Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 21

    Wystepowanie pozarow lasu w Syberii Srodkowej w zalesznosci od geograficznej i ocena uszkodzenia lasow
= Geographic conditionality of wildfires and estimition of damages of forests of Central Siberia : материалы временных коллективов / E. I. Ponomarev // Lesne Prace Badawcze (Forest Research Papers). - Vol. 69, № 2. - С. 109-115

Аннотация: This database of forest wildfires that occurred in Central Siberia in the years 2006 and 2007 was created on the basis of satellite image analysis. The database allowed to construct an up-to-date map of fire hazards and depict the geographic distribution of forest and non-forest fires during fire season. The duration of the active burning phase for the majority (88%) of forests in the region was 1 day. The spatial-temporal distribution of forest fires indicates a maximum fire risk at the end of June and the begining of July and in southern regions - also in spring and autumn. The analysis of images with depicting damage to forestland allows to state that c.30-40% are the stands with different stands with different degree of damage of which less than c. 30% show weak signs of recovery.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Пономарев, Евгений Иванович

    System of Wildfires Monitoring in Russia
/ E. I. Ponomarev, V. Ivanov, N. Korshunov // Wildfire Hazards, Risks, and Disasters . - 2014. - P187-205, DOI 10.1016/B978-0-12-410434-1.00010-5 . - ISBN 9780124096011 (ISBN); 9780124104341 (ISBN)

Кл.слова (ненормированные):
Atmospheric emissions -- Population density -- Remote access -- Russia -- Siberia

Аннотация: Wildfire is one of the main natural disturbances in Russian forests, with some 2-17. million hectares being burned annually. The trend of large-scale wildfires, with areas burnt exceeding 2,000. ha, having increased over recent years, is making significant contributions to atmospheric emissions that contribute to climate change, and highlights the need for and complexity of fire risk management and monitoring. The challenges faced in monitoring and risk management can be understood in relation to the natural conditions of forest environments in Russia. Given the vast nature of the geographical area to be managed, satellite techniques are the primary means for wildfire monitoring in most part of the boreal forest zone of Russia. This increases both the efficiency of wildfire detection and the capacity to obtain information on wildfire attributes. The chapter then proceeds to discuss how the scale and remoteness of much wildfire activity, a lack of transport routes, and low density of population in northern regions of Siberia results in a high level of burn and a significant number of extreme large-scale wildfires annually. The chapter also discusses how fire risk management must accommodate the modern state politics in forestry, climate change, and the growing anthropogenic impact on fire risk. © 2015 Elsevier Inc. All rights reserved.

Scopus

Держатели документа:
V.N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation
Siberian Federal University, pr. Svobodnyi, Krasnoyarsk, Russian Federation
Siberian State Technological University, pr. Mira, Krasnoyarsk, Russian Federation
Russian Institute of Continuous Education in Forestry, Pushkino, Moscow obl., Russian Federation

Доп.точки доступа:
Ponomarev, E.I.; Ivanov, V.; Korshunov, N.

    Climate-induced landsliding within the larch dominant permafrost zone of central Siberia
/ V. I. Kharuk [et al.] // Environ.Res.Lett. - 2016. - Vol. 11, Is. 4, DOI 10.1088/1748-9326/11/4/045004 . - ISSN 1748-9318
Аннотация: Climate impact on landslide occurrence and spatial patterns were analyzed within the larch-dominant communities associated with continuous permafrost areas of central Siberia. We used high resolution satellite imagery (i.e. QuickBird, WorldView) to identify landslide scars over an area of 62 000 km2. Landslide occurrence was analyzed with respect to climate variables (air temperature, precipitation, drought index SPEI), and Gravity Recovery and Climate Experiment satellite derived equivalent of water thickness anomalies (EWTA). Landslides were found only on southward facing slopes, and the occurrence of landslides increased exponentially with increasing slope steepness. Lengths of landslides correlated positively with slope steepness. The observed upper elevation limit of landslides tended to coincide with the tree line. Observations revealed landslides occurrence was also found to be strongly correlated with August precipitation (r = 0.81) and drought index (r = 0.7), with June-July-August soil water anomalies (i.e., EWTA, r = 0.68-0.7), and number of thawing days (i.e., a number of days with t max > 0 °C; r = 0.67). A significant increase in the variance of soil water anomalies was observed, indicating that occurrence of landslides may increase even with a stable mean precipitation level. The key-findings of this study are (1) landslides occurrence increased within the permafrost zone of central Siberia in the beginning of the 21st century; (2) the main cause of increased landslides occurrence are extremes in precipitation and soil water anomalies; and (3) landslides occurrence are strongly dependent on relief features such as southward facing steep slopes. © 2016 IOP Publishing Ltd.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Sukachev Forest Institute, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Siberian State Aerospace University, Krasnoyarsk, Russian Federation
NASA's Goddard Space Flight Center, Greenbelt, MD, United States

Доп.точки доступа:
Kharuk, V. I.; Shushpanov, A. S.; Im, S. T.; Ranson, K. J.

    Wildfires dynamics in Siberian larch forests
/ E. I. Ponomarev, V. I. Kharuk, K. J. Ranson // Forests. - 2016. - Vol. 7, Is. 6, DOI 10.3390/f7060125 . - ISSN 1999-4907
Аннотация: Wildfire number and burned area temporal dynamics within all of Siberia and along a south-north transect in central Siberia (45°-73° N) were studied based on NOAA/AVHRR (National Oceanic and Atmospheric Administration/ Advanced Very High Resolution Radiometer) and Terra/MODIS (Moderate Resolution Imaging Spectroradiometer) data and field measurements for the period 1996-2015. In addition, fire return interval (FRI) along the south-north transect was analyzed. Both the number of forest fires and the size of the burned area increased during recent decades (p < 0.05). Significant correlations were found between forest fires, burned areas and air temperature (r = 0.5) and drought index (The Standardized Precipitation Evapotranspiration Index, SPEI) (r = -0.43). Within larch stands along the transect, wildfire frequency was strongly correlated with incoming solar radiation (r = 0.91). Fire danger period length decreased linearly from south to north along the transect. Fire return interval increased from 80 years at 62° N to 200 years at the Arctic Circle (66°33' N), and to about 300 years near the northern limit of closed forest stands (about 71°+ N). That increase was negatively correlated with incoming solar radiation (r = -0.95). © 2016 by the authors.

Scopus,
Смотреть статью,
WOS

Держатели документа:
V.N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
NASA Goddard Space Flight Center, Greenbelt, MD, United States

Доп.точки доступа:
Ponomarev, E. I.; Kharuk, V. I.; Ranson, K. J.

    Assessment of Central Siberia Forest Ecosystems Sustainability to Forest Fires: Academic Research Outcomes
[Text] / N. Koshurnikova [et al.] ; ed.: N. . Popov, O. . Chigisheva // WORLDWIDE TRENDS IN THE DEVELOPMENT OF EDUCATION AND ACADEMIC RESEARCH : ELSEVIER SCIENCE BV, 2015. - Vol. 214: Worldwide trends dev educ acad res (JUN 15-18, 2015, Sofia, BULGARIA). - P1008-1018. - (Procedia Social and Behavioral Sciences), DOI 10.1016/j.sbspro.2015.11.694. - Cited References:10 . -
РУБ Education & Educational Research
Рубрики:
EMISSIONS
Кл.слова (ненормированные):
forest fire monitoring -- forest regeneration -- meteorological -- observations -- physical inventory -- GIS

Аннотация: The majority of negative consequences caused by extreme and natural hazards are qualified as weather and climate-related emergency situations. Programs and measures developed to reduce climate risks for economics should be based on scientific background, R&D projects and ongoing monitoring. Fire has always been remained as the main natural factor devastating forest ecosystems and outlining the status and resource potential of boreal forests. Extremely drought - afflicted hot summer and dry cold winter trigger the risks and consequences of forest fires thus affecting wildlife biodiversity and forest ecosystems performance in terms of CO2 accumulation from the atmosphere. Multifunctional and sustainable forest management in extreme natural conditions should be initiated on reliable (scientifically-proven) evaluation of ecological and resource potential of the forests with economically-effective approach developed to enhance sustainability of ecosystems to fires and insect invasion. (C) 2015 The Authors. Published by Elsevier Ltd.

WOS,
Смотреть статью

Держатели документа:
Siberian Fed Univ, Krasnoyarsk, Russia.
RAS, VN Sukachev Inst Forest SB, Krasnoyarsk, Russia.
Siberian State Technol Univ, Krasnoyarsk, Russia.
WWF, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Koshurnikova, Nataly; Verkhovets, Sergey; Antamoshkina, Olga; Trofimova, Nataly; Zlenko, Lyudmila; Zhuikov, Andrey; Popov, N... \ed.\; Chigisheva, O... \ed.\

    Tree wave migration across an elevation gradient in the Altai Mountains, Siberia
/ V. I. Kharuk [et al.] // J. Mt. Sci. - 2017. - Vol. 14, Is. 3. - P442-452, DOI 10.1007/s11629-016-4286-7 . - ISSN 1672-6316

Кл.слова (ненормированные):
Alpine treeline -- Altai Mountains -- Hedges -- Ribbon forest -- Siberian forests -- Siberian pine -- Tree waves

Аннотация: The phenomenon of tree waves (hedges and ribbons) formation within the alpine ecotone in Altai Mountains and its response to observed air temperature increase was considered. At the upper limit of tree growth Siberian pine (Pinus sibirica) forms hedges on windward slopes and ribbons on the leeward ones. Hedges were formed by prevailing winds and oriented along winds direction. Ribbons were formed by snow blowing and accumulating on the leeward slope and perpendicular to the prevailing winds, as well as to the elevation gradient. Hedges were always linked with microtopography features, whereas ribbons were not. Trees are migrating upward by waves and new ribbons and hedges are forming at or near tree line, whereas at lower elevations ribbons and hedges are being transformed into closed forests. Time series of high-resolution satellite scenes (from 1968 to 2010) indicated an upslope shift in the position ribbons averaged 155±26 m (or 3.7 m yr-1) and crown closure increased (about 35%–90%). The hedges advance was limited by poor regeneration establishment and was negligible. Regeneration within the ribbon zone was approximately 2.5 times (5060 vs 2120 ha-1) higher then within the hedges zone. During the last four decades, Siberian pine in both hedges and ribbons strongly increased its growth increment, and recent tree growth rate for 50 year-old trees was about twice higher than those recorded for similarly-aged trees at the beginning of the 20th century. Hedges and ribbons are phenomena that are widespread within the southern and northern Siberian Mountains. © 2017, Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag Berlin Heidelberg.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
M.F. Reshetnev Siberian State Aerospace University, Krasnoyarsk, Russian Federation
NASA’s Goddard Space Flight Center, Greenbelt, MD, United States

Доп.точки доступа:
Kharuk, V. I.; Im, S. T.; Dvinskaya, M. L.; Ranson, K. J.; Petrov, I. A.

    Mapping certified forests for sustainable management - A global tool for information improvement through participatory and collaborative mapping
/ F. Kraxner [et al.] // For. Policy Econ. - 2017. - Vol. 83. - P10-18, DOI 10.1016/j.forpol.2017.04.014 . - ISSN 1389-9341
Аннотация: There are currently no spatially explicit, openly accessible data available on forest certification below national level, so understanding the drivers of certification in the past, examining the scope for further certification and using this information for development of future sustainable forest management strategies is challenging. Hence, this paper presents a methodology for the development of a global map of certified forest areas at 1 km resolution in order to satisfy this information need. Validation of the map with certified areas in Russia showed reasonable results, but the lack of openly accessible data requires broadening the strategy for improving the global certification map in the future. Thus, the second aim of the paper is to present an online tool for visualization and interactive improvement of the global forest certification product through collaborative mapping, aiming at a range of stakeholders including third-party certifiers, green NGOs, forestry organizations, decision-makers, scientists and local experts. Such an approach can help to make more accurate information on forest certification available, promote the sharing of data and encourage more transparent and sustainable forest management, i.e. both producers and users can benefit from this online tool. © 2017

Scopus,
Смотреть статью,
WOS

Держатели документа:
Ecosystems Services and Management Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, Laxenburg, Austria
Mercator Research Institute on Global Commons and Climate Change (MCC), Torgauer Str. 12–15, Berlin, Germany
Norwegian University of Life Sciences (NMBU), School of Economics and Business, Box 5003, Aas, Norway
Austrian Research and Training Centre for Forests, Natural Hazards and Landscape, Seckendorff-Gudent-Weg 8, Vienna, Austria
Shinshu University, Cooperative Research Center, 4-17-1 Wakasato, Nagano, Japan
Sukachev Institute of Forest, Russian Academy of Sciences, Siberian Branch, Akademgorodok 50/28, Krasnoyarsk, Russian Federation
Mytischi filial of Bauman Moscow State Technical University, Institutskaya, 1, Mytishchi, Russian Federation

Доп.точки доступа:
Kraxner, F.; Schepaschenko, D.; Fuss, S.; Lunnan, A.; Kindermann, G.; Aoki, K.; Durauer, M.; Shvidenko, A.; See, L.

    Divergent growth trends and climatic response of Picea obovata along elevational gradient in Western Sayan mountains, Siberia
/ E. Babushkina [et al.] // J. Mt. Sci. - 2018. - Vol. 15, Is. 11. - P2378-2397, DOI 10.1007/s11629-018-4974-6 . - ISSN 1672-6316

Кл.слова (ненормированные):
Climate change -- Climate-growth relationship -- Elevational gradient -- Growth trends -- Picea obovata -- Tree-ring width -- Picea -- Picea obovata

Аннотация: In mountain ecosystems, plants are sensitive to climate changes, and an entire range of species distribution can be observed in a small area. Therefore, mountains are of great interest for climate-growth relationship analysis. In this study, the Siberian spruce’s (Picea obovata Ledeb.) radial growth and its climatic response were investigated in the Western Sayan Mountains, near the Sayano-Shushenskoe Reservoir. Sampling was performed at three sites along an elevational gradient: at the lower border of the species range, in the middle, and at the treeline. Divergence of growth trends between individual trees was observed at each site, with microsite landscape-soil conditions as the most probable driver of this phenomenon. Cluster analysis of individual tree-ring width series based on inter-serial correlation was carried out, resulting in two sub-set chronologies being developed for each site. These chronologies appear to have substantial differences in their climatic responses, mainly during the cold season. This response was not constant due to regional climatic change and the local influence of the nearby Sayano-Shushenskoe Reservoir. The main response of spruce to growing season conditions has a typical elevational pattern expected in mountains: impact of temperature shifts with elevation from positive to negative, and impact of precipitation shifts in the opposite direction. Chronologies of trees, growing under more severe micro-conditions, are very sensitive to temperature during September-April and to precipitation during October-December, and they record both inter-annual and long-term climatic variation. Consequently, it would be interesting to test if they indicate the Siberian High anticyclone, which is the main driver of these climatic factors. © 2018, Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Khakass Technical Institute, Siberian Federal University, Abakan, 655017, Russian Federation
National Park “Shushensky Bor”, Shushenskoe, 662710, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Babushkina, E.; Belokopytova, L.; Zhirnova, D.; Barabantsova, A.; Vaganov, E.
630*595.7
В 58

    Влияние массового размножения сосновой пяденицы на радиальный прирост деревьев
[Текст] : статья / В. Г. Суховольский [и др.] // Лесоведение. - 2019. - № 5. - С. 357-365, DOI 10.1134/S0024114819050103 . - ISSN 0024-1148
   Перевод заглавия: Influence of the Mass Propagation of a Pine Looper on the Radial Growth of Trees
УДК

Аннотация: Изучены временные ряды радиального прироста сосны Pinus sylvestris L. с 1945 по 2015 г. в насаждениях, поврежденных в ходе вспышки сосновой пяденицы Bupalus piniarius L. в 1974–1978 г., а также в насаждениях, не поврежденных вредителем, на территории Краснотуранского соснового бора. Для оценки различий процессов радиального прироста деревьев в поврежденных и неповрежденных насаждениях до начала вспышки массового размножения предложено использовать регуляторные характеристики временны́х рядов, такие как величины n запаздывания (авторегрессии) и размаха s колебаний временны́х рядов. По этим показателями можно численно оценить инерционность процессов регуляции радиального прироста. Так как характеристики регуляции корректно вычислять только для стационарных временны́х рядов, для расчетов были использованы ряды первых разностей радиального прироста. Деревья в насаждениях, на которые напали насекомые, характеризовались либо отсутствием запаздывания во временны́х рядах, либо достаточно большими величинами порядка n авторегрессии. При этом колебания текущего радиального прироста относительно возрастного тренда у деревьев в поврежденных насаждениях были существенно больше, чем в неповрежденных. Дана оценка скорости восстановления прироста у поврежденных насекомыми деревьев в зависимости от регуляторных характеристик временны́х рядов радиального прироста до начала повреждений. Полученные характеристики можно использовать для оценки риска нападения филлофагов на насаждения и скорости восстановления насаждений, поврежденных насекомыми.
1945–2015 time series of radial increment of pine Pinus sylvestris L. disturbed by 1974–1978 mass outbreak of pine looper Bupalus piniarius L. were compared to undisturbed values in Krasnaya Tura pine forest. The regulatory parameters of the time series, including the order of autoregression (value of n retardation) and the standard deviation of a number of the first differences of the radial growth s were suggested to estimate differences in radial increment of trees on disturbed and undisturbed sites. These indices could be used to assess inertia of the processes regulating radial increment. Estimates were made for the for the series of first differences of radial increment because regulation could be correctly assessed only for stationery time series. Trees subject to insect outbreak either had no delay in the dynamics of the series of the first differences in the radial growth, or had high values of n. At the same time, the fluctuations of the current radial increment of disturbed trees regarding the age gradient, were significantly larger than in undisturbed trees. We estimated the rate of increment recovery of disturbed trees as a function of regulatory features of time series preceding the disturbance event. These data could be used to assess pest hazard on the stands and rates of recovery of forests disturbed by insect outbreaks.

РИНЦ

Держатели документа:
Институт леса им. В.Н. Сукачева СО РАН : 660036, Красноярск, 50, стр. 28
Сибирский государственный университет науки и технологий имени, академика М.Ф. Решетнёва
Сибирский федеральный университет

Доп.точки доступа:
Суховольский, Владислав Григорьевич; Soukhovolsky Vladislav Grigor'yevich; Красноперова, П.А.; Krasnoperova P.A.; Пальникова, Е.Н.; Pal'nikova E.N.; Свидерская, И.В.; Sviderskaya I.V.; Тарасова, О.В.; Tarasova O.V.
502.7.630.431.1
Л 22

    ЛАНДШАФТНЫЕ ПОЖАРЫ В ЗАБАЙКАЛЬЕ
[Текст] : статья / М. Д. ЕВДОКИМЕНКО // География и природные ресурсы. - 2019. - № 4. - С. 44-55 . - ISSN 0206-1619
   Перевод заглавия: LANDSCAPE FIRES IN TRANSBAIKALIA
УДК

Аннотация: Приведены результаты полувекового изучения природных пожаров в Забайкалье. Выполнены стационарные экс периментальные исследования пожароопасности растительности по всем высотным поясам, репрезентативным ландшафтным местностям и типам леса. Маршрутные исследования проведены в разных природных округах. На про тяжении двух сезонов осуществлен авиамониторинг ландшафтных пожаров. Прослежены долговременные последствия пожаров на Байкальской природной территории и в Центральном Забайкалье. Проанализированы пирологические режимы в растительных комплексах, по каждому из которых определена длительность пожароопасного состояния как суммарная за весь сезон, так и непрерывная за период пожарного максимума. Характеристики режимов по вы сотным поясам приведены в трех вариантах в зависимости от количества осадков за сезон (обычный, засушливый, влажный). Выявлено, что ландшафтные пожары возникают при интенсивном и экстремальном режимах, когда устанавливается исключительная, по сравнению с сопредельными регионами, пирологическая монотонность расти тельных комплексов на большей части территории. В подобной ситуации практически отсутствуют естественные препятствия для огня, кроме широких рек, озер и гребней горных хребтов. Высокая горимость лесов обусловлена пре обладанием в их составе светлохвойных насаждений. Стремительному распространению пожаров способствуют сухие травостои и заросли пожароопасных кустарников, по которым огонь движется почти со скоростью ветра. Установ лено, что некошеные луга, заброшенные выпасы и пашни у поселковых околиц чреваты опустошительными пожарами не только в лесах, но и в населенных пунктах. В ситуации, подобной возникшей в 2015 г., ландшафтные пожары превращаются в природную катастрофу с тяжелыми лесоэкологическими последствиями. Уцелевшие древостои снижа ют продуктивность, изреживаются, а далее подвержены все более усугубляющейся дигрессии от последующих огневых воздействий. На гарях происходит локальное обезлесение, либо длительная смена хвойных насаждений лиственными. Грядущий сток с обширных выгоревших площадей может усугубить загрязнение оз. Байкал. Сделан вывод, что при влечение резервов МЧС для устранения последней огненной стихии в Прибайкалье оказалось малополезным вследствие запоздания. Альтернативой представляется заблаговременное прогнозирование высокого риска возникновения ланд шафтных пожаров с целью оперативной ликвидации возгораний, чтобы оперативно тушить все загорания при уме ренных затратах, не допуская их превращения в природную катастрофу.
This paper presents results of wildfire studies conducted Transbaikalia over the last five decades. Station-based experimen tal investigations into fire hazards of vegetation accomplished at the regional forest fire stations during those years covered all altitudinal vegetation zones, representative landscape localities and forest types. Route investigations were made in different natural areas. Arial monitoring of landscape fires was used during two fire seasons. Long-term effects of fires in the Baikal Natural Area and in Central Transbaikalia were investigated. Fire regimes in vegetation complexes were analyzed and for each of them the duration of the fire hazard was determined both as the total duration for the entire season and as a continuous duration for the period of the fire maximum. Characteristics of the regimes for the altitudinal belts are provided in three versions according to precipitation amounts for a season (normal, dry and wet). It is found that forest fires occur in intensive and extreme fire regimes when most of the vegetation complexes of the region become exceptionally hazardous as compared to adjacent areas. In such a situation, there are almost no barriers to fire, except for broad rivers, lakes and mountain crests. The forest fire fre quency index is high due to a predominance of light coniferous stands. A rapid spread of fires is also promoted by dry grass stands and fire-hazardous shrubs where the fire is spreading nearly as fast as the speed of wind. It was established that unmown mead ows, and abandoned pastures and croplands in the outskirts of villages present the threat of devastating fires not only in forests but also in settlements. In a situation, such as the one that arose in 2015, landscape fires turn to a natural disaster with severe forest-ecological consequences. Surviving forest stands decrease in productivity and increase in self-thinning, followed by an increasing degradation caused by subsequently recurring fires. Burns undergo local deforestation or a long-lasting replacement of coniferous stands by deciduous forests. The future runoff from the burned-over areas is able to enhance pollution of Lake Baikal. It is concluded that the EMERCOM resources used to fight the latest fires in Transbaikalia showed very little promise because of being delayed. A reasonable alternative to EMERCOM would involve advanced forecasting of high risks of fire oc currence in order to rapidly fight fires with moderate expenses without letting them turning to a natural disaster.

РИНЦ

Держатели документа:
Институт леса им. В.Н. Сукачёва СО РАН

Доп.точки доступа:
ЕВДОКИМЕНКО, М.Д.; EVDOKIMENKO M.D.

    Warming induced changes in wood matter accumulation in tracheid walls of spruce
/ E. Babushkina, D. Zhirnova, L. Belokopytova, E. Vaganov // J. Mt. Sci. - 2020. - Vol. 17, Is. 1. - P16-30, DOI 10.1007/s11629-019-5516-6 . - ISSN 1672-6316
Аннотация: The warming-driven increase of the vegetation season length impacts both net productivity and phenology of plants, changing an annual carbon cycle of terrestrial ecosystems. To evaluate this influence, tree growth along the temperature gradients can be investigated on various organization levels, beginning from detailed climatic records in xylem cells’ number and morphometric parameters. In this study, the Borus Ridge of the Western Sayan Mountains (South Siberia) was considered as a forest area under rapid climate change caused by massive Sayano-Shushenskoe reservoir. Several parameters of the xylem anatomical structure in Siberian spruce (Picea obovata Ledeb.) were derived from normalized tracheidograms of cell radial diameter and cell wall thickness and analyzed during 50 years across elevational gradient (at 520, 960, and 1320 m a.s.l.). On the regional scale, the main warming by 0.42°C per decade occurs during cold period (November–March). Construction of the reservoir accelerated local warming substantially since 1980, when abrupt shift of the cold season temperature by 2.6°C occurred. It led to the vegetation season beginning 3–6 days earlier and ending 4–10 day later with more stable summer heat supply. Two spatial patterns were found in climatic response of maximal cell wall thickness: (1) temperature has maximal impact during 21-day period, and its seasonality shifts with elevation in tune with temperature gradient; (2) response to the date of temperature passing +9.5°C threshold is observed at two higher sites. Climate change yielded significantly bigger early wood spruce tracheids at all sites, but its impact on cell wall deposition process had elevational gradient: maximal wall thickness increased by 7.9% at the treeline, by 18.2% mid-range, and decreased by 4.9% at the lower boundary of spruce growth; normalized total cell wall area increased by 6.2%–6.8% at two higher sites but remained stable at the lowest one. We believe that these patterns are caused by two mechanisms of spruce secondary growth cessation: “emergency” induced by temperature drop versus “regular” one in warmer conditions. Therefore, autumn lengthening of growth season stimulated wood matter accumulation in tracheid walls mainly in cold environment, increasing role of boreal and mountain forests in carbon cycle. © 2020, Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature.

Scopus

Держатели документа:
Khakass Technical Institute, Siberian Federal University, Abakan, 655017, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
SukachevInstitute of Forest, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Babushkina, E.; Zhirnova, D.; Belokopytova, L.; Vaganov, E.

    Landscape Fires in Transbaikalia
/ M. D. Evdokimenko // Geogr. Natural Resources. - 2019. - Vol. 40, Is. 4. - P335-345, DOI 10.1134/S187537281904005X. - Cited References:24 . - ISSN 1875-3728. - ISSN 1875-371X
РУБ Geography

Кл.слова (ненормированные):
altitudinal vegetation zone -- localities -- weather conditions -- fire -- regime -- forecasting -- deforestation

Аннотация: This paper presents results of wildfire studies conducted Transbaikalia over the last five decades. Station-based experimental investigations into fire hazards of vegetation accomplished at the regional forest fire stations during those years covered all altitudinal vegetation zones, representative landscape localities and forest types. Route investigations were made in different natural areas. Arial monitoring of landscape fires was used during two fire seasons. Long-term effects of fires in the Baikal Natural Area and in Central Transbaikalia were investigated. Fire regimes in vegetation complexes were analyzed and for each of them the duration of the fire hazard was determined both as the total duration for the entire season and as a continuous duration for the period of the fire maximum. Characteristics of the regimes for the altitudinal belts are provided in three versions according to precipitation amounts for a season (normal, dry and wet). It is found that forest fires occur in intensive and extreme fire regimes where most of the vegetation complexes of the region become exceptionally hazardous as compared to adjacent areas. In such a situation, there are almost no barriers to fire, except for broad rivers, lakes and mountain crests. The forest fire frequency index is high due to a predominance of light coniferous stands. A rapid spread of fires is also promoted by dry grass stands and fire-hazardous shrubs where the fire is spreading nearly as fast as the speed of wind. It was established that unmown meadows, and abandoned pastures and croplands in the outskirts of villages present the threat of devastating fires not only in forests but also in settlements. In a situation, such as the one that arose in 2015, landscape fires turn to a natural disaster with severe forest-ecological consequences. Surviving forest stands decrease in productivity and increase in self-thinning, followed by an increasing degradation caused by subsequently recurring fires. Burns undergo local deforestation or a long-lasting replacement of coniferous stands by deciduous forests. The future runoff from the burned-over areas is able to enhance pollution of Lake Baikal. It is concluded that the EMERCOM resources used to fight the latest fires in Transbaikalia showed very little promise because of being delayed. A reasonable alternative to EMERCOM would involve advanced forecasting of high risks of fire occurrence in order to rapidly fight fires with moderate expenses without letting them turning to a natural disaster.

WOS

Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Evdokimenko, M. D.

    Siberian silkmoth outbreaks surpassed geoclimatic barrier in Siberian Mountains
/ V. I. Kharuk, S. T. Im, V. V. Soldatov // J. Mt. Sci. - 2020, DOI 10.1007/s11629-020-5989-3 . - Article in press. - ISSN 1672-6316

Кл.слова (ненормированные):
Conifer mortality -- Forest health -- Insect outbreaks -- Insect ranges expansion -- Remote sensing monitoring -- Siberian silkmoth

Аннотация: Siberian silkmoth (SSM, Dendrolimus sibiricus Tschetv.) is the most important defoliator of Siberian pine (Pinus sibirica Du Tour) and fir (Abies sibirica Ledeb.) stands. Warming-induced SSM outbreaks are one of the major driving factors of successions within the taiga zone. It is suggested that climate change impacted the SSM range and life cycle. We analyzed the migration of alpine and northerly SSM outbreak boundaries in Siberia and the impact of the climate variables and topography on the outbreak dynamics. We used time-series scenes (multispectral data, and vegetation indexes EVI and NDII) in combination with field studies, climate variables, and GIS techniques. We found that SSM outbreaks in the area of alpine boundary shifted about 370 m uphill since the mid of 1950. The outbreak onset was promoted by increased dryness and active temperatures and decreased root zone moisture content in the spring-early summer period. The terrain topography strongly affected SSM outbreak onset and dynamics. Initially, the outbreak was located at the middle elevations on the gentle concave southeastern slopes, which are the favorable insect habitats between outbreaks. Then the outbreak expanded uphill and downhill, to steeper slopes, and both concave and convex terrains. Alongside with elevation range expansion, SSM surpassed its northern historical outbreak boundary: the potential outbreaks’ boundary moved about 300 km northward. Climate warming contributes to SSM migration into former outbreak free conifer stands located in highlands and at northern latitudes. © 2020, Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature.

Scopus

Держатели документа:
Sukachev Institute of Forest, Federal Scientific Center, Russian Academy of Science, Siberian Branch, Academgorodok 50/28, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Svobodny str.79, Krasnoyarsk, 660041, Russian Federation
Reshetnev Siberian State University of Science and Technology, Krasnoyarsky rabochy str. 31, Krasnoyarsk, 660014, Russian Federation
Russian Center of Forest Protection, Academgorodok 50A/2, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Kharuk, V. I.; Im, S. T.; Soldatov, V. V.

    Influence of the mass propagation of a pine looper on the radial growth of trees
/ V. G. Sukhovol’skii, P. A. Krasnoperova, E. N. Pal?ikova [и др.] // Russ. J. For. Sci. - 2019. - Vol. 2019, Is. 5. - С. 357-365, DOI 10.1134/S0024114819050103 . - ISSN 0024-1148

Кл.слова (ненормированные):
Autoregression -- Firs differences -- Forests -- Hazards -- Mass outbreaks -- Pine looper -- Radial increment -- Time series -- Tree-rings

Аннотация: 1945-2015 time series of radial increment of pine Pinus sylvestris L. disturbed by 1974-1978 mass outbreak of pine looper Bupalus piniarius L. were compared to undisturbed values in Krasnaya Tura pine forest. The regulatory parameters of the time series, including the order of autoregression (value of n retardation) and the standard deviation of a number of the first differences of the radial growth s were suggested to estimate differences in radial increment of trees on disturbed and undisturbed sites. These indices could be used to assess inertia of the processes regulating radial increment. Estimates were made for the for the series of first differences of radial increment because regulation could be correctly assessed only for stationery time series. Trees subject to insect outbreak either had no delay in the dynamics of the series of the first differences in the radial growth, or had high values of n. At the same time, the fluctuations of the current radial increment of disturbed trees regarding the age gradient, were significantly larger than in undisturbed trees. We estimated the rate of increment recovery of disturbed trees as a function of regulatory features of time series preceding the disturbance event. These data could be used to assess pest hazard on the stands and rates of recovery of forests disturbed by insect outbreaks. © 2019, Izdatel'stvo Nauka. All rights reserved.

Scopus

Держатели документа:
Forest Institute, Siberian Branch of the Russian Academy of Sciences, Academgorodok 50 bldg. 28, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Svobodny ave. 79, Krasnoyarsk, 660041, Russian Federation
Reshetnev Siberian State University of Science and Technology, Krasnoyarsky Rabochy av. 31, Krasnoyarsk, 660037, Russian Federation

Доп.точки доступа:
Sukhovol’skii, V. G.; Krasnoperova, P. A.; Palʼnikova, E. N.; Sviderskaya, I. V.; Tarasova, O. V.

    The Effect of a Pine Looper Moth Outbreak on the Radial Growth Rate of Pine
/ V. G. Soukhovolsky, P. A. Krasnoperova, E. N. Pal’nikova [et al.] // Contemp. Probl. Ecol. - 2020. - Vol. 13, Is. 7. - P754-760, DOI 10.1134/S1995425520070124 . - ISSN 1995-4255

Кл.слова (ненормированные):
autoregression -- first differences -- forests -- hazards -- outbreaks -- pine looper moth -- radial growth rate -- time series -- tree rings -- coniferous tree -- crop pest -- forest ecosystem -- growth rate -- insect -- moth -- Bupalus piniaria -- Hexapoda -- Pinus sylvestris

Аннотация: Abstract—: This study compares the 1945–2015 time series of the radial growth rate of pine Pinus sylvestris L. damaged by the 1974–1978 outbreak of the pine looper moth Bupalus piniarius L. and those of the undisturbed Krasnoturansk pine forest. It is proposed to employ regulatory characteristics of time series, including the order of autoregression (lag value n) and standard deviation of the amplitude of time series oscillation s (number of the first differences of radial growth s), to estimate differences between radial growth rates of trees in damaged and intact stands. These indicators allow for a quantitative assessment of the lag of the processes regulating the radial growth rate. Only the first differences of the series of radial growth rate are assessed, inasmuch as the regulatory characteristics can be correctly calculated only for the stationery time series. Trees exposed to insect outbreak either have no lag in the dynamics of the first differences of the series in the radial growth rate or they have high values of autoregression order n. At the same time, the oscillations of the current radial growth rate of damaged trees in relation to the age gradient are significantly larger than in undisturbed trees. We estimate the speed of the growth-rate recovery in damaged trees as a function of regulatory characteristics of time series of the radial growth rate before the damage. These data could be used to assess the pest hazard in the stands and recovery rates of forests damaged by insect outbreaks. © 2020, Pleiades Publishing, Ltd.

Scopus

Держатели документа:
Sukachev Insitute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, 660041, Russian Federation
Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, 660037, Russian Federation

Доп.точки доступа:
Soukhovolsky, V. G.; Krasnoperova, P. A.; Pal’nikova, E. N.; Sviderskaya, I. V.; Tarasova, O. V.

    The Effect of a Pine Looper Moth Outbreak on the Radial Growth Rate of Pine
/ V. G. Soukhovolsky, P. A. Krasnoperova, E. N. Pal'nikova [et al.] // Contemp. Probl. Ecol. - 2020. - Vol. 13, Is. 7. - P754-760, DOI 10.1134/S1995425520070124. - Cited References:42. - This study was supported by the Russian Foundation for Basic Research, project nos. 15-04-01192a and 17-29-05074ofi-m. . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology

Аннотация: This study compares the 1945-2015 time series of the radial growth rate of pine Pinus sylvestris L. damaged by the 1974-1978 outbreak of the pine looper moth Bupalus piniarius L. and those of the undisturbed Krasnoturansk pine forest. It is proposed to employ regulatory characteristics of time series, including the order of autoregression (lag value n) and standard deviation of the amplitude of time series oscillation s (number of the first differences of radial growth s), to estimate differences between radial growth rates of trees in damaged and intact stands. These indicators allow for a quantitative assessment of the lag of the processes regulating the radial growth rate. Only the first differences of the series of radial growth rate are assessed, inasmuch as the regulatory characteristics can be correctly calculated only for the stationery time series. Trees exposed to insect outbreak either have no lag in the dynamics of the first differences of the series in the radial growth rate or they have high values of autoregression order n. At the same time, the oscillations of the current radial growth rate of damaged trees in relation to the age gradient are significantly larger than in undisturbed trees. We estimate the speed of the growth-rate recovery in damaged trees as a function of regulatory characteristics of time series of the radial growth rate before the damage. These data could be used to assess the pest hazard in the stands and recovery rates of forests damaged by insect outbreaks.

WOS

Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk 660037, Russia.

Доп.точки доступа:
Soukhovolsky, V. G.; Krasnoperova, P. A.; Pal'nikova, E. N.; Sviderskaya, I., V; Tarasova, O., V; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [15-04-01192a, 17-29-05074ofi-m]

    Development of the prototype of a geo-information web system for dynamic visualization of forest fire hazard
/ I. V. Kosov, O. E. Yakubailik // IOP Conference Series: Earth and Environmental Science : IOP Publishing Ltd, 2021. - Vol. 677: 4th International Scientific Conference on Agribusiness, Environmental Engineering and Biotechnologies, AGRITECH-IV 2020 (18 November 2020 through 20 November 2020, ) Conference code: 167873, Is. 3. - Ст. 032102, DOI 10.1088/1755-1315/677/3/032102 . -
Аннотация: The article examines the prototype of an interactive system to display fire hazard in the forest during the fire season, prototype's main characteristics and development methods of web GIS technologies. The proposed approach tracks changes in a special web map showing the state of fire danger in the forest based on the daily calculation of the fire hazard class under the current weather conditions. The analysis of data on forest types and frequency of fires proves that the calculations should include an increase in the natural fire hazard class concerning grass allotments in spring and autumn, as compared with summer. Changes in the weather conditions over time cause the map of a given area at a given point and time to change in accordance with the fire threats for these allotments. The developed interface for displaying the fire hazard data allows one to select the area under study and time range, as well as configure the data presentation template. The technological means used were the methods of Internet systems and geoportals producing geographic information, modern web technologies, libraries and services, including tools for dynamic representation of data of screen forms in web templates. © Published under licence by IOP Publishing Ltd.

Scopus

Держатели документа:
Sukachev Institute of Forest SB RAS, Akademgorodok, 50/28, Krasnoyarsk, 660036, Russian Federation
Federal Research Center Krasnoyarsk Science Center of the SB RAS, Akademgorodok, 50, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Kosov, I. V.; Yakubailik, O. E.

    Erratum to: Siberian silkmoth outbreaks surpassed geoclimatic barrier in Siberian Mountains (Journal of Mountain Science, (2020), 17, 8, (1891-1900), 10.1007/s11629-020-5989-3)
/ V. I. Kharuk, S. T. Im, V. V. Soldatov // J. Mt. Sci. - 2021, DOI 10.1007/s11629-021-6674-x . - Article in press. - ISSN 1672-6316

Аннотация: The Acknowledgments are incorrect in the original article. The correct Acknowledgments should be “The research was funded by Russian Fund of Basic Research, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, project numbers 18-45-240003 and 18-05-00432”. © 2021, Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature.

Scopus

Держатели документа:
Sukachev Institute of Forest, Federal Scientific Center, Russian Academy of Science, Siberian Branch, Academgorodok 50/28, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, Svobodny str.79, Krasnoyarsk, 660041, Russian Federation
Reshetnev Siberian State University of Science and Technology, Krasnoyarsky rabochy str. 31, Krasnoyarsk, 660014, Russian Federation
Russian Center of Forest Protection, Academgorodok 50A/2, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Kharuk, V. I.; Im, S. T.; Soldatov, V. V.

    Global transpiration data from sap flow measurements: The SAPFLUXNET database
/ R. Poyatos, V. Granda, V. Flo [et al.] // Earth Sys. Sci. Data. - 2021. - Vol. 13, Is. 6. - P2607-2649, DOI 10.5194/essd-13-2607-2021 . - ISSN 1866-3508

Аннотация: Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80% of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50% of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56% of the datasets. Many datasets contain data for species that make up 90% or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr"R package-designed to access, visualize, and process SAPFLUXNET data-is available from CRAN. © 2021 Rafael Poyatos et al.

Scopus

Держатели документа:
Creaf, E08193 Bellaterra (Cerdanyola Del Valles), Catalonia, Spain
Universitat Autonoma de Barcelona, Bellaterra, (Cerdanyola del Valles), Catalonia, E08193, Spain
Joint Research Unit CREAF-CTFC, Bellaterra, Catalonia, Spain
Faculty of Science Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
Department of Botany, University of Debrecen, Faculty of Science and Technology, Egyetem ter 1, Debrecen, 4032, Hungary
Plant Physiology and Biochemistry, Institute of Botany, Sao Paulo, Brazil
Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, United States
Red Ecologia Funcional, Instituto de Ecologia A.C., Xalapa, Mexico
Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama, Panama
Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, United States
Department of Ecosystem Science and Management, Texas AandM University, College Station, TX, United States
School of Earth and Space Exploration, Arizona State University, Tempe, AZ, United States
School of Earth Environment and Society, McMaster Centre for Climate Change, McMaster University, Hamilton, ON, Canada
National Institute for Agricultural and Food Research and Technology (INIA), Forest Research Centre (CIFOR), Department of Forest Ecology and Genetics, Avda. A Coruna km 7.5, Madrid, 28040, Spain
Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, United States
Department of Biosciences, University of Durham, Durham, United Kingdom
School of Geography and Earth Sciences, McMaster Centre for Climate Change, McMaster University, Hamilton, ON, Canada
School of Informatics Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States
Schmid College of Science and Technology, Chapman University, Orange, CA 92866, United States
Universite Paris-Saclay, Cnrs, AgroParisTech, Ecologie Systematique et Evolution, Orsay, 91405, France
University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, United States
Eastern Forest Environmental Threat Assessment Center, Southern Research Station, Usda Forest Service, Research Triangle Park, NC 27709, United States
Department of Civil Environmental and Geodetic Engineering, Ohio State University, 405 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, United States
Department of Forest Resources, University of Minnesota, Saint Paul, MN, United States
Universite de Lorraine, Inrae, AgroParisTech, Nancy, 54000, France
School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, United States
Department of Botany Ecology and Plant Physiology, University of la Laguna (ULL), La Laguna, Tenerife, 38200, Spain
McMaster University Library, McMaster University, Hamilton, ON, Canada
CATIE-Centro Agronomico Tropical de Investigacion y Ensenanza, Costa Rica, Costa Rica
Laboratoire Evolution and Diversite Biologique, Cnrs, Ups, Ird, Batiment 4R1 Universite Paul Sabatier, 118 route de Narbonne, Toulouse CEDEX, 31062-4, France
Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
Carrera de Ingenieria Ambiental, Facultad de Ingenieria, Universidad Nacional de Chimborazo, Riobamba, EC060108, Ecuador
Faculty of Geo-information and Earth Observation (ITC), University of Twente Enschede, Hengelosestraat 99, Enschede, 7514 AE, Netherlands
Usda Forest Service, Northern Research Station, Silas Little Experimental Forest, New Lisbon, NJ 08064, United States
Climate Change Unit, Environmental Protection Agency of Aosta Valley, Saint Christophe11020, Italy
Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, 100091, China
Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, 1349-017, Portugal
Instituto Nacional de Investigacao Agraria e Veterinaria I.P., Quinta Do Marques, Av. da Republica, Oeiras, 2780-159, Portugal
Institut Universitaire de France (IUF), Paris, 75231, France
Universite Paris-Saclay, Cnrs, AgroParisTech, Ecologie Systematique et Evolution, Orsay, 91405, France
Dept of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, 1225 W Dayton St, Madison, WI 53706, United States
EcoandSols, Univ Montpellier, Cirad, Inrae, Institut Agro, Ird, Montpellier, 34060, France
Czech Technical University in Prague, Faculty of Civil Engineering, Thakurova 7, Prague, 16629, Czech Republic
Bordeaux Sciences Agro, Umr 1391 INRA-BSA, Bordeaux, France
Nicholas School of the Environment, Duke University, Durham, NC, United States
Department of Horticultural Science, University of Stellenbosch, Stellenbosch, South Africa
University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK 99775, United States
Faculty of Regional and Environmental Sciences-Geobotany, University of Trier, Behringstra?e 21, Trier, 54296, Germany
Max Planck Institute for Biogeochemistry, Hans-Knoll-Str. 10, Jena, Germany
Wageningen University and Research, Water Systems and Global Change Group, P.O. Box 47, Wageningen, 6700AA, Netherlands
Department of Plant Biology, University of Campinas, Campinas, 13083-862, Brazil
Department of Botany, University of Wyoming, Laramie, WY, United States
Swiss Federal Institute for Forest, Snow and Landscape Research Wsl, Zuercherstrasse 111, Birmensdorf, 8903, Switzerland
Departamento de Ecologia Vegetal, Centro de Investigaciones Sobre Desertificacion (CSIC-UVEG-GV), Carretera Moncada-Naquera, km 4.5, Moncada, Valencia, 46113, Spain
Laboratorio Internacional de Cambio Global (LINCGlobal), Departamento de Biogeografia y Cambio Global, Museo Nacional de Ciencias Naturales, MNCN, Csic, C/Serrano 115 dpdo, Madrid, 28006, Spain
Sao Paulo State University (Unesp), School of Sciences, Bauru, Brazil
University of Sao Paulo, Institute of Astronomy Geophysics and Atmospheric Sciences, Sao Paulo, Brazil
Efficient Use of Water Program, Institut de Recerca i Tecnologia Agroalimentaries (IRTA), Parc de Gardeny, Edifici Fruitcentre, Lleida, 25003, Spain
AgResearch, Lincoln Research Centre, Private bag 4749, Christchurch, 8140, New Zealand
Basque Centre for Climate Change (BC3), Leioa, 48940, Spain
Basque Foundation for Science, Bilbao, 48008, Spain
School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
Nrae, Umr Silva 1434, Champenoux, 54280, France
Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
School of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, VIC 3121, Australia
Science and Collections Division, Royal Horticultural Society, Wisley, Woking, Surrey, GU23 6QB, United Kingdom
Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umea, Sweden
Section Climate Dynamics and Landscape Evolution, Helmholtz Centre Potsdam, Gfz German Research Centre for Geosciences, Potsdam, 14473, Germany
Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS, CSIC), Avenida Reina Mercedes, no. 10, Seville, 41012, Spain
Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, United States
Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
Department of Horticulture, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, Muncheberg, 15374, Germany
Brazilian Platform of Biodiversity and Ecosystem Services/BPBES, Campinas, Brazil
Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Sao Paulo, Brazil
Head Office of Forest Protection, Brandenburg State Forestry Center of Excellence, Eberswalde, 16225, Germany
School of Biological Sciences, University of Auckland, Auckland, New Zealand
Department of Forest Sciences, Seoul National University, Seoul, South Korea
National Center for Agro Meteorology, Seoul, South Korea
Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
Department of Earth Sciences, Gothenburg Univ., Guldhedsgatan 5A, Gothenburg, 405 30, Sweden
Environmental Studies, Hamilton College, Clinton, NY, United States
Geography Department, Colgate University, Hamilton, NY, United States
Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
School of Ecosystem and Forest Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
Landeshauptstadt Munchen, Referat fur Gesundheit und Umwelt, Nachhaltige Entwicklung Umweltplanung, SG Ressourcenschutz, Munich, 80335, Germany
Department of Geography and Planning, University at Albany, Albany, NY, United States
Department of Animal Biology Vegetal Biology and Ecology, University of Jaen, Jaen, Spain
Plant Ecology, University of Goettingen, Gottingen, 37073, Germany
Cefe, Univ Montpellier, Cnrs, Ephe, Ird, Univ Paul Valery Montpellier 3, Montpellier, France
Department of Physical Chemical and Natural Systems, University Pablo de Olavide, Seville, 41013, Spain
Surface Hydrology and Erosion Group, Institute of Environmental Assessment and Water Research, Csic, Barcelona, Spain
Departamento de Agronomia, Universidad de Cordoba, Cordoba, 14071, Spain
Department of Geography, Colgate University, Hamilton, NY, United States
Amap, Univ Montpellier, Cirad, Cnrs, Inrae, Ird, Montpellier, 34000, France
University of Florida, School of Forest Resources and Conservation, 136 Newins-Ziegler Hall, Gainesville, FL 32611, United States
Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, United States
Pacific Northwest National Laboratory, Richland, WA, United States
Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Environmental Research Center, Edgewater, MD 21307, United States
Research School of Biology, Australian National UniversityACT 2601, Australia
Csiro Agriculture and Food, Sandy Bay, TAS 7005, Australia
Dept. of Physical Geography and Ecosystem Science, University of Lund, Lund, Sweden
Faculty of Science and Technology, Free University of Bolzano, Piazza Universita 5, Bolzano, Italy
Forest Services, Autonomous Province of Bolzano, Bolzano, Italy
Department of Ecology and Conservation Biology, Texas AandM University, College Station, TX, United States
Hokkaido Regional Breeding Office, Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Ebetsu, Hokkaido, Japan
School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, United States
Tropical Silviculture and Forest Ecology, University of Goettingen, Busgenweg 1, Gottingen, 37077, Germany
Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States
O'Neill School of Public and Environmental Affairs, Indiana University-Bloomington, Bloomington, IN, United States
University of Innsbruck, Department of Botany, Sternwartestrasse 15, Innsbruck, 6020, Austria
Eurac Research, Institute for Alpine Environment, Viale Druso 1, Bolzano, Italy
Usda Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, Otto, NC, United States
Department of Forest Sciences, University of Helsinki, P.O. Box 27, Helsinki, 00014, Finland
Division of Environmental Science and Policy, Nicholas School of the Environment, Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
Institute for Atmospheric and Earth System Research (INAR)/Forest, University of Helsinki, Helsinki, 00014, Finland
Biological Sciences Department, Macquarie University, Sydney, NSW, Australia
National Institute of Agricultural Technology (INTA), Cc 332, Rio Gallegos, Santa Cruz, CP 9400, Argentina
National Scientific and Technical Research Council of Argentina (CONICET), Rio Gallegos, Santa Cruz, Argentina
National University of Southern Patagonia (UNPA), Rio Gallegos, Santa Cruz, Argentina
Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, Ghent, 9000, Belgium
Urban Studies, School of Social Sciences, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
Department of Biology, University of New Mexico, Albuquerque, NM, United States
The Earth and Planetary Science Department, Weizmann Institute of Science, Rehovot, Israel
University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
Department of Biological Science, University at Albany, Albany, NY, United States
Laboratorio de Clima e Biosfera, Instituto de Astronomia Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Sao Paulo, Brazil
Department of Ecology, Ibrag, Universidade Do Estado Do Rio de Janeiro (UERJ), R. Sao Francisco Xavier, 524, PHLC, Sala 220, Maracana, Rio de Janeiro, RJ, CEP 20550900, Brazil
College of Life and Environmental Sciences, University of Exeter, Laver Building, North Park Road, Exeter, EX4 4QE, United Kingdom
Laboratory for Complex Studies of Forest Dynamics in Eurasia, Siberian Federal University, Akademgorodok 50A-K2, Krasnoyarsk, Russian Federation
Department of Evolutionary Biology Ecology, and Environmental Sciences, University of Barcelona (UB), Barcelona, 08028, Spain
Institute for Atmospheric and Earth System Research (INAR)/Physics, University of Helsinki, Helsinki, 00014, Finland
Forest Genetics and Ecophysiology Research Group, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, Madrid, 28040, Spain
Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
Irta, Institute of Agrifood Research and Technology, Torre Marimon, Caldes de Montbui, Barcelona, 08140, Spain
Earth and Environmental Science Department, Rutgers University Newark, 195 University Av, Newark, NJ 07102, United States
University of Wurzburg, Julius-von-Sachs-Institute for Biological Sciences, Chair of Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Platz 3, Wurzburg, 97082, Germany
Sukachev Institute of Forest of the Siberian Branch of the Ras, Krasnoyarsk, Russian Federation
Umr EcoFoG, Cnrs, Cirad, Inrae, AgroParisTech, Universite des Antilles, Universite de Guyane, Kourou97310, France
Global Change Research Institute of the Czech Academy of Sciences, Blidla 4a, Brno, 60300, Czech Republic
Centro de Investigaciones Amazonicas Cimaz Macagual Cesar Augusto Estrada Gonzalez, Grupo de Investigaciones Agroecosistemas y Conservacion en Bosques Amazonicos-GAIA, Florencia, Caqueta, Colombia
Universidad de la Amazonia, Programa de Ingenieria Agroecologica, Facultad de Ingenieria, Florencia, Caqueta, Colombia
Institute of Hydrodynamics, Czech Academy of Sciences, Prague, Czech Republic
Trier University, Faculty of Regional and Environmental Sciences, Geobotany, Behringstr. 21, Trier, 54296, Germany
Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
Environment Health and Social Data Analytics Research Group, Chulalongkorn University, Bangkok, 10330, Thailand
Water Science and Technology for Sustainable Environment Research Group, Chulalongkorn University, Bangkok, 10330, Thailand
Department of Forest Botany Dendrology and Geobiocenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, Brno, 61300, Czech Republic
Departamento de Biologia y Geologia, Escuela Superior de Ciencias Experimentales y Tecnolo Gicas, Universidad Rey Juan Carlos, C/Tulipan s/n, Mostoles, 28933, Spain
University of Twente, Faculty Itc, P.O. Box 217, Enschede, 7500 AE, Netherlands
Department of Geography Hydrology and Climate, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr.33, Moscow, 119071, Russian Federation
Zef Center for Development Research, University of Bonn, Genscherallee 3, Bonn, 53113, Germany
Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
Ecosystem Physiology, University of Freiburg, Freiburg, 79098, Germany
Geobotany Department, University of Trier, Trier, 54286, Germany
Division of Alpine Timberline Ecophysiology, Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Rennerg 1, Innsbruck, 6020, Austria
Inrae, Umr Ispa 1391, Villenave D'Ornon, 33140, France
Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, United States
O'Neill School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN 47405, United States
Swiss Federal Institute for Forest, Snow and Landscape Research Wsl, Birmensdorf, Switzerland
Icrea, Barcelona, Catalonia, Spain

Доп.точки доступа:
Poyatos, R.; Granda, V.; Flo, V.; Adams, M. A.; Adorjan, B.; Aguade, D.; Aidar, M. P.M.; Allen, S.; Alvarado-Barrientos, M. S.; Anderson-Teixeira, K. J.; Aparecido, L. M.; Altaf Arain, M.; Aranda, I.; Asbjornsen, H.; Baxter, R.; Beamesderfer, E.; Berry, Z. C.; Berveiller, D.; Blakely, B.; Boggs, J.; Bohrer, G.; Bolstad, P. V.; Bonal, D.; Bracho, R.; Brito, P.; Brodeur, J.; Casanoves, F.; Chave, J.; Chen, H.; Cisneros, C.; Clark, K.; Cremonese, E.; Dang, H.; David, J. S.; David, T. S.; Delpierre, N.; Desai, A. R.; Do, F. C.; Dohnal, M.; Domec, J. -C.; Dzikiti, S.; Edgar, C.; Eichstaedt, R.; El-Madany, T. S.; Elbers, J.; Eller, C. B.; Euskirchen, E. S.; Ewers, B.; Fonti, P.; Forner, A.; Forrester, D. I.; Freitas, H. C.; Galvagno, M.; Garcia-Tejera, O.; Ghimire, C. P.; Gimeno, T. E.; Grace, J.; Granier, A.; Griebel, A.; Guangyu, Y.; Gush, M. B.; Hanson, P. J.; Hasselquist, N. J.; Heinrich, I.; Hernandez-Santana, V.; Herrmann, V.; Holtta, T.; Holwerda, F.; Irvine, J.; Na Ayutthaya, S. I.; Jarvis, P. G.; Jochheim, H.; Joly, C. A.; Kaplick, J.; Kim, H. S.; Klemedtsson, L.; Kropp, H.; Lagergren, F.; Lane, P.; Lang, P.; Lapenas, A.; Lechuga, V.; Lee, M.; Leuschner, C.; Limousin, J. -M.; Linares, J. C.; Linderson, M. -L.; Lindroth, A.; Llorens, P.; Lopez-Bernal, A.; Loranty, M. M.; Luttschwager, D.; MacInnis-Ng, C.; Marechaux, I.; Martin, T. A.; Matheny, A.; McDowell, N.; McMahon, S.; Meir, P.; Meszaros, I.; Migliavacca, M.; Mitchell, P.; Molder, M.; Montagnani, L.; Moore, G. W.; Nakada, R.; Niu, F.; Nolan, R. H.; Norby, R.; Novick, K.; Oberhuber, W.; Obojes, N.; Oishi, A. C.; Oliveira, R. S.; Oren, R.; Ourcival, J. -M.; Paljakka, T.; Perez-Priego, O.; Peri, P. L.; Peters, R. L.; Pfautsch, S.; Pockman, W. T.; Preisler, Y.; Rascher, K.; Robinson, G.; Rocha, H.; Rocheteau, A.; Roll, A.; Rosado, B. H.P.; Rowland, L.; Rubtsov, A. V.; Sabate, S.; Salmon, Y.; Salomon, R. L.; Sanchez-Costa, E.; Schafer, K. V.R.; Schuldt, B.; Shashkin, A.; Stahl, C.; Stojanovic, M.; Suarez, J. C.; Sun, G.; Szatniewska, J.; Tatarinov, F.; TesaA™, M.; Thomas, F. M.; Tor-Ngern, P.; Urban, J.; Valladares, F.; Van Der Tol, C.; Van Meerveld, I.; Varlagin, A.; Voigt, H.; Warren, J.; Werner, C.; Werner, W.; Wieser, G.; Wingate, L.; Wullschleger, S.; Yi, K.; Zweifel, R.; Steppe, K.; Mencuccini, M.; Martinez-Vilalta, J.

    Global transpiration data from sap flow measurements: the SAPFLUXNET database
/ R. Poyatos, V. Granda, V. Flo [et al.] // Earth Syst. Sci. Data. - 2021. - Vol. 13, Is. 6. - P2607-2649, DOI 10.5194/essd-13-2607-2021. - Cited References:169. - This research was supported by the Ministerio de Economia y Competitividad (grant no. CGL2014-55883-JIN), the Ministerio de Ciencia e Innovacion (grant no. RTI2018-095297-J-I00), the Ministerio de Ciencia e Innovacion (grant no. CAS16/00207), the Agencia de Gestio d'Ajuts Universitaris i de Recerca (grant no. SGR1001), the Alexander von Humboldt-Stiftung (Humboldt Research Fellowship for Experienced Researchers (RP)), and the Institucio Catalana de Recerca i Estudis Avancats (Academia Award (JMV)). Victor Flo was supported by the doctoral fellowship FPU15/03939 (MECD, Spain). . - ISSN 1866-3508. - ISSN 1866-3516
РУБ Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.

WOS

Держатели документа:
CREAF, E-08193 Catalonia, Cerdanyola Del, Spain.
Univ Autonoma Barcelona, E-08193 Catalonia, Cerdanyola Del, Spain.
Joint Res Unit CREAF CTFC, Bellaterra, Catalonia, Spain.
Swinburne Univ Technol, Fac Sci Engn & Technol, Hawthorn, Vic 3122, Australia.
Univ Sydney, Sch Life & Environm Sci, Camperdown, NSW, Australia.
Univ Debrecen, Fac Sci & Technol, Dept Bot, Egyet Ter 1, H-4032 Debrecen, Hungary.
Inst Bot, Plant Physiol & Biochem, Sao Paulo, Brazil.
Univ Nevada, Dept Nat Resources & Environm Sci, Reno, NV 89557 USA.
Inst Ecolog AC, Red Ecolog Func, Xalapa, Veracruz, Mexico.
Smithsonian Trop Res Inst, Ctr Trop Forest Sci Forest Global Earth Observ, Panama City, Panama.
Smithsonian Conservat Biol Inst, Conservat Ecol Ctr, Front Royal, VA USA.
Texas A&M Univ, Dept Ecosyst Sci & Management, College Stn, TX USA.
Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA.
McMaster Univ, Sch Earth Environm & Soc, Hamilton, ON, Canada.
McMaster Univ, McMaster Ctr Climate Change, Hamilton, ON, Canada.
Natl Inst Agr & Food Res & Technol INIA, Forest Res Ctr CIFOR, Dept Forest Ecol & Genet, Avda A Coruna Km 7-5, Madrid 28040, Spain.
Univ New Hampshire, Dept Nat Resources & Environm, Durham, NH 03824 USA.
Univ Durham, Dept Biosci, Durham, England.
McMaster Univ, Sch Geog & Earth Sci, Hamilton, ON, Canada.
No Arizona Univ, Sch Informat Comp & Cyber Syst, Flagstaff, AZ 86011 USA.
Chapman Univ, Schmid Coll Sci & Technol, Orange, CA 92866 USA.
Univ Paris Saclay, Ecol Systemat & Evolut, AgroParisTech, CNRS, F-91405 Orsay, France.
Univ Illinois, Urbana, IL USA.
US Forest Serv, Eastern Forest Environm Threat Assessment Ctr, Southern Res Stn, USDA, Res Triangle Pk, NC 27709 USA.
Ohio State Univ, Dept Civil Environm & Geodet Engn, 405 Hitchcock Hall,2070 Neil Ave, Columbus, OH 43210 USA.
Univ Minnesota, Dept Forest Resources, St Paul, MN USA.
Univ Lorraine, AgroParisTech, INRAE, F-54000 Nancy, France.
Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA.
Univ La Laguna ULL, Dept Bot Ecol & Plant Physiol, Apdo 456, Tenerife 38200, Spain.
McMaster Univ, McMaster Univ Lib, Hamilton, ON, Canada.
CATIE Ctr Agron Trop Invest & Ensenanza, Cartago, Turrialba, Costa Rica.
Univ Paul Sabatier, Lab Evolut & Diversite Biol, UPS, CNRS,IRD, Batiment 4R1,118 Route Narbonne, F-31062 Toulouse 4, France.
Xiamen Univ, Sch Life Sci, Key Lab, Minist Educ Coastal & Wetland Ecosyst, Xiamen 361005, Fujian, Peoples R China.
Univ Nacl Chimborazo, Fac Ingn, Carrera Ingn Ambiental, EC-060108 Riobamba, Ecuador.
Univ Twente, Fac Geoinformat & Earth Observat ITC, Hengelosestr 99, NL-7514 AE Enschede, Netherlands.
US Forest Serv, USDA, Northern Res Stn, Silas Little Expt Forest, New Lisbon, NJ 08064 USA.
Environm Protect Agcy Aosta Valley, Climate Change Unit, I-11020 St Christophe, Italy.
Chinese Acad Forestry, Inst Desertificat Studies, Beijing 100091, Peoples R China.
Univ Lisbon, Ctr Estudos Florestais, Inst Super Agron, P-1349017 Lisbon, Portugal.
Inst Nacl Invest Agr & Vet IP, Av Republ, P-2780159 Oeiras, Portugal.
Inst Univ France IUF, F-75231 Paris, France.
Univ Wisconsin, Dept Atmospher & Ocean Sci, 1225 Dayton St, Madison, WI 53706 USA.
Univ Montpellier, Inst Agro, INRAE, CIRAD,IRD,Eco&Sols, F-34060 Montpellier, France.
Czech Tech Univ, Fac Civil Engn, Thakurova 7, Prague 16629, Czech Republic.
Bordeaux Sci Agro, UMR 1391 INRA BSA, Bordeaux, France.
Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA.
Univ Stellenbosch, Dept Hort Sci, Stellenbosch, South Africa.
Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USA.
Univ Trier, Fac Reg & Environm Sci Geobot, Behringstr 21, D-54296 Trier, Germany.
Max Planck Inst Biogeochem, Hans Knoll Str 10, Jena, Germany.
Wageningen Univ & Res, Water Syst & Global Change Grp, POB 47, NL-6700 AA Wageningen, Netherlands.
Univ Estadual Campinas, Dept Plant Biol, BR-13083862 Campinas, SP, Brazil.
Univ Wyoming, Dept Bot, Laramie, WY 82071 USA.
Swiss Fed Inst Forest Snow & Landscape Res WSL, Zuercherstr 111, CH-8903 Birmensdorf, Switzerland.
Ctr Invest Desertificac CSIC UVEG GV, Dept Ecol Vegetal, Carretera Moncada Naquera,Km 4-5, Valencia 46113, Spain.
CSIC, MNCN, Museo Nacl Ciencias Nat, Lab Int Cambio Global LINCGlobal,Dept Biogeog & C, C Serrano 115 Dpdo, Madrid 28006, Spain.
Sao Paulo State Univ Unesp, Sch Sci, Bauru, SP, Brazil.
Univ Sao Paulo, Inst Astron Geophys & Atmospher Sci, Sao Paulo, Brazil.
Inst Recerca & Tecnol Agroalimentaries IRTA, Efficient Use Water Program, Parc Gardeny,Edifici Fruitctr, Lleida 25003, Spain.
Lincoln Res Ctr, AgRes, Private Bag 4749, Christchurch 8140, New Zealand.
Basque Ctr Climate Change BC3, Leioa 48940, Spain.
Basque Fdn Sci, Bilbao 48008, Spain.
Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland.
NRAE, UMR SILVA 1434, F-54280 Champenoux, France.
Western Sydney Univ, Hawkesbury Inst Environm, Sydney, NSW, Australia.
Univ Melbourne, Sch Ecosyst & Forest Sci, 500 Yarra Blvd, Richmond, Vic 3121, Australia.
Royal Hort Soc, Sci & Collect Div, Woking GU23 6QB, Surrey, England.
Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN 37831 USA.
Swedish Univ Agr Sci, Dept Forest Ecol & Management, Umea, Sweden.
GFZ German Res Ctr Geosci, Helmholtz Ctr Potsdam, Sect Climate Dynam & Landscape Evolut, D-14473 Potsdam, Germany.
CSIC, Inst Recursos Nat & Agrobiol Sevilla IRNAS, Irrigat & Crop Ecophysiol Grp, Ave Reina Mercedes 10, Seville 41012, Spain.
Univ Helsinki, Fac Agr & Forestry, Inst Atmospher & Earth Syst Res Forest Sci, Helsinki, Finland.
Univ Nacl Autonoma Mexico, Ctr Ciencias Atmosfera, Mexico City, DF, Mexico.
Khon Kaen Univ, Fac Agr, Dept Hort, Khon Kaen, Thailand.
Leibniz Ctr Agr Landscape Res ZALF, Eberswalder Str 84, D-15374 Muncheberg, Germany.
Brazilian Platform Biodivers & Ecosyst Serv BPBES, Campinas, Brazil.
Univ Estadual Campinas, Inst Biol, Dept Biol Vegetal, Campinas, SP, Brazil.
Brandenburg State Forestry Ctr Excellence, Head Off Forest Protect, D-16225 Eberswalde, Germany.
Univ Auckland, Sch Biol Sci, Auckland, New Zealand.
Seoul Natl Univ, Dept Forest Sci, Seoul, South Korea.
Natl Ctr Agro Meteorol, Seoul, South Korea.
Seoul Natl Univ, Res Inst Agr & Life Sci, Seoul, South Korea.
Gothenburg Univ, Dept Earth Sci, Guldhedsgatan 5A,POB 460, S-40530 Gothenburg, Sweden.
Hamilton Coll, Environm Studies, Clinton, NY 13323 USA.
Colgate Univ, Geog Dept, Hamilton, NY 13346 USA.
Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden.
Univ Melbourne, Sch Ecosyst & Forest Sci, Parkville, Vic 3010, Australia.
Landeshauptstadt Munchen, Referat Gesundheit & Umwelt, Nachhaltige Entwicklung, Umweltplanung,SG Ressourcenschutz, D-80335 Munich, Germany.
SUNY Albany, Dept Geog & Planning, Albany, NY 12222 USA.
Univ Jaen, Dept Anim Biol Vegetal Biol & Ecol, Jaen, Spain.
Univ Goettingen, Plant Ecol, D-37073 Gottingen, Germany.
Univ Paul Valery Montpellier 3, Univ Montpellier, EPHE, CNRS,IRD,CEFE, Montpellier, France.
Univ Pablo de Olavide, Dept Phys Chem & Nat Syst, Seville 41013, Spain.
CSIC, Inst Environm Assessment & Water Res, Surface Hydrol & Eros Grp, Barcelona, Spain.
Univ Cordoba, Dept Agron, Cordoba 14071, Spain.
Colgate Univ, Dept Geog, Hamilton, NY 13346 USA.
Univ Montpellier, AMAP, CIRAD, CNRS,INRAE,IRD, F-34000 Montpellier, France.
Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX USA.
Pacific Northwest Natl Lab, Richland, WA 99352 USA.
Smithsonian Environm Res Ctr, Ctr Trop Forest Sci, Forest Global Earth Observ, Edgewater, MD 21307 USA.
Australian Natl Univ, Res Sch Biol, Canberra, ACT 2601, Australia.
CSIRO Agr & Food, Sandy Bay, Tas 7005, Australia.
Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden.
Free Univ Bolzano, Fac Sci & Technol, Piazza Univ 5, Bolzano, Italy.
Autonomous Prov Bolzano, Forest Serv, Bolzano, Italy.
Texas A&M Univ, Dept Ecol & Conservat Biol, College Stn, TX USA.
Forestry & Forest Prod Res Inst, Forest Tree Breeding Ctr, Hokkaido Reg Breeding Off, Ebetsu, Hokkaido, Japan.
Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85721 USA.
Univ Goettingen, Trop Silviculture & Forest Ecol, Busgenweg 1, D-37077 Gottingen, Germany.
Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN USA.
Indiana Univ Bloomington, ONeill Sch Publ & Environm Affairs, Bloomington, IN USA.
Univ Innsbruck, Dept Bot, Sternwartestr 15, A-6020 Innsbruck, Austria.
Inst Alpine Environm, EURAC Res, Viale Druso 1, Bolzano, Italy.
US Forest Serv, USDA, Southern Res Stn, Coweeta Hydrol Lab, Otto, NC USA.
Univ Helsinki, Dept Forest Sci, POB 27, Helsinki 00014, Finland.
Duke Univ, Nicholas Sch Environm, Div Environm Sci & Policy, Durham, NC USA.
Duke Univ, Dept Civil & Environm Engn, Pratt Sch Engn, Durham, NC 27706 USA.
Univ Helsinki, Inst Atmospher & Earth Syst Res INAR Forest, Helsinki 00014, Finland.
Macquarie Univ, Biol Sci Dept, Sydney, NSW, Australia.
Natl Inst Agr Technol INTA, CC 332, RA-9400 Rio Gallegos, Santa Cruz, Argentina.
Natl Sci & Tech Res Council Argentina CONICET, Rio Gallegos, Santa Cruz, Argentina.
Natl Univ Southern Patagonia UNPA, Rio Gallegos, Santa Cruz, Argentina.
Univ Ghent, Fac Biosci Engn, Lab Plant Ecol, Coupure Links 653, B-9000 Ghent, Belgium.
Western Sydney Univ, Sch Social Sci, Urban Studies, Locked Bag 1797, Penrith, NSW 2751, Australia.
Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA.
Weizmann Inst Sci, Earth & Planetary Sci Dept, Rehovot, Israel.
Univ Cologne, Fac Med, Cologne, Germany.
Univ Hosp Cologne, Cologne, Germany.
SUNY Albany, Dept Biol Sci, Albany, NY 12222 USA.
Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Lab Clima & Biosfera, Sao Paulo, Brazil.
Univ Estado Rio de Janeiro UERJ, Dept Ecol, IBRAG, PHLC, R Sao Francisco Xavier 524,Sala 220, BR-20550900 Rio De Janeiro, RJ, Brazil.
Univ Exeter, Coll Life & Environm Sci, Laver Bldg,North Pk Rd, Exeter EX4 4QE, Devon, England.
Siberian Fed Univ, Lab Complex Studies Forest Dynam Eurasia, Akademgorodok 50A-K2, Krasnoyarsk, Russia.
Univ Barcelona UB, Dept Evolutionary Biol Ecol & Environm Sci, Barcelona 08028, Spain.
Univ Helsinki, Inst Atmospher & Earth Syst Res INAR Phys, Helsinki 00014, Finland.
Univ Politecn Madrid, Forest Genet & Ecophysiol Res Grp, Ciudad Univ S-N, Madrid 28040, Spain.
Inst Agrifood Res & Technol, IRTA, Barcelona 08140, Spain.
Rutgers Univ Newark, Earth & Environm Sci Dept, 195 Univ Av, Newark, NJ 07102 USA.
Univ Wurzburg, Julius von Sachs Inst Biol Sci, Chair Ecophysiol & Vegetat Ecol, Julius von Sachs Pl 3, D-97082 Wurzburg, Germany.
RAS, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk, Russia.
Univ Guyane, Univ Antilles, AgroParisTech, INRAE,UMR EcoFoG,CNRS,CIRAD, F-97310 Kourou, France.
Czech Acad Sci, Global Change Res Inst, Belidla 4a, Brno 60300, Czech Republic.
Ctr Invest Amazon CIMAZ Macagual Cesar Augusto Es, Grp Invest Agroecosistemas & Conservac Bosques Am, Florencia, Caqueta, Colombia.
Univ Amazonia, Programa Ingn Agroecol, Fac Ingn, Florencia, Caqueta, Colombia.
Czech Acad Sci, Inst Hydrodynam, Prague, Czech Republic.
Trier Univ, Fac Reg & Environm Sci, Geobot, Behringstr 21, D-54296 Trier, Germany.
Chulalongkorn Univ, Fac Sci, Dept Environm Sci, Bangkok 10330, Thailand.
Chulalongkorn Univ, Environm Hlth & Social Data Analyt Res Grp, Bangkok 10330, Thailand.
Chulalongkorn Univ, Water Sci & Technol Sustainable Environm Res Grp, Bangkok 10330, Thailand.
Mendel Univ Brno, Fac Forestry & Wood Technol, Dept Forest Bot Dendrol & Geobiocenol, Zemedelska 3, Brno 61300, Czech Republic.
Univ Rey Juan Carlos, Dept Biol & Geol, Escuela Super Ciencias Expt & Tecnol, C Tulipan S-N, Mostoles 28933, Spain.
Univ Twente, Fac ITC, POB 217, NL-7500 AE Enschede, Netherlands.
Univ Zurich, Dept Geog Hydrol & Climate, Winterthurerstr 190, CH-8057 Zurich, Switzerland.
Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Leninsky Pr 33, Moscow 119071, Russia.
Univ Bonn, ZEF Ctr Dev Res, Genscherallee 3, D-53113 Bonn, Germany.
Univ Freiburg, Ecosyst Physiol, D-79098 Freiburg, Germany.
Univ Trier, Geobot Dept, D-54286 Trier, Germany.
Fed Res & Training Ctr Forests Nat Hazards & Land, Div Alpine Timberline Ecophysiol, Rennerg 1, A-6020 Innsbruck, Austria.
INRAE, UMR ISPA 1391, F-33140 Villenave Dornon, France.
Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA.
ICREA, Barcelona, Catalonia, Spain.

Доп.точки доступа:
Poyatos, Rafael; Granda, Victor; Flo, Victor; Adams, Mark A.; Adorjan, Balazs; Aguade, David; Aidar, Marcos P. M.; Allen, Scott; Alvarado-Barrientos, K. J.; Anderson-Teixeira, Kristina J.; Aparecido, Luiza Maria; Arain, M. Altaf; Aranda, Ismael; Asbjornsen, Heidi; Baxter, Robert; Beamesderfer, Eric; Berry, Z. Carter; Berveiller, Daniel; Blakely, Bethany; Boggs, Johnny; Bohrer, Gil; Bolstad, Paul, V; Bonal, Damien; Bracho, Rosvel; Brito, Patricia; Brodeur, Jason; Casanoves, Fernando; Chave, Jerome; Chen, Hui; Cisneros, Cesar; Clark, Kenneth; Cremonese, Edoardo; Dang, Hongzhong; David, Jorge S.; David, Teresa S.; Delpierre, Nicolas; Desai, Ankur R.; Do, Frederic C.; Dohnal, Michal; Domec, Jean-Christophe; Dzikiti, Sebinasi; Edgar, Colin; Eichstaedt, Rebekka; El-Madany, Tarek S.; Elbers, Jan; Eller, Cleiton B.; Euskirchen, Eugenie S.; Ewers, Brent; Fonti, Patrick; Forner, Alicia; Forrester, David, I; Freitas, Helber C.; Galvagno, Marta; Garcia-Tejera, Omar; Ghimire, Chandra Prasad; Gimeno, Teresa E.; Grace, John; Granier, Andre; Griebel, Anne; Guangyu, Yan; Gush, Mark B.; Hanson, Paul J.; Hasselquist, Niles J.; Heinrich, Ingo; Hernandez-Santana, Virginia; Herrmann, Valentine; Holtta, Teemu; Holwerda, Friso; Irvine, James; Ayutthaya, Supat Isarangkool Na; Jarvis, Paul G.; Jochheim, Hubert; Joly, Carlos A.; Kaplick, Julia; Kim, Hyun Seok; Klemedtsson, Leif; Kropp, Heather; Lagergren, Fredrik; Lane, Patrick; Lang, Petra; Lapenas, Andrei; Lechuga, Victor; Lee, Minsu; Leuschner, Christoph; Limousin, Jean-Marc; Linares, Juan Carlos; Linderson, Maj-Lena; Lindroth, Anders; Llorens, Pilar; Lopez-Bernal, Alvaro; Loranty, Michael M.; Luttschwager, Dietmar; Macinnis-Ng, Cate; Marechaux, Isabelle; Martin, Timothy A.; Matheny, Ashley; McDowell, Nate; McMahon, Sean; Meir, Patrick; Meszaros, Ilona; Migliavacca, Mirco; Mitchell, Patrick; Molder, Meelis; Montagnani, Leonardo; Moore, Georgianne W.; Nakada, Ryogo; Niu, Furong; Nolan, Rachael H.; Norby, Richard; Novick, Kimberly; Oberhuber, Walter; Obojes, Nikolaus; Oishi, A. Christopher; Oliveira, Rafael S.; Oren, Ram; Ourcival, Jean-Marc; Paljakka, Teemu; Perez-Priego, Oscar; Peri, Pablo L.; Peters, Richard L.; Pfautsch, Sebastian; Pockman, William T.; Preisler, Yakir; Rascher, Katherine; Robinson, George; Rocha, Humberto; Rocheteau, Alain; Roll, Alexander; Rosado, Bruno H. P.; Rowland, Lucy; Rubtsov, Alexey, V; Sabate, Santiago; Salmon, Yann; Salomon, Roberto L.; Sanchez-Costa, Elisenda; Schafer, Karina V. R.; Schuldt, Bernhard; Shashkin, Alexandr; Stahl, Clement; Stojanovic, Marko; Suarez, Juan Carlos; Sun, G.e.; Szatniewska, Justyna; Tatarinov, Fyodor; Tesar, Miroslav; Thomas, Frank M.; Tor-ngern, Pantana; Urban, Josef; Valladares, Fernando; van der Tol, Christiaan; van Meerveld, Ilja; Varlagin, Andrej; Voigt, Holm; Warren, Jeffrey; Werner, Christiane; Werner, Willy; Wieser, Gerhard; Wingate, Lisa; Wullschleger, Stan; Yi, Koong; Zweifel, Roman; Steppe, Kathy; Mencuccini, Maurizio; Martinez-Vilalta, Jordi; David, Jorge; David, Teresa Soares; R., Ram; Ministerio de Economia y CompetitividadSpanish Government [CGL2014-55883-JIN]; Ministerio de Ciencia e InnovacionInstituto de Salud Carlos IIISpanish GovernmentEuropean Commission [CAS16/00207, RTI2018-095297-J-I00]; Agencia de Gestio d'Ajuts Universitaris i de RecercaAgencia de Gestio D'Ajuts Universitaris de Recerca Agaur (AGAUR) [SGR1001]; Alexander von Humboldt-StiftungAlexander von Humboldt Foundation; Institucio Catalana de Recerca i Estudis AvancatsICREA; MECD, Spain [FPU15/03939]