Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 47

    Evidence of evergreen conifer invasion into larch dominated forests during recent decades in Central Siberia
: материалы временных коллективов / V. I. Kharuk, K. Ranson, M. Dvinskaya // Eurasian Journal of Forest Research. - 2007. - Vol. 10-2. - С. 163-171. - Библиогр. в конце ст.

Аннотация: Models of climate warming predict the migration of "warm-adapted' species to habitates of "cold-adapted" species. Here we show evidence of expansion of "dark-needle" conifers (DNC: Siberian pine, spruce and fir) into the habitat of larch, the leader in adaptation to harsh climatic conditions in Asia. The studies were made along two transects oriented from the western and southern borders of a larch dominated forest to its center. The invasion of DNC into the historical larch habitat was quantified as an increase of the proportion of those species both in the overstory and in regeneration. The age structure of regeneration showed that regeneration occurred mainly during the last 2-3 decades. In particular warm winter temperatures promote the survival regenerated Siberian pine. The results obtained indicate the climate-driven migration of Siberian pine, spruce and fir into traditional zone of larch dominance. Substitution of a deciduous conifer (larch) by evergreen conifers decreases the albedo and may provide positive feedback for temperature increases.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Ranson, K.J.; Рэнсон К.Дж.; Dvinskaya, Mariya Leonidovna; Двинская, Мария Леонидовна; Харук, Вячеслав Иванович
Имеются экземпляры в отделах:
ЧЗ (05.03.2008г. (1 экз.) - Б.ц.) - свободны 1

    Effects of environmental factors on wood formation in larch (Larix sibirica Ldb.) stems
: материалы временных коллективов / G. F. Antonova, V. V. Stasova // Trees. Structure and function. - 1997. - Vol. 11, № 8. - С. 462-468. - Библиогр. в конце ст.

Аннотация: Effects of temperatures and precipitation on xylem cell production by the cambium, radial cell expansion and secondary wall thickening in larch stems have been studied. The observation were carried out over two seasons on ten 50- to 60-year-old trees, growing in Central Siberia and chosen according to growth rate (the number of cells in radial rows of each of two of the preceding seasons was equal).

Scopus,
Полный текст,
WOS

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Stasova, Victoria Victorovna; Стасова, Виктория Викторовна; Антонова, Галина Феодосиевна

    Vegetation structure along an altitudinal transect an upward shifts of larch in the Putorana Mountains, Northern Siberia, Russia
: материалы временных коллективов / A. V. Kirdyanov [и др.] // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 222-226. - Библиогр. в конце ст.

Аннотация: Larch stand structure and vegetation changes along the longitudinal transect in the Putorana Mountains, Northen Siberia were studied to assess how forest-tundra ecotone has shifted during the last century in an extremely remote and untouched area in Eurasia. In summary, our study demonstrates that ongoing climatic changes led to an upslope expansion of forests in the remote Putorana Mountains, which alters the stand structure and productivity of forest-tundra ecotone. However, these vegetation changes are very likely of minor importance for aboveground carbon sequestration.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Kirdyanov, Alexandr Viktorovich; Кирдянов, Александр Викторович; Knorre, Anastasiya Aleksyeyevna; Кнорре, Анастасия Алексеевна; Fedotova, Elena Viktorovna; Федотова, Елена Викторовна; Vaganov, Yevgeny Alexandrovich; Ваганов Евгений Александрович; Naurzbaev, Mukhtar Mukhametovich; Наурзбаев, Мухтар Мухаметович

    Climate induced birch mortality in Trans-Baikal lake region, Siberia
/ V. I. Kharuk [et al.] // For. Ecol. Manage. - 2013. - Vol. 289. - P385-392, DOI 10.1016/j.foreco.2012.10.024. - Cited References: 40. - This research was supported by the SB RAS Program No. 30.3.33, and NASA Science Mission Directorate, Terrestrial Ecology Program. The authors thank Dr. Joanne Howl for editing the manuscript. . - 8. - ISSN 0378-1127
РУБ Forestry

Аннотация: The Trans-Baikal (or Zabailkal'e) region includes the forest-steppe ecotones south and east of Lake Baikal in Russia and has experienced drought for several years. The decline and mortality of birch (Betula pendula) stands within the forest-steppe ecotone Trans-Baikal region was studied based on a temporal series of satellite data, ground measurements, and tree ring analysis. During the first decade of the 21st century birch stands decline and mortality were observed on about 5% of the total area of stands within our 1250 km(2) study area. Birch forest decline and mortality occurs mainly at the margins of stands, within the forest-steppe ecotone on slopes with direct insolation. During the first decade of the 21st century summer (June-August) precipitation was about 25% below normal. Soil water content measurements were lowest within dead stands and highest within healthy stands and intermediate within damaged stands. Drought impact on stands was amplified by an increase in summer air temperatures (+0.9 degrees C) in comparison with the previous decade. Tree ring data of "surviving" and "dead" tree groups showed a positive correlation with summer/annual precipitation and negative correlation with summer air temperatures. Temperature and precipitation extreme anomalies tend to occur in the region with a period of about 27 years. The observed anomaly was the most severe since the beginning of meteorological observations in the year 1900. Data for the other sites showed a positive climate impact on the growth and expansion of Siberian forests. That is, the same species (B. pendula) showed considerable increase (1.4 times both in height and stem volume) during 20th-21st centuries as temperature increased but precipitation remained at adequate levels. (C) 2012 Elsevier B.V. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Kharuk, V. I.
Oskorbin, P. A.
Im, S. T.
Dvinskaya, M. L.] VN Sukachev Inst Forest, Krasnoyarsk, Russia
[Kharuk, V. I.
Oskorbin, P. A.
Im, S. T.
Dvinskaya, M. L.] Siberian Fed Univ, Krasnoyarsk, Russia
[Ranson, K. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA

Доп.точки доступа:
Kharuk, V.I.; Ranson, K.J.; Oskorbin, P.A.; Im, S.T.; Dvinskaya, M.L.

    Climate change and climate-induced hot spots in forest shifts in central Siberia from observed data
[Text] / N. M. Tchebakova, E. I. Parfenova, A. J. Soja // Reg. Envir. Chang. - 2011. - Vol. 11, Is. 4. - P817-827, DOI 10.1007/s10113-011-0210-4. - Cited References: 65. - This study was supported by grant #10-05-00941 of the Russian Foundation for Basic Research and NASA Research Opportunities in Space and Earth Sciences (ROSES) 2009 InterDisciplinary Science (IDS) 09-IDS09-0116. . - 11. - ISSN 1436-3798
РУБ Environmental Sciences + Environmental Studies

Аннотация: Regional Siberian studies have already registered climate warming over the last several decades. We evaluated ongoing climate change in central Siberia between 1991 and 2010 and a baseline period, 1961-1990, and between 1991 and 2010 and Hadley 2020 climate change projections, represented by the moderate B1 and severe A2 scenarios. Our analysis showed that winters are already 2-3A degrees C warmer in the north and 1-2A degrees C warmer in the south by 2010. Summer temperatures increased by 1A degrees C in the north and by 1-2A degrees C in the south. Change in precipitation is more complicated, increasing on average 10% in middle latitudes and decreasing 10-20% in the south, promoting local drying in already dry landscapes. Hot spots of possible forest shifts are modeled using our Siberian bioclimatic vegetation model and mountain vegetation model with respect to climate anomalies observed pre-2010 and predicted 2020 Hadley scenarios. Forests are predicted to shift northwards along the central Siberian Plateau and upslope in both the northern and southern mountains. South of the central Siberian Plateau, steppe advancement is predicted that was previously non-existent north of 56A degrees N latitude. South of 56A degrees N, steppe expansion is predicted in the dry environments of Khakasiya and Tyva. In the southern mountains, it is predicted that the lower tree line will migrate upslope due to increased dryness in the intermontane Tyvan basins. The hot spots of vegetation change that are predicted by our models are confirmed by regional literature data.

Полный текст,
WOS,
Scopus

Держатели документа:
[Tchebakova, N. M.
Parfenova, E. I.] Russian Acad Sci Academgorodok, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
[Soja, A. J.] NASA Langley Res Ctr, Natl Inst Aerosp, Hampton, VA 23681 USA

Доп.точки доступа:
Tchebakova, N.M.; Parfenova, E.I.; Soja, A.J.

    Agroclimatic potential across central Siberia in an altered twenty-first century
[Text] / N. M. Tchebakova [et al.] // Environ. Res. Lett. - 2011. - Vol. 6, Is. 4. - Ст. 45207, DOI 10.1088/1748-9326/6/4/045207. - Cited References: 38. - We would like to recognize the Northern Eurasian Earth Science Partnership Initiative (NEESPI) and the NASA Land Cover Land Use Change (LCLUC) program for providing the background that made this work possible. We are greatly appreciative of the current support for this work provided by the NASA InterDisciplinary Science grant NNH09ZDA001N-IDS and the Russian Foundation for Basic Research grant 10-05-00941. We thank our two anonymous reviewers for their very helpful comments. . - 11. - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Кл.слова (ненормированные):
climate warming -- central Siberia -- agriculture -- crop range and production

Аннотация: Humans have traditionally cultivated steppe and forest-steppe on fertile soils for agriculture. Forests are predicted to shift northwards in a warmer climate and are likely to be replaced by forest-steppe and steppe ecosystems. We analyzed potential climate change impacts on agriculture in south-central Siberia believing that agriculture in traditionally cold Siberia may benefit from warming. Simple models determining crop range and regression models determining crop yields were constructed and applied to climate change scenarios for various time frames: pre-1960, 1960-90 and 1990-2010 using historic data and data taken from 2020 and 2080 HadCM3 B1 and A2 scenarios. From 50 to 85% of central Siberia is predicted to be climatically suitable for agriculture by the end of the century, and only soil potential would limit crop advance and expansion to the north. Crop production could increase twofold. Future Siberian climatic resources could provide the potential for a great variety of crops to grow that previously did not exist on these lands. Traditional Siberian crops could gradually shift as far as 500 km northwards (about 50-70 km/decade) within suitable soil conditions, and new crops nonexistent today may be introduced in the dry south that would necessitate irrigation. Agriculture in central Siberia would likely benefit from climate warming. Adaptation measures would sustain and promote food security in a warmer Siberia.

WOS,
Scopus

Держатели документа:
[Tchebakova, N. M.
Parfenova, E. I.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Lysanova, G. I.] Russian Acad Sci, Siberian Branch, Inst Geog, Irkutsk, Russia
[Soja, A. J.] NASA, Langley Res Ctr, NIA, Hampton, VA 23681 USA

Доп.точки доступа:
Tchebakova, N.M.; Parfenova, E.I.; Lysanova, G.I.; Soja, A.J.

    Changes in Content and Composition of Phenolic Acids during Growth of Xylem Cells of Scots Pine
[Text] / G. F. Antonova, T. V. Zheleznichenko, V. V. Stasova // Russ. J. Dev. Biol. - 2011. - Vol. 42, Is. 4. - P238-246, DOI 10.1134/S1062360411020032. - Cited References: 48. - This work was supported by the Russian Foundation for Basic Research, project no. 06-04-49501. . - 9. - ISSN 1062-3604
РУБ Developmental Biology

Аннотация: The content and composition of alcohol soluble phenolic acids (PhAs) were studied during cell xylem growth in course of wood annual increment formation in the trunks of Scots pine. Cells of the cambium zone, two stages of expansion growth, and outset of secondary thickening zone (before lignification) within the period of formation of early wood xylem were subsequently isolated from trunk segments of 25-year-old trees with constant anatomical and histochemical control. The amount of free and bound forms of phenolic acids extracted from tissues by 80% ethanol, as well as their ethers and esters, were calculated both per dry weight and per cells. The substantial alteration in content, proportion of fractions and composition of acids has been found between the cambium zone and the outset of secondary thickening of tracheids, and the character of variation depended on the calculation method. The amount of free and bound PhAs and esters and especially ethers calculated per cell had increased at the first stage of extension growth, reduced at the second, and increased in the outset of secondary wall deposition. The pool of bound acids was more than acids by 2-5 times depending on the stage of development of the cells. Sinapic and ferulic acids dominate among free hydroxycinnamic acids. The composition and the content of hydroxycinnamic acids in esters and ethers also depended on the stage of development of the cells. p-Coumaric and sinapic acids were the main aglycons in ethers in the cambium and sinapic and caffeic acids were in the other stages. The esters from cambium included mostly p-coumaric acid and those at other stages of development were sinapic and ferulic acids. The esters included benzoic acid at the first stages of growth. The pool of these esters decreased from the first phase of growth until the outset of cell wall thickening. The level of free benzoic acid increased respectively.

Полный текст,
WOS,
Scopus

Держатели документа:
[Antonova, G. F.
Zheleznichenko, T. V.
Stasova, V. V.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Antonova, G.F.; Zheleznichenko, T.V.; Stasova, V.V.

    Tree vegetation of the forest-tundra ecotone in the Western Sayan mountains and climatic trends
[Text] / V. I. Kharuk [et al.] // Russ. J. Ecol. - 2008. - Vol. 39, Is. 1. - P8-13, DOI 10.1134/S1067413608010025. - Cited References: 25 . - 6. - ISSN 1067-4136
РУБ Ecology
Рубрики:
SWEDISH SCANDES
   STANDS

   ALASKA

Кл.слова (ненормированные):
climatic trends -- mountain forest-tundra ecotone -- Pinus sibirica

Аннотация: Parameters of reproduction of the Siberian stone pine (Pinus sibirica), including radial and apical tree increments, the age structure of stands, the amount of young growth, and its distribution along an altitudinal gradient, have been studied in the forest-tundra ecotone of the Western Sayan. The results show that, over the past 30 years, P. sibirica undergrowth has expanded to the mountain tundra belt, the apical and radial tree increments and stand density have increased, and the life form of many P. sibirica plants has changed from prostrate to erect (single-or multistemmed). These changes correlate with the dynamics of summer temperatures and monthly (in May and June) and annual precipitation. The rise of summer temperatures by 1 degrees C promotes the expansion of P. sibirica undergrowth for approximately 150 m up the altitudinal gradient.

Полный текст,
WOS,
Scopus

Держатели документа:
[Kharuk, V. I.
Dvinskaya, M. L.
Im, S. T.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 630036, Russia
[Ranson, K. J.] NASA, Goddard Space Ctr, Washington, DC 20546 USA

Доп.точки доступа:
Kharuk, V.I.; Dvinskaya, M.L.; Im, S.T.; Ranson, K.J.

    Expansion of evergreen conifers to the larch-dominated zone and climatic trends
[Text] / V. I. Kharuk [et al.] // Russ. J. Ecol. - 2005. - Vol. 36, Is. 3. - P164-170, DOI 10.1007/s11184-005-0055-5. - Cited References: 13 . - 7. - ISSN 1067-4136
РУБ Ecology

Кл.слова (ненормированные):
larch forests -- successions -- climatic trends -- forest fire sites -- permafrost

Аннотация: The expansion of so-called evergreen conifers (EGCs), including Siberian stone pine, spruce, and fir, along the transect oriented from the boundary of the larch-dominated zone (LDZ; mixed forests of the Yenisei Ridge) to its center has been studied. The normalized dispersal coefficient calculated as K-i = (n(i) - N-i)/(n(i) + N-i), where ni and Ni are the relative numbers of the ith species in the undergrowth and the upper layer, respectively, serves as an indicator of the expansion. It has been found that the Ki values for EGCs (and birch) are higher than the Ki of larch even in the zone absolutely dominated by larch, where the relative numbers of EGCs in the upper layer is less than 1%. The EGC undergrowth has mainly been formed during the past 20-30 years, which is correlated with the trend of summer temperatures The spread of EGCs in the LDZ depends on the frequency of forest fires. The decrease in the time intervals between fires in the 20th century to 65 years (versus 100 years in the 19th century) may have prevented the expansion of competing species in the LDZ. The results obtained indicate that EGCs and birch penetrate into the zone traditionally dominated by larch, which is related to climatic changes during the past three decades. At the same time, tree stand density is increasing in the forest-tundra ecotone, and larch is spreading further into the tundra zone.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forest, Krasnoyarsk 660036, Russia
NASA, Goddard Space Ctr, Greenbelt, MD 20771 USA

Доп.точки доступа:
Kharuk, V.I.; Dvinskaya, M.L.; Ranson, K.J.; Im, S.T.

    Root system development of Larix gmelinii trees affected by micro-scale conditions of permafrost soils in central Siberia
[Text] / T. . Kajimoto [et al.] // Plant Soil. - 2003. - Vol. 255, Is. 1. - P281-292, DOI 10.1023/A:1026175718177. - Cited References: 38 . - 12. - ISSN 0032-079X
РУБ Agronomy + Plant Sciences + Soil Science

Аннотация: Spatial distributions of root systems of Larix gmelinii (Rupr.) Rupr. trees were examined in two stands in central Siberia: an even-aged stand (ca. 100 yrs-old) and a mature, uneven-aged (240-280 yrs-old) stand. Five larch trees of different sizes were sampled by excavating coarse roots (diameter > 5 mm) in each stand. Dimensions and ages of all first-order lateral roots were measured. Micro-scale conditions of soil temperature and soil water suction ( each 10 cm deep) were also examined in relation to earth hummock topography (mound vs. trough) and/or ground floor vegetation types (moss vs. lichens). All larch trees developed superficial root systems, consisting of the aborted short tap root (10-40 cm in soil depth) and some well-spread lateral roots (n = 4-13). The root network of each tree was asymmetric, and its rooting area reached about four times the crown projection area. Lateral roots generally expanded into the upper soil layers of the mounds where summer soil temperature was 1-6degreesC higher than inside nearby troughs. Chronological analysis indicated that lateral root expansion started successively from lower to upper parts of each aborted tap root, and some lateral roots occurred simultaneously at several decades after tree establishment. The process of root system development was likely to be primarily linked with post-fire dynamics of rhizosphere environment of the permafrost soils.

Полный текст,
WOS,
Scopus

Держатели документа:
Forestry & Forest Prod Res Inst, Tohoku Res Ctr, Morioka, Iwate 0200123, Japan
Forestry & Forest Prod Res Inst, Kukizaki, Ibaraki 3058687, Japan
Ryukoku Univ, Fac Intercultural Commun, Otsu, Shiga 5202194, Japan
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Kajimoto, T...; Matsuura, Y...; Osawa, A...; Prokushkin, A.S.; Sofronov, M.A.; Abaimov, A.P.

    Forest-tundra larch forests and climatic trends
[Text] / V. I. Kharuk [et al.] // Russ. J. Ecol. - 2006. - Vol. 37, Is. 5. - P291-298, DOI 10.1134/S1067413606050018. - Cited References: 17 . - 8. - ISSN 1067-4136
РУБ Ecology
Рубрики:
GROWTH
   ALASKA

Кл.слова (ненормированные):
larch forests -- climatic trends -- radial tree increment -- remote sensing

Аннотация: Climate-related changes that occurred in the Ary-Mas larch forests (the world's northernmost forest range) in the last three decades of the 20th century have been analyzed. An analysis of remote-sensing images made by Landsat satellites in 1973 and 2000 has provided evidence for an increase in the closeness of larch forest canopy (by 65%) and the expansion of larch to the tundra (for 3-10 in per year) and to areas relatively poorly protected from wind due to topographic features (elevation, azimuth, and slope). It has also been shown that the radial tree increment correlates with summer temperatures (r = 0.65, tau = 0.39) and the amounts of precipitation in summer (r = -0.51, tau = 0-41) and winter (r = -0.70, tau = -0.48), decreases with an increase in the closeness of forest canopy (r = -0.52, p > 0.8; tau = -0.48, p > 0.95), and increases with an increase in the depth of soil thawing (r = 0.63, p > 0.9; tau = 0.46, p > 0.9). The density of undergrowth depends on temperatures in winter(tau = 0.53, p > 0.8) and summer (r = 0.98, p > 0.99, tau = 0.9, p > 0.99) and the date of the onset of the growing period (r = -0.60, p > 0.99; T = -0.4, p > 0.99) and negatively correlates with the amount of precipitation in summer (r = -0.56, p > 0.99, T = -0.38, p > 0.99).

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forest, Krasnoyarsk 660036, Russia
NASA, Goddard Space Flight Ctr, Washington, DC 20546 USA

Доп.точки доступа:
Kharuk, V.I.; Ranson, K.J.; Im, S.T.; Naurzbaev, M.M.

    Ascorbic acid and development of xylem and phloem cells in the pine trunk
[Text] / G. F. Antonova, V. V. Stasova, T. N. Varaksina // Russ. J. Plant Physiol. - 2009. - Vol. 56, Is. 2. - P190-199, DOI 10.1134/S1021443709020071. - Cited References: 30. - This work was supported by the Russian Foundation for Basic Research, project no. 06-04-49501. . - 10. - ISSN 1021-4437
РУБ Plant Sciences

Аннотация: Changes in the levels of ascorbic acid (AA), its oxidized form, dehydroascorbic acid (DHA), and uronic acids as initial precursors for the AA synthesis were studied as related to the degree of xylem and phloem cell development in the course of early and late wood formation in the trunks of Scots pine (Pinus sylvestris L.). The cells of mature and conducting phloem, cambial zone, differently developed cells in the zones of cell enlargement and maturation were obtained by successive scraping tissue layers from trunk segments of 20-25-year-old trees; tissue identification was checked anatomically and histochemically. The contents of compounds tested were calculated per dry weight and per cell basis. We found great differences in the contents of AA and DHA and also in their ratio in dependence of the wood type developing in the pine trunks during growth period and on the stage of differentiation of xylem and phloem cells. Changes in the AA content during xylem cell differentiation were accompanied by changes in the content of uronic acids. The amounts of AA, DHA, and uronic acids were the highest at the stage of early lignification and reduced with tracheid maturation. The AA to DHA ratio changed differently in the course of early and late xylem lignification. It reduced from the start of lignification to the formation of early mature xylem and, in contrast, increased in mature late wood; this indicates a difference in the level of redox processes in these tissues.

Полный текст,
Scopushttp://apps.webofknowledge.com/summary.do?SID=S2Zcy23YkaM7aZ9JFpF&product=WOS&qid=1&search_mode=GeneralSearch

Держатели документа:
[Antonova, G. F.
Stasova, V. V.
Varaksina, T. N.] Russian Acad Sci, Sukachev Inst Forest, Siberian Div, Akad Gorodok, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Antonova, G.F.; Stasova, V.V.; Varaksina, T.N.; Russian Foundation for Basic Research [06-04-49501]

    CHANGE IN PHYTOMASS AND NET PRIMARY PRODUCTIVITY FOR SIBERIA FROM THE MIDHOLOCENE TO THE PRESENT
[Text] / R. A. MONSERUD [et al.] // Glob. Biogeochem. Cycle. - 1995. - Vol. 9, Is. 2. - P213-226, DOI 10.1029/95GB00596. - Cited References: 73 . - 14. - ISSN 0886-6236
РУБ Environmental Sciences + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: Phytomass (live plant mass) and net primary productivity are major components of the terrestrial carbon balance. A major location for phytomass storage is the subcontinent of Siberia, which is dominated by extensive reaches of taiga (boreal forest). The responsiveness of the phytomass component of the carbon pool is examined by comparing vegetation in the mid-Holocene (4600-6000 years before present) to modern potential vegetation. The mid-Holocene was warmer and moister in middle and northern Siberia than today, producing conditions ideal for boreal forest growth. As a result, both northern and middle taiga were dominated by shade-tolerant dark-needled species that thrive in moist climates. Today, shade-tolerant dark-needled taiga is restricted to western Siberia and the highlands of central Siberia, with its central and eastern components in the mid-Holocene replaced today by light-demanding light-needled species with lower productivity and phytomass. Total phytomass in Siberia in the mid-Holocene was 105.0 +/- 3.1 Pg, compared to 85.9 +/- 3.2 Pg in modern times, a loss of 19.1 +/- 3.1 Pg of phytomass. The reduction in dark-needled northern and middle taiga classes results in a loss of 28.8 Pg, while the expansion of the corresponding light-needled taiga results in a gain of 13.5 Pg, a net loss of 15.3 Pg. The loss is actually greater, because the modern figures are for potential vegetation and not adjusted for agriculture and other anthropogenic disturbances. Given long periods for vegetation to approach equilibrium with climate, the phytomass component of the carbon pool is responsive to climate change. Changes in net primary productivity (NPP) for Siberia between the mid-Holocene and the present were not as large as changes in phytomass. A minor decrease in NPP (0.6 Pg yr(-1), 10%) has occurred under our cooler modern climate, primarily due to the shift from dark-needled taiga in the mid-Holocene to light-needled taiga today.

Полный текст,
WOS

Держатели документа:
MOSCOW MV LOMONOSOV STATE UNIV,DEPT GEOG,MOSCOW,RUSSIA
OREGON STATE UNIV,DEPT CIVIL ENGN,CORVALLIS,OR 97331
RUSSIAN ACAD SCI,INST FOREST,SIBERIAN BRANCH,KRASNOYARSK,RUSSIA

Доп.точки доступа:
MONSERUD, R.A.; DENISSENKO, O.V.; KOLCHUGINA, T.P.; TCHEBAKOVA, N.M.

    Daily dynamics in xylem cell radial growth of Scots pine (Pinus sylvestris L.)
/ G. F. Antonova [et al.] // Trees - Structure and Function. - 1996. - Vol. 10, Is. 1. - P24-30 . - ISSN 0931-1890

Кл.слова (ненормированные):
Daily growth dynamics -- Pinus sylvestris L. -- Radial cell expansion -- Tracheid -- Wood formation

Аннотация: Daily dynamics of radial cell expansion during wood formation within the stems of 25-year-old Scots pine trees (Pinus sylvestris L.), growing in field conditions, were studied. The samples of forming wood layers were extracted 4 times per day for 3 days. Possible variations in the growth on different sides of the stem, duration of cell development in radial cell expansion phase and dynamics of cell growth in this phase were taken into account. The perimeters of tracheid cross-sections as a reflection of primary cell wall growth were the criterion of growth in a radial direction. For the evaluation of growing cell perimeters a special system for digital processing and image analysis of tracheid cross-sections of the forming wood was used. Growth rate for certain time intervals was estimated by the change in the relation of the perimeter of each observed cell in each of ten tracheid rows in each of 12 trees to the perimeter of the xylem cell of the same row before the expansion. Temporal differences in average values of the relations were estimated by Analyses of Variance. The existence of daily dynamics of Scots pine xylem cell radial growth has been proved. Intensive growth of pine tracheids has been shown to occur at any time of the day and to depend on the temperature regime of the day and the night as well as water supply of stem tissues. Moreover, reliable differences (P = 0.95) in the increment of cell walls during tracheid radial expansion have been found. Pulsing changes of the water potentials both of the cell and the apoplast, as the reason for the fluctuations of radial cell growth rate, were discussed.

Scopus,
Полный текст,
WOS

Держатели документа:
V. N. Sukachev Institute of Forest, Siberian Br. of Russ. Acad. of Sci., Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Antonova, G.F.; Cherkashin, V.P.; Stasova, V.V.; Varaksina, T.N.

    Effects of environmental factors on wood formation in Scots pine stems
/ G. F. Antonova, V. V. Stasova // Trees. - 1993. - Vol. 7, Is. 4. - P214-219, DOI 10.1007/BF00202076 . - ISSN 0931-1890
Аннотация: To find the optimal conditions for growth and development of tracheid walls in Scots pine stems the effects of temperature and precipitation on xylem cell production by the cambium, radial cell expansion and secondary wall thickening have been studied. The observations were carried out on 10 specially chosen 50 to 60-year-old trees, growing in central Siberia, over 2 seasons. The data on the number of cells in differentiation zones and mature xylem along radial rows of tracheids, radial and tangential sizes of tracheids and their lumens were used for calculating cambial activity, the rates and durations of cell development in the zones, and both the thickness and cross sectional areas of tracheid walls. The mean day, mean maximal diurnal and mean minimal nocturnal temperatures have been shown by correlation and regression analyses to affect differentially separate stages of cytogenesis. The temperature influenced the initial division the side of xylem and radial cell expansion mainly in May-June, while the influence of precipitation increased in July-August. Throughout all seasons it was the temperature that had the main influence on the biomass accumulation in cell walls. Optimal values of temperature and precipitation for cell production by cambium, radial cell expansion and secondary wall thickening have been calculated. The data are discussed in connection with productivity and quality of wood. В© 1993 Springer-Verlag.

Scopus,
Полный текст,
WOS

Держатели документа:
V. N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, 660 036, Russian Federation

Доп.точки доступа:
Antonova, G.F.; Stasova, V.V.

    Larch temporal dynamics in the forest-tundra ecotone
/ V. I. Kharuk [и др.] // Dokl Akad Nauk. - 2004. - Vol. 398, Is. 3. - С. 404-408 . - ISSN 0869-5652
Аннотация: The presented analysis of the forest boundary dynamics and tree stocks compactness in the forest-tundra ecotone was based on cosmic mapping time series for the last 30 years. Investigated territory (36 thousand ha) incorporated the very northern world's forest massif Ary-Mas and located to the south from it stocks of trees (larch Larix gmelinii). The increasing of tree stock compactness and larch penetration to the tundra zone in the end of XX century induced by climate changes is shown. At the same time from the south and west the expansion of boreal tree species (Siberian pine, spruce, fir) into larch domination zones is observed.

Scopus,
WOS

Держатели документа:
Inst. Lesa im. V.N. Sukacheva, SO RAN, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kharuk, V.I.; Im, S.T.; Ranson, K.J.; Naurzbaev, M.M.

    Characterization and monitoring of tundra-taiga transition zone with multi-sensor satellite data
/ G. Sun [et al.] // Eurasian Arct. Land Cover and Land Use in a Changing Climate. - 2011. - P53-77, DOI 10.1007/978-90-481-9118-5_4 . -

Аннотация: Monitoring the dynamics of the circumpolar boreal forest (taiga) and Arctic tundra boundary is important for understanding the causes and consequences of changes observed in these areas. Because of the inaccessibility and large extent of this zone, remote sensing data can play an important role for the purposes. In this study, climate-related changes that occurred in the Ary-Mas larch forests (the world's northernmost forest range) in the last three decades of the twentieth century were analyzed. An analysis of Landsat images in 1973 and 2000 has provided evidence for an increase in the closeness of larch forest canopy by 65% and the expansion of larch to the tundra for 3-10 m per year and to areas relatively poorly protected from wind due to topographic features (elevation, azimuth, and slope). It was found that a tundra-taiga transitional area can be characterized using multi-spectral Landsat ETM+ summer images, multi-angle MISR red band reflectance images, RADARSAT images with larger incidence angle, or multi-temporal and multi-spectral MODIS data. Because of different resolutions and spectral regions covered, the transition zone maps derived from different data types were not identical, but the general patterns were consistent. В© 2011 Springer Science+Business Media B.V.

Scopus,
Полный текст

Держатели документа:
Department of Geography, University of Maryland, Greenbelt, MD 20771, United States
Biospheric Sciences Branch, NASA/GSFC, Code 923, Greenbelt, MD 20771, United States
NASA's Goddard Space Flight Center, Greenbelt, MD 20771, United States
V.N. Sukachev Institute of Forest, SB RAS, Academgorodok, 50, 660036 Krasnoyarsk, Russian Federation

Доп.точки доступа:
Sun, G.; Ranson, K.J.; Kharuk, V.I.; Im, S.T.; Naurzbaev, M.M.

    Estimating Siberian timber volume using MODIS and ICESat/GLAS
/ R. Nelson [et al.] // Remote Sens. Environ. - 2009. - Vol. 113, Is. 3. - P691-701, DOI 10.1016/j.rse.2008.11.010 . - ISSN 0034-4257

Кл.слова (ненормированные):
Boreal forest -- GLAS -- LiDAR -- MODIS -- Multispectral -- Siberia -- Timber volume -- Aneroid altimeters -- Biological materials -- Biomass -- Landforms -- Logging (forestry) -- Optical radar -- Radio altimeters -- Renewable energy resources -- Spectrometers -- Timber -- Boreal forest -- GLAS -- LiDAR -- MODIS -- Multispectral -- Siberia -- Timber volume -- Atmospherics -- biomass -- boreal forest -- canopy -- forest resource -- land cover -- MODIS -- timber -- Biomass -- Curl -- Forest Canopy -- Forests -- Land Use -- Logging -- Optical Instruments -- Radar -- Radio -- Remote Sensing -- Renewable Resources -- Spectrometers -- Eurasia -- Siberia

Аннотация: Geosciences Laser Altimeter System (GLAS) space LiDAR data are used to attribute a MODerate resolution Imaging Spectrometer (MODIS) 500В m land cover classification of a 10В° latitude by 12В° longitude study area in south-central Siberia. Timber volume estimates are generated for 16 forest classes, i.e., four forest cover types ? four canopy density classes, across this 811,414В km 2 area and compared with a ground-based regional volume estimate. Two regional GLAS/MODIS timber volume products, one considering only those pulses falling on slopes ? 10В° and one utilizing all GLAS pulses regardless of slope, are generated. Using a two-phase(GLAS-ground plot) sampling design, GLAS/MODIS volumes average 163.4 В± 11.8В m 3/ha across all 16 forest classes based on GLAS pulses on slopes ? 10В° and 171.9 В± 12.4В m 3/ha considering GLAS shots on all slopes. The increase in regional GLAS volume per-hectare estimates as a function of increasing slope most likely illustrate the effects of vertical waveform expansion due to the convolution of topography with the forest canopy response. A comparable, independent, ground-based estimate is 146В m 3/ha [Shepashenko, D., Shvidenko, A., and Nilsson, S. (1998). Phytomass (live biomass) and carbon of Siberian forests. Biomass and Bioenergy, 14, 21-31], a difference of 11.9% and 17.7% for GLAS shots on slopes ? 10В° and all GLAS shots regardless of slope, respectively. A ground-based estimate of total volume for the entire study area, 7.46 ? 10 9В m 3, is derived using Shepashenko et al.'s per-hectare volume estimate in conjunction with forest area derived from a 1990 forest map [Grasia, M.G. (ed.). (1990). Forest Map of USSR. Soyuzgiproleskhoz, Moscow, RU. Scale: 1:2,500,000]. The comparable GLAS/MODIS estimate is 7.38 ? 10 9В m 3, a difference of less than 1.1%. Results indicate that GLAS data can be used to attribute digital land cover maps to estimate forest resources over subcontinental areas encompassing hundreds of thousands of square kilometers.

Scopus,
Полный текст

Держатели документа:
Biospheric Sciences Branch, NASA/Goddard Space Flight Center, Code 614.4, Greenbelt, MD 20771, United States
Department of Geography, University of Maryland, College Park, MD 20742, United States
Sukachev Forest Institute, Krasnoyarsk-36, Academgorodok, Russian Federation
Science Systems and Applications, Inc., Lanham, MD 20706, United States

Доп.точки доступа:
Nelson, R.; Ranson, K.J.; Sun, G.; Kimes, D.S.; Kharuk, V.; Montesano, P.

    20th century tree-line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia
/ A. V. Kirdyanov [et al.] // Boreas. - 2012. - Vol. 41, Is. 1. - P56-67, DOI 10.1111/j.1502-3885.2011.00214.x . - ISSN 0300-9483

Кл.слова (ненормированные):
carbon sequestration -- climate change -- ecotone -- spatiotemporal analysis -- temperature -- treeline -- twentieth century -- vegetation -- Putorana Plateau -- Russian Federation -- Larix -- Larix gmelinii

Аннотация: Ongoing climatic changes potentially affect tree-line ecosystems, but in many regions the observed changes are superimposed by human activities. We assessed how the forest-tundra ecotone has changed during the last century in the Putorana Mountains, northern Siberia, an extremely remote and untouched area in Eurasia. A space-for-time approach was used to determine the spatio-temporal dynamics of forest structure and biomass along an altitudinal transect. From the closed larch forest to the upper tree line, the mean age of Larix gmelinii (Rupr.) decreased considerably from 220 to 50 years ago. At the current upper species line, there is a strong and successful germination of larch, with 1500 saplings per hectare, indicating an ongoing filling-in, a densification of a formerly open forest and an upslope shift of the tree-line position (approximately 30 to 50m in altitude during the last century). The forest expansion coincided with large increases in winter precipitation during the 20th century. In contrast, tree growth rates were significantly positively related to summer temperatures, neither of which increased markedly. The total aboveground biomass decreased from approximately 40tha -1 in the closed larch forest to 5tha -1 at the tree line. Our study demonstrates that ongoing climatic changes lead to an upslope expansion of forests in the remote Putorana Mountains, which alters the stand structure and productivity of the forest-tundra ecotone. These vegetation changes are very probably of minor importance for aboveground carbon sequestration, but soil carbon data are needed to estimate the impact of the forest expansion on the total ecosystem carbon storage. В© 2011 The Authors. Boreas В© 2011 The Boreas Collegium.

Scopus

Держатели документа:
V. N. Sukachev Institute of Forest SB RAS, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Swiss Federal Research Institute WSL, Zurcherstrasse 111, CH-8903 Birmensdorf, Switzerland
Siberian Federal University, pr. Svobodny 79, Krasnoyarsk, 660041, Russian Federation
Institute of Plant and Animal Ecology UrB RAS, 8 Marta str. 202, Ekaterinburg, 620144, Russian Federation

Доп.точки доступа:
Kirdyanov, A.V.; Hagedorn, F.; Knorre, A.A.; Fedotova, E.V.; Vaganov, E.A.; Naurzbaev, M.M.; Moiseev, P.A.; Rigling, A.

    Potential influence of climate-induced vegetation shifts on future land use and associated land carbon fluxes in Northern Eurasia
[] / D. W. Kicklighter [et al.] // Environ.Res.Lett. - 2014. - Vol. 9, Is. 3. - Ст. 035004, DOI 10.1088/1748-9326/9/3/035004 . - ISSN 1748-9318
Аннотация: Climate change will alter ecosystem metabolism and may lead to a redistribution of vegetation and changes in fire regimes in Northern Eurasia over the 21st century. Land management decisions will interact with these climate-driven changes to reshape the region's landscape. Here we present an assessment of the potential consequences of climate change on land use and associated land carbon sink activity for Northern Eurasia in the context of climate-induced vegetation shifts. Under a 'business-as-usual' scenario, climate-induced vegetation shifts allow expansion of areas devoted to food crop production (15%) and pastures (39%) over the 21st century. Under a climate stabilization scenario, climate-induced vegetation shifts permit expansion of areas devoted to cellulosic biofuel production (25%) and pastures (21%), but reduce the expansion of areas devoted to food crop production by 10%. In both climate scenarios, vegetation shifts further reduce the areas devoted to timber production by 6-8% over this same time period. Fire associated with climate-induced vegetation shifts causes the region to become more of a carbon source than if no vegetation shifts occur. Consideration of the interactions between climate-induced vegetation shifts and human activities through a modeling framework has provided clues to how humans may be able to adapt to a changing world and identified the trade-offs, including unintended consequences, associated with proposed climate/energy policies. © 2014 IOP Publishing Ltd.

Scopus,
WOS

Держатели документа:
Ecosystems Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, United States
Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
Department of Earth, Atmospheric and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, United States
VN Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kicklighter, D.W.; Cai, Y.; Zhuang, Q.; Parfenova, E.I.; Paltsev, S.; Sokolov, A.P.; Melillo, J.M.; Reilly, J.M.; Tchebakova, N.M.; Lu, X.