opportunities in Space and Earth Sciences (ROSES) 2009 InterDisciplinary Science (IDS) 09-IDS09-0116. . - 11. - ISSN 1436-3798
РУБ Environmental Sciences + Environmental Studies

Аннотация: Regional Siberian studies have already registered climate warming over the last several decades. We evaluated ongoing climate change in central Siberia between 1991 and 2010 and a baseline period, 1961-1990, and between 1991 and 2010 and Hadley 2020 climate change projections, represented by the moderate B1 and severe A2 scenarios. Our analysis showed that winters are already 2-3A degrees C warmer in the north and 1-2A degrees C warmer in the south by 2010. Summer temperatures increased by 1A degrees C in the north and by 1-2A degrees C in the south. Change in precipitation is more complicated, increasing on average 10% in middle latitudes and decreasing 10-20% in the south, promoting local drying in already dry landscapes. Hot spots of possible forest shifts are modeled using our Siberian bioclimatic vegetation model and mountain vegetation model with respect to climate anomalies observed pre-2010 and predicted 2020 Hadley scenarios. Forests are predicted to shift northwards along the central Siberian Plateau and upslope in both the northern and southern mountains. South of the central Siberian Plateau, steppe advancement is predicted that was previously non-existent north of 56A degrees N latitude. South of 56A degrees N, steppe expansion is predicted in the dry environments of Khakasiya and Tyva. In the southern mountains, it is predicted that the lower tree line will migrate upslope due to increased dryness in the intermontane Tyvan basins. The hot spots of vegetation change that are predicted by our models are confirmed by regional literature data.

Полный текст,
WOS,
Scopus

Держатели документа:
[Tchebakova, N. M.
Parfenova, E. I.] Russian Acad Sci Academgorodok, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
[Soja, A. J.] NASA Langley Res Ctr, Natl Inst Aerosp, Hampton, VA 23681 USA

Доп.точки доступа:
Tchebakova, N.M.; Parfenova, E.I.; Soja, A.J.

    Hierarchical mapping of Northern Eurasian land cover using MODIS data
[Text] / D. . Sulla-Menashe [et al.] // Remote Sens. Environ. - 2011. - Vol. 115, Is. 2. - P392-403, DOI 10.1016/j.rse.2010.09.010. - Cited References: 71. - The research was supported by NASA grant numbers NNG06GF54G and NNX08AE61A. An additional thanks goes to Dr. Bin Tan who was instrumental in implementing the MODIS classification algorithms, and to the rest of the NELDA team for helpful input and discussions. . - 12. - ISSN 0034-4257
РУБ Environmental Sciences + Remote Sensing + Imaging Science & Photographic Technology

Аннотация: The Northern Eurasian land mass encompasses a diverse array of land cover types including tundra, boreal forest, wetlands, semi-arid steppe, and agricultural land use. Despite the well-established importance of Northern Eurasia in the global carbon and climate system, the distribution and properties of land cover in this region are not well characterized. To address this knowledge and data gap, a hierarchical mapping approach was developed that encompasses the study area for the Northern Eurasia Earth System Partnership Initiative (NEESPI). The Northern Eurasia Land Cover (NELC) database developed in this study follows the FAO-land Cover Classification System and provides nested groupings of land cover characteristics, with separate layers for land use, wetlands, and tundra. The database implementation is substantially different from other large-scale land cover datasets that provide maps based on a single set of discrete classes. By providing a database consisting of nested maps and complementary layers, the NELC database provides a flexible framework that allows users to tailor maps to suit their needs. The methods used to create the database combine empirically derived climate-vegetation relationships with results from supervised classifications based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. The hierarchical approach provides an effective framework for integrating climate-vegetation relationships with remote sensing-based classifications, and also allows sources of error to be characterized and attributed to specific levels in the hierarchy. The cross-validated accuracy was 73% for the land cover map and 73% and 91% for the agriculture and wetland classifications, respectively. These results support the use of hierarchical classification and climate-vegetation relationships for mapping land cover at continental scales. (C) 2010 Elsevier Inc. All rights reserved.

WOS,
Полный текст,
Scopus

Держатели документа:
[Sulla-Menashe, Damien
Friedl, Mark A.
Woodcock, Curtis E.
Sibley, Adam] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA
[Krankina, Olga N.] Oregon State Univ, Coll Forestry, Dept Forest Sci, Corvallis, OR 97331 USA
[Baccini, Alessandro] Woods Hole Res Ctr, Falmouth, MA 02540 USA
[Sun, Guoqing] NASA, GSFC, Biospher Sci Branch, Greenbelt, MD 20770 USA
[Kharuk, Viacheslav] Acad Gorodok Krasnoyarsk, Sukachev Forest Inst, Forest Ecol & Monitoring Branch, Krasnoyarsk 660036, Russia
[Elsakov, Vladimir] Russian Acad Sci, Inst Biol, Komi Sci Ctr, Syktyvkar 167610, Russia

Доп.точки доступа:
Sulla-Menashe, D...; Friedl, M.A.; Krankina, O.N.; Baccini, A...; Woodcock, C.E.; Sibley, A...; Sun, G.Q.; Kharuk, V...; Elsakov, V...

    Twentieth century trends in tree ring stable isotopes (delta C-13 and delta O-18) of Larix sibirica under dry conditions in the forest steppe in Siberia
[Text] / A. A. Knorre [et al.] // J. Geophys. Res.-Biogeosci. - 2010. - Vol. 115. - Ст. G03002, DOI 10.1029/2009JG000930. - Cited References: 62. - This study was supported by the Swiss National Science Foundation Joint Research Project SCOPES (IB73A0-111134), SCOPES (IB74A0.110950), SNSF (200021_121838), RFBR-CRDF (RUG1-2950-KR-09), and program AVC "Development of the high school science potential" 2.1.1/6131. . - 12. - ISSN 0148-0227
РУБ Environmental Sciences + Geosciences, Multidisciplinary

Аннотация: Tree ring width, density, and ratio of stable isotopes (C-13/C-12 and O-18/O-16) in wood and cellulose were determined for larch (Larix sibirica Ledeb.) growing under water deficit conditions in the forest steppe zone in central Siberia (54 degrees 24'N, 89 degrees 57'E) for the period 1850-2005. Dendroclimatic analysis of the chronologies indicated precipitation to be the most important factor determining indicated parameters. Precipitation of June is significantly correlated with tree ring width and maximum density (r = 0.36 and 0.43, p 0.05, respectively). Relations of delta C-13 and delta O-18 to precipitation are similar, but the most important month is July (r

WOS,
Scopus

Держатели документа:
[Knorre, Anastasia A.
Sidorova, Olga V.
Kirdyanov, Alexander V.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Siegwolf, Rolf T. W.
Saurer, Matthias
Sidorova, Olga V.] Paul Scherrer Inst, CH-5332 Villigen, Switzerland
[Knorre, Anastasia A.
Vaganov, Eugene A.] Siberian Fed Univ, Dept Forestry, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Knorre, A.A.; Siegwolf, RTW; Saurer, M...; Sidorova, O.V.; Vaganov, E.A.; Kirdyanov, A.V.

    Eddy covariance CO2 flux above a Gmelin larch forest on continuous permafrost in Central Siberia during a growing season
[Text] / Y. . Nakai [et al.] // Theor. Appl. Climatol. - 2008. - Vol. 93, Is. 03.04.2013. - P133-147, DOI 10.1007/s00704-007-0337-x. - Cited References: 47. - We gratefully thank V. Borovikov and other colleagues of the Sukachev Institute of Forest and the Evenki Forest Management Agency in Tura for their support with logistics and instrumentation. We also thank T. Yorisaki, H. Tanaka, and the staff of "Climatec Inc.'' for system integration and instrumentation. We acknowledge Y. Ohtani, Y. Yasuda, and T. Watanabe for providing software resources. N. Saigusa encouraged us greatly. This research was supported by the "Global environment research fund S-1'', as "Integrated Study for Terrestrial Carbon Management of Asia in the 21th Century based on Scientific Advancements (FY2002-2006)''. . - 15. - ISSN 0177-798X
РУБ Meteorology & Atmospheric Sciences

Аннотация: Gmelin larch ( Larix gmelinii) forests are representative vegetation in the continuous permafrost region of Central Siberia. Information on the carbon budget is still limited for this Siberian larch taiga in comparison to boreal forests in other regions, while the larch forests are expected to play a key role in the global carbon balance due to their wide distribution over North-East Eurasia. The authors reported results of eddy covariance CO2 flux measurements at a mature Gmelin larch stand in Central Siberia, Russia (64 degrees 16'N, 100 degrees 12'E, 250m a.s.l.). The measurements were conducted during one growing season (June-early September in 2004). CO2 uptake was initiated in early June and increased sharply until late June, which was closely related to the phenology of the larch trees (i.e., bud-break and needle flush). Maximum half-hourly net CO2 uptake was similar to 6 mu mol m(-2) s(-1). Maximum daily net uptake of similar to 2 g C m(-2) day(-1) occurred at the end of June and in mid-July. Cumulative net uptake was 76-78 g C m(-2), indicating that the mature larch forest acted as a net sink for CO2 during the growing season (91 days). In comparison with other boreal forests, however, the magnitude of net CO2 uptake and night-time release of the forest, and cumulative net CO2 uptake were lower. We suggest that lower net ecosystem CO2 uptake of the study stand was primarily associated with low leaf area index.

Полный текст,
WOS,
Scopus

Держатели документа:
[Nakai, Y.] Forestry & Forest Prod Res Inst, Dept Meteorol Environm, Tsukuba, Ibaraki 3058687, Japan
[Kajimoto, T.] Forestry & Forest Prod Res Inst, Kyushu Res Ctr, Kumamoto, Japan
[Abaimov, A. P.
Zyryanova, O. A.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk, Russia
[Yamamoto, S.] Okayama Univ, Okayama, Japan

Доп.точки доступа:
Nakai, Y...; Matsuura, Y...; Kajimoto, T...; Abaimov, A.P.; Абаимов Анатолий Платонович; Yamamoto, S...; Zyryanova, O.A.

    Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia
[Text] / K. R. Briffa [et al.] // Philos. Trans. R. Soc. B-Biol. Sci. - 2008. - Vol. 363, Is. 1501. - P2271-2284, DOI 10.1098/rstb.2007.2199. - Cited References: 42 . - 14. - ISSN 0962-8436
РУБ Biology

Аннотация: This paper describes variability in trends of annual tree growth at several locations in the high latitudes of Eurasia, providing a wide regional comparison over a 2000-year period. The study focuses on the nature of local and widespread tree-growth responses to recent warming seen in instrumental observations, available in northern regions for periods ranging from decades to a century. Instrumental temperature data demonstrate differences in seasonal scale of Eurasian warming and the complexity and spatial diversity of tree-growing-season trends in recent decades. A set of long tree-ring chronologies provides empirical evidence of association between inter-annual tree growth and local, primarily summer, temperature variability at each location. These data show no evidence of a recent breakdown in this association as has been found at other high-latitude Northern Hemisphere locations. Using Kendall's concordance, we quantify the time-dependent relationship between growth trends of the long chronologies as a group. This provides strong evidence that the extent of recent widespread warming across northwest Eurasia, with respect to 100- to 200-year trends, is unprecedented in the last 2000 years. An equivalent analysis of simulated temperatures using the HadCM3 model fails to show a similar increase in concordance expected as a consequence of anthropogenic forcing.

WOS,
Scopus

Держатели документа:
[Briffa, Keith R.
Melvin, Thomas M.] Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
[Shishov, Vladimir V.
Naurzbaev, Muktar M.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Dendroecol Dept, Krasnoyarsk 660036, Russia
[Shishov, Vladimir V.] Krasnoyarsk State Trade Econ Inst, IT & Math Modelling Dept, Krasnoyarsk 660075, Russia
[Grudd, Haken] Stockholm Univ, Dept Phys Geog & Quaternary Geol, S-10691 Stockholm, Sweden
[Hantemirov, Rashit M.] Russian Acad Sci, Ural Branch, Inst Plant & Anim Ecol, Lab Dendrochronol, Ekaterinburg 620144, Russia
[Eronen, Matti] Univ Helsinki, Dept Geol, FIN-00014 Helsinki, Finland
[Vaganov, Eugene A.] Siberian Fed Univ, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Briffa, K.R.; Shishov, V.V.; Melvin, T.M.; Vaganov, E.A.; Grudd, H...; Hantemirov, R.M.; Eronen, M...; Naurzbaev, M.M.

    Ecosystems and climate interactions in the boreal zone of northern Eurasia
[Text] / N. N. Vygodskaya [et al.] // Environ. Res. Lett. - 2007. - Vol. 2, Is. 4. - Ст. 45033, DOI 10.1088/1748-9326/2/4/045033. - Cited References: 33 . - 7. - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: The climate system and terrestrial ecosystems interact as they change. In northern Eurasia these interactions are especially strong, span all spatial and timescales, and thus have become the subject of an international program: the Northern Eurasia Earth Science Partnership Initiative (NEESPI). Without trying to cover all areas of these interactions, this paper introduces three examples of the principal micrometeorological, mesometeorological and subcontinental feedbacks that control climate-terrestrial ecosystem interactions in the boreal zone of northern Eurasia. Positive and negative feedbacks of forest paludification, of windthrow, and of climate-forced displacement of vegetation zones are presented. Moreover the interplay of different scale feedbacks, the multi-faceted nature of ecosystems-climate interactions and their potential to affect the global Earth system are shown. It is concluded that, without a synergetic modeling approach that integrates all major feedbacks and relationships between terrestrial ecosystems and climate, reliable projections of environmental change in northern Eurasia are impossible, which will also bring into question the accuracy of global change projections.

WOS,
Scopus

Держатели документа:
[Vygodskaya, N. N.] Jan Kochanowski Univ Humanities & Sci, Inst Geog, Sventokshistkaya Acad Poland, PL-25406 Kielce, Poland
[Groisman, P. Ya] Natl Climat Ctr, Asheville, NC 28801 USA
[Tchebakova, N. M.
Parfenova, E. I.] VN Sukachev Inst Forest, Siberian Branch Russian Acad Sci, Krasnoyarsk 660036, Russia
[Kurbatova, J. A.] Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Moscow 119071, Russia
[Panfyorov, O.] Univ Gottingen, Inst Bioclimatol, D-37077 Gottingen, Germany
[Sogachev, A. F.] Univ Helsinki, Dept Phys Sci, FI-00014 Helsinki, Finland

Доп.точки доступа:
Vygodskaya, N.N.; Groisman, P.Y.; Tchebakova, N.M.; Kurbatova, J.A.; Panfyorov, O...; Parfenova, E.I.; Sogachev, A.F.