Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 50

    Dendroclimatological evidence of climate changes across Siberia
: материалы временных коллективов / V. V. Shishov, E. A. Vaganov // Environmental change in Siberia: earth observation, field studies and modelling. - Dordrecht et. al. : Springer, 2010. - С. 101-114. - Библиогр. в конце ст.

Аннотация: A major focus of the study described here is an attempt to reveal the nature of local and any widespread tree-growth responses to the recent warming seen in the industrial observations. Namely, this chapter didcusses spatial variation in the trends of radial tree-ring growth in Siberia and Far EAST DURING DIFFERENT PERIODS OF THE 18TH CENTURIES. That distribution of trends is compared with spatial NDVI trends and temperature changes in the northern hemisphere over the past 20 years.

Полный текст

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50/28

Доп.точки доступа:
Vaganov, Yevgeny Alexandrovich; Ваганов Евгений Александрович; Шишов, Владимир Валерьевич

    Reassessing the evidence for tree-growth and inferred temperature change during the Common Era in Yamalia, northwest Siberia
/ K. R. Briffa [et al.] // Quat. Sci. Rev. - 2013. - Vol. 72. - P83-107, DOI 10.1016/j.quascirev.2013.04.008. - Cited References: 70. - KRB, TMM and TJO acknowledge support from NERC (NE/G018863/1). RMH, AVK, VSM and SGS acknowledge support from the partnership project of the Ural and Siberian Branches of the Russian Academy of Sciences (No 12-C-4-1038 and No 69). SGS, VSM and RMH acknowledge support from the Russian Foundation for Basic Research (No 11-04-00623-a, No 13-04-00961-a and No 13-04-02058). . - 25. - ISSN 0277-3791
РУБ Geography, Physical + Geosciences, Multidisciplinary

Аннотация: The development of research into the history of tree growth and inferred summer temperature changes in Yamaha spanning the last 2000 years is reviewed. One focus is the evolving production of tree-ring width (TRW) and tree-ring maximum-latewood density (MXD) larch (Larix sibirica) chronologies, incorporating different applications of Regional Curve Standardisation (RCS). Another focus is the comparison of independent data representing past tree growth in adjacent Yamaha areas: Yamal and Polar Urals, and the examination of the evidence for common growth behaviour at different timescales. The sample data we use are far more numerous and cover a longer time-span at Yamal compared to the Polar Urals, but Yamal has only TRW, while there are both TRW and MXD for the Polar Urals. We use more data (sub-fossil and from living trees) than in previous dendroclimatic studies in this region. We develop a new TRW chronology for Yamal, more than 2000 years long and running up to 2005. For the Polar Urals we develop new TRW and MXD chronologies that show good agreement at short (<15 years) and medium (15-100 years) timescales demonstrating the validity of attempts to reconcile the evidence of longer-timescale information that they provide. We use a "conservative" application of the RCS approach (two-curve signal-free RCS), guarding against the possibility of "modern sample bias": a possible inflation of recent chronology values arising out of inadvertent selection of mostly relatively fast-growing trees in recent centuries. We also transform tree indices to have a normal distribution to remove the positive chronology skew often apparent in RCS TRW chronologies. This also reduces the apparent magnitude of 20th century tree-growth levels. There is generally good agreement between all chronologies as regards the major features of the decadal to centennial variability. Low tree-growth periods for which the inferred summer temperatures are approximately 2.5 degrees C below the 1961-90 reference are apparent in the 15-year smoothed reconstructions, centred around 1005, 1300, 1455, 1530, particularly the 1810s where the inferred cooling reaches -4 degrees C or even -6 degrees C for individual years, and the 1880s. These are superimposed on generally cool pre-20th century conditions: the long-term means of the pre-1900 reconstructed temperature anomalies range from -0.6 to -0.9 degrees C in our alternative reconstructions. There are numerous periods of one or two decades with relatively high growth (and inferred summer temperatures close to the 1961-1990 level) but at longer timescales only the 40-year period centred at 250 CE appears comparable with 20th century warmth. Although the central temperature estimate for this period is below that for the recent period, when we take into account the uncertainties we cannot be highly confident that recent warmth has exceeded the temperature of this earlier warm period. While there are clear warm decades either side of 1000 CE, neither TRW nor MXD data support the conclusion that temperatures were exceptionally high during medieval times. One previous version of the Polar Urals TRW chronology is shown here to be in error due to an injudicious application of RCS to non-homogeneous sample data, partly derived from root-collar samples that produce spuriously high chronology values in the 11th and 15th centuries. This biased chronology has been used in a number of recent studies aimed at reconstructing wider scale temperature histories. All of the chronologies we have produced here clearly show a generally high level of growth throughout their most recent 80 years. Allowing for chronology and reconstruction uncertainty, the mean of the last 100 years of the reconstruction is likely warmer than any century in the last 2000 years in this region. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Briffa, Keith R.
Melvin, Thomas M.
Osborn, Timothy J.] Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
[Hantemirov, Rashit M.
Mazepa, Valeriy S.
Shiyatov, Stepan G.] Russian Acad Sci, Ural Branch, Inst Plant & Anim Ecol, Ekaterinburg 620144, Russia
[Kirdyanov, Alexander V.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Esper, Jan] Johannes Gutenberg Univ Mainz, Dept Geog, D-55099 Mainz, Germany
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Briffa, K.R.; Melvin, T.M.; Osborn, T.J.; Hantemirov, R.M.; Kirdyanov, A.V.; Mazepa, V.S.; Shiyatov, S.G.; Esper, J...

    Trends and uncertainties in Siberian indicators of 20th century warming
[Text] / J. . Esper [et al.] // Glob. Change Biol. - 2010. - Vol. 16, Is. 1. - P386-398, DOI 10.1111/j.1365-2486.2009.01913.x. - Cited References: 70. - We thank F. H. Schweingruber for stimulating discussions. Supported by the European Community project Millennium (grant 017008) and the Swiss National Science Foundation through the National Centre for Competence in Climate Research (NCCR-Climate). . - 13. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Estimates of past climate and future forest biomass dynamics are constrained by uncertainties in the relationships between growth and climatic variability and uncertainties in the instrumental data themselves. Of particular interest in this regard is the boreal-forest zone, where radial growth has historically been closely connected with temperature variability, but various lines of evidence have indicated a decoupling since about the 1960s. We here address this growth-vs.-temperature divergence by analyzing tree-ring width and density data from across Siberia, and comparing 20th century proxy trends with those derived from instrumental stations. We test the influence of approaches considered in the recent literature on the divergence phenomenon (DP), including effects of tree-ring standardization and calibration period, and explore instrumental uncertainties by employing both adjusted and nonadjusted temperature data to assess growth-climate agreement. Results indicate that common methodological and data usage decisions alter 20th century growth and temperature trends in a way that can easily explain the post-1960 DP. We show that (i) Siberian station temperature adjustments were up to 1.3 degrees C for decadal means before 1940, (ii) tree-ring detrending effects in the order of 0.6-0.8 degrees C, and (iii) calibration uncertainties up to about 0.4 degrees C over the past 110 years. Despite these large uncertainties, instrumental and tree growth estimates for the entire 20th century warming interval match each other, to a degree previously not recognized, when care is taken to preserve long-term trends in the tree-ring data. We further show that careful examination of early temperature data and calibration of proxy timeseries over the full period of overlap with instrumental data are both necessary to properly estimate 20th century long-term changes and to avoid erroneous detection of post-1960 divergence.

WOS,
Полный текст,
Scopus

Держатели документа:
[Esper, Jan
Frank, David
Buentgen, Ulf
Verstege, Anne] Swiss Fed Res Inst, WSL, CH-8903 Birmensdorf, Switzerland
[Esper, Jan] Oeschger Ctr Climate Change Res, CH-3012 Bern, Switzerland
[Hantemirov, Rashit M.] Russian Acad Sci, Lab Dendrochronol, Inst Plant & Anim Ecol, Ural Branch, Ekaterinburg 620144, Russia
[Kirdyanov, Alexander V.] RAS, VN Sukachev Inst Forest SB, Krasnoyarsk 660036, Akademgorodok, Russia

Доп.точки доступа:
Esper, J...; Frank, D...; Buntgen, U...; Verstege, A...; Hantemirov, R.M.; Kirdyanov, A.V.

    Seasonal, synoptic, and diurnal-scale variability of biogeochemical trace gases and O-2 from a 300-m tall tower in central Siberia
[Text] / E. A. Kozlova [et al.] // Glob. Biogeochem. Cycle. - 2008. - Vol. 22, Is. 4. - Ст. GB4020, DOI 10.1029/2008GB003209. - Cited References: 79. - We thank A. Jordan (MPI-BGC) and D. Worthy (Environment Canada) for their invaluable advice and contribution in establishing GC measurements at ZOTTO, and we thank R. Keeling and his group (SIO) for their help and advice with the OINF2/INF measurements, including the loan of a Servomex OINF2/INF sensor. We are very grateful to E.-D. Schulze (MPI-BGC) for many years of work toward the establishment of ZOTTO station. Many thanks to A. Jordan, W. Brand, F. Hansel, and M. Hielscher (MPI-BGC) for calibration cylinder preparations and to K. Kubler, R. Leppert, S. Schmidt, F. Voigt, B. Schloffel, R. Schwalbe, and U. Schultz (MPI-BGC) for general advice, instrument design and functioning, and logistical and technical support. We thank all employees of the Sukachev Institute of Forest, SB RAS, in Krasnoyarsk, who participated in the site construction, logistics, and maintenance of the measurement system. We also thank all workers from the Russian construction company "Stroitechinvest.'' E. A. K. thanks her supervisor, A. Watson (UEA), for general support and advice. The ZOTTO project is funded by the Max Planck Society through International Science and Technology Center (ISTC) partner project 2757p within the framework of the proposal "Observing and Understanding Biogeochemical Responses to Rapid Climate Changes in Eurasia.'' We are very grateful to Ronnie Robertson from Shetland Islands for the flask samples collection. E. A. K. is supported by a UEA Zuckerman Studentship, and A. C. M. is supported by a U.K. NERC/QUEST Advanced Fellowship (Ref. NE/C002504/1). We also thank three anonymous reviewers for their comments that helped to improve this paper. . - 16. - ISSN 0886-6236
РУБ Environmental Sciences + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: We present first results from 19 months of semicontinuous concentration measurements of biogeochemical trace gases (CO2, CO, and CH4) and O-2, measured at the Zotino Tall Tower Observatory (ZOTTO) in the boreal forest of central Siberia. We estimated CO2 and O2 seasonal cycle amplitudes of 26.6 ppm and 134 per meg, respectively. An observed west-east gradient of about -7 ppm (in July 2006) between Shetland Islands, Scotland, and ZOTTO reflects summertime continental uptake of CO2 and is consistent with regional modeling studies. We found the oceanic component of the O-2 seasonal amplitude (Atmospheric Potential Oxygen, or APO) to be 51 per meg, significantly smaller than the 95 per meg observed at Shetlands, illustrating a strong attenuation of the oceanic O-2 signal in the continental interior. Comparison with the Tracer Model 3 (TM3) atmospheric transport model showed good agreement with the observed phasing and seasonal amplitude in CO2; however, the model exhibited greater O-2 (43 per meg, 32%) and smaller APO (9 per meg, 18%) amplitudes. This seeming inconsistency in model comparisons between O-2 and APO appears to be the result of phasing differences in land and ocean signals observed at ZOTTO, where ocean signals have a significant lag. In the first 2 months of measurements on the fully constructed tower (November and December 2006), we observed several events with clear vertical concentration gradients in all measured species except CO. During "cold events'' (below -30 degrees C) in November 2006, we observed large vertical gradients in CO2 (up to 22 ppm), suggesting a strong local source. The same pattern was observed in CH4 concentrations for the same events. Diurnal vertical CO2 gradients in April to May 2007 gave estimates for average nighttime respiration fluxes of 0.04 +/- 0.02 mol C m(-2) d(-1), consistent with earlier eddy covariance measurements in 1999-2000 in the vicinity of the tower.

WOS,
Scopus

Держатели документа:
[Kozlova, Elena A.
Manning, Andrew C.] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England
[Kozlova, Elena A.
Seifert, Thomas
Heimann, Martin] Max Planck Inst Biogeochem, D-07745 Jena, Germany
[Kisilyakhov, Yegor] Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Kozlova, E.A.; Manning, A.C.; Kisilyakhov, Y...; Seifert, T...; Heimann, M...

    Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia
[Text] / K. R. Briffa [et al.] // Philos. Trans. R. Soc. B-Biol. Sci. - 2008. - Vol. 363, Is. 1501. - P2271-2284, DOI 10.1098/rstb.2007.2199. - Cited References: 42 . - 14. - ISSN 0962-8436
РУБ Biology

Аннотация: This paper describes variability in trends of annual tree growth at several locations in the high latitudes of Eurasia, providing a wide regional comparison over a 2000-year period. The study focuses on the nature of local and widespread tree-growth responses to recent warming seen in instrumental observations, available in northern regions for periods ranging from decades to a century. Instrumental temperature data demonstrate differences in seasonal scale of Eurasian warming and the complexity and spatial diversity of tree-growing-season trends in recent decades. A set of long tree-ring chronologies provides empirical evidence of association between inter-annual tree growth and local, primarily summer, temperature variability at each location. These data show no evidence of a recent breakdown in this association as has been found at other high-latitude Northern Hemisphere locations. Using Kendall's concordance, we quantify the time-dependent relationship between growth trends of the long chronologies as a group. This provides strong evidence that the extent of recent widespread warming across northwest Eurasia, with respect to 100- to 200-year trends, is unprecedented in the last 2000 years. An equivalent analysis of simulated temperatures using the HadCM3 model fails to show a similar increase in concordance expected as a consequence of anthropogenic forcing.

WOS,
Scopus

Держатели документа:
[Briffa, Keith R.
Melvin, Thomas M.] Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
[Shishov, Vladimir V.
Naurzbaev, Muktar M.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Dendroecol Dept, Krasnoyarsk 660036, Russia
[Shishov, Vladimir V.] Krasnoyarsk State Trade Econ Inst, IT & Math Modelling Dept, Krasnoyarsk 660075, Russia
[Grudd, Haken] Stockholm Univ, Dept Phys Geog & Quaternary Geol, S-10691 Stockholm, Sweden
[Hantemirov, Rashit M.] Russian Acad Sci, Ural Branch, Inst Plant & Anim Ecol, Lab Dendrochronol, Ekaterinburg 620144, Russia
[Eronen, Matti] Univ Helsinki, Dept Geol, FIN-00014 Helsinki, Finland
[Vaganov, Eugene A.] Siberian Fed Univ, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Briffa, K.R.; Shishov, V.V.; Melvin, T.M.; Vaganov, E.A.; Grudd, H...; Hantemirov, R.M.; Eronen, M...; Naurzbaev, M.M.

    New ice core evidence for a volcanic cause of the AD 536 dust veil
[Text] / L. B. Larsen [et al.] // Geophys. Res. Lett. - 2008. - Vol. 35, Is. 4. - Ст. L04708, DOI 10.1029/2007GL032450. - Cited References: 36 . - 5. - ISSN 0094-8276
РУБ Geosciences, Multidisciplinary

Аннотация: New and well-dated evidence of sulphate deposits in Greenland and Antarctic ice cores indicate a substantial and extensive atmospheric acidic dust veil at A. D. 533-534 +/- 2 years. This was likely produced by a large explosive, near equatorial volcanic eruption, causing widespread dimming and contributing to the abrupt cooling across much of the Northern Hemisphere known from historical records and tree-ring data to have occurred in A. D. 536. Tree-ring data suggest that this was the most severe and protracted short-term cold episode across the Northern Hemisphere in the last two millennia, even surpassing the severity of the cold period following the Tambora eruption in 1815.

WOS,
Scopus

Держатели документа:
[Larsen, L. B.
Vinther, B. M.
Clausen, H. B.
Siggaard-Andersen, M. -L.
Hammer, C. U.] Univ Copenhagen, Niels Bohr Inst, Ctr Ice & Climate, DK-2100 Copenhagen, Denmark
[Vinther, B. M.
Briffa, K. R.
Melvin, T. M.
Jones, P. D.] Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
[Eronen, M.] Univ Helsinki, Dept Geol, FI-00014 Helsinki, Finland
[Grudd, H.
Gunnarson, B. E.] Stockholm Univ, Dept Phys Geog & Quaternary Geol, S-10691 Stockholm, Sweden
[Hantemirov, R. M.] Russian Acad Sci, Ural Branch, Inst Plant & Anim Ecol, Lab Dendrochronol, Ekaterinburg 620144, Russia
[Naurzbaev, M. M.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Dendroecol Dept, Krasnoyarsk 660036, Russia
[Nicolussi, K.] Univ Innsbruck, Inst Geog, A-6020 Innsbruck, Austria

Доп.точки доступа:
Larsen, L.B.; Vinther, B.M.; Briffa, K.R.; Melvin, T.M.; Clausen, H.B.; Jones, P.D.; Siggaard-Andersen, M.L.; Hammer, C.U.; Eronen, M...; Grudd, H...; Gunnarson, B.E.; Hantemirov, R.M.; Naurzbaev, M.M.; Nicolussi, K...

    Impact of the Arctic Oscillation pattern on interannual forest fire variability in Central Siberia
[Text] / H. . Balzter [et al.] // Geophys. Res. Lett. - 2005. - Vol. 32, Is. 14. - Ст. L14709, DOI 10.1029/2005GL022526. - Cited References: 20 . - 4. - ISSN 0094-8276
РУБ Geosciences, Multidisciplinary

Аннотация: Russia's forests play an important role in the global carbon cycle. Because of their scale and interannual variability, forest fires can change the direction of the net carbon flux over Eurasia. 2002 and 2003 were the first two consecutive years in the atmospheric record in which the carbon content rose by more than 2 ppm per year. Northern Hemisphere fires could be the reason. We show that 2002 and 2003 were the two years with the largest fire extent in Central Siberia since 1996 using new measurements of burned forest area in Central Siberia derived from remote sensing. To quantify the relationship between Siberian forest fires and climate variability, we compare these measurements with time-series of large-scale climatic indices for the period 1992-2003. This paper is amongst the first studies that analyse statistical relationships between interannual variability of forest fires in Russia and climate indices. Significant relationships of annual burned forest area with the Arctic Oscillation, summer temperatures, precipitation, and the El Nino index NINO4 were found (p0.1). In contrast, we find no significant relation with the El Nino indices NINO1, NINO3 or SOI (p0.1). Interannual forest fire variability in Central Siberia could best be explained by a combination of the Arctic Oscillation index and regional summer temperatures (r(2)=0.80).

WOS,
Scopus

Держатели документа:
Ctr Ecol & Hydrol Monks Wood, Climate & Land Surface Syst Interact Ctr, Huntingdon PE28 2LS, Cambs, England
Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
Univ Jena, Inst Geog, D-07743 Jena, Germany

Доп.точки доступа:
Balzter, H...; Gerard, F.F.; George, C.T.; Rowland, C.S.; Jupp, T.E.; McCallum, I...; Shvidenko, A...; Nilsson, S...; Sukhinin, A...; Onuchin, A...; Schmullius, C...

    Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide
[Text] / E. S. Kasischke [et al.] // Glob. Biogeochem. Cycle. - 2005. - Vol. 19, Is. 1. - Ст. GB1012, DOI 10.1029/2004GB002300. - Cited References: 80 . - 16. - ISSN 0886-6236
РУБ Environmental Sciences + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: 1] There were large interannual variations in burned area in the boreal region ( ranging between 3.0 and 23.6 x 10 6 ha yr(-1)) for the period of 1992 and 1995-2003 which resulted in corresponding variations in total carbon and carbon monoxide emissions. We estimated a range of carbon emissions based on different assumptions on the depth of burning because of uncertainties associated with the burning of surface-layer organic matter commonly found in boreal forest and peatlands, and average total carbon emissions were 106-209 Tg yr(-1) and CO emissions were 330-77 Tg CO yr(-1). Burning of ground-layer organic matter contributed between 46 and 72% of all emissions in a given year. CO residuals calculated from surface mixing ratios in the high Northern Hemisphere ( HNH) region were correlated to seasonal boreal fire emissions in 8 out of 10 years. On an interannual basis, variations in area burned explained 49% of the variations in HNH CO, while variations in boreal fire emissions explained 85%, supporting the hypotheses that variations in fuels and fire severity are important in estimating emissions. Average annual HNH CO increased by an average of 7.1 ppb yr(-1) between 2000 and 2003 during a period when boreal fire emissions were 26 to 68 Tg CO(-1) higher than during the early to mid-1990s, indicating that recent increases in boreal fires are influencing atmospheric CO in the Northern Hemisphere.

WOS,
Scopus

Держатели документа:
Univ Maryland, Dept Geog, College Pk, MD 20742 USA
Altarum, Ann Arbor, MI 48113 USA
NOAA, Climate Modeling & Diagnost Lab, Boulder, CO 80305 USA
Canadian Forest Serv, Sault Ste Marie, ON P6A 2E5, Canada
Russian Acad Sci, Sukachev Forest Inst, Krasnoyarsk, Russia

Доп.точки доступа:
Kasischke, E.S.; Hyer, E.J.; Novelli, P.C.; Bruhwiler, L.P.; French, NHF; Sukhinin, A.I.; Hewson, J.H.; Stocks, B.J.

    Homeostasis of forest ecosystems of East Sayan
[Text] / V. . Vlasenko // Ekol. Bratisl. - 2003. - Vol. 22, Is. 1. - P16-22. - Cited References: 22 . - 7. - ISSN 1335-342X
РУБ Ecology
Рубрики:
TEMPERATURE
Кл.слова (ненормированные):
primary and conditionally primary forests -- map of ground vegetation -- dynamic tendencies -- Holocene -- biodiversity -- homeostasis

Аннотация: Making the map of ground vegetation and analysis of its present state have been realized as well as dynamic tendencies in development of forest communities from climatic optimum of the Holocene up to the present time have been revealed. Forests of the reserve are mainly overmatured. Presently the succession of mountain taiga- and grass larch and pine forests by fir stands occurs. As a reason for changing formation composition of the main forest forming tree species of the reserve the global climatic changes of the northern hemisphere are. Floristic abundance of forest communities is characterized by high variability. a-diversity increases from the mountain taiga altitude - vegetation belt to the belt of subtaiga forest-steppe what corresponds to the increase of heat providing gradient. High coefficient of beta-diversity value variation in taiga and grass forest ecotone as well as in old cutting areas of light-coniferous forests shows instability of these phytocoenoses and rather fast succession of coenoelements of light-coniferous formations by the dark-coniferous ones.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Academgorodok, Russia

Доп.точки доступа:
Vlasenko, V...

    A new Leptographium species from Russia
[Text] / K. . Jacobs [et al.] // Mycol. Res. - 2000. - Vol. 104. - P1524-1529, DOI 10.1017/S0953756200002689. - Cited References: 39 . - 6. - ISSN 0953-7562
РУБ Mycology

Аннотация: Species of Leptographium are well-known inhabitants of conifers in the Northern Hemisphere, in which they cause a blue-stain. They are also known to be associated with insects, especially bark beetles (Coleoptera: Scolytidae). Surveys of dying stands of Siberian fir (Abies sibirica) have resulted in the consistent isolation of an unknown Leptographium from the galleries of the fir sawyer beetle, Monochamus urussovi (Coleoptera: Cerambycidae). This fungus is responsible for the blue-stain in living trees. Comparison with known species of Leptographium led to the conclusion that it had not been previously described, and the name Leptographium sibiricum sp. nov, is introduced here.

WOS

Держатели документа:
Univ Pretoria, Forestry & Agr Biotechnol Inst, Dept Microbiol & Plant Pathol, ZA-0002 Pretoria, South Africa
RAS, SB, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Jacobs, K...; Wingfield, M.J.; Pashenova, N.V.; Vetrova, V.P.

    Long-term climatic changes in the Arctic region of the Northern Hemisphere
[Text] / E. A. Vaganov [et al.] // Dokl. Earth Sci. - 2000. - Vol. 375, Is. 8. - P1314-1317. - Cited References: 12 . - 4. - ISSN 1028-334X
РУБ Geosciences, Multidisciplinary


WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia
Univ E Anglia, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
Swiss Fed Inst Forest Snow & Landscape Res, CH-8093 Birmensdorf, Switzerland
Russian Acad Sci, Inst Plant & Anim Ecol, Ural Div, Sverdlovsk 620219, Russia

Доп.точки доступа:
Vaganov, E.A.; Briffa, K.R.; Naurzbaev, M.M.; Schweingruber, F.H.; Shiyatov, S.G.; Shishov, V.V.

    Foliar carbon isotope discrimination in Larix species and sympatric evergreen conifers: a global comparison
[Text] / B. D. Kloeppel [et al.] // Oecologia. - 1998. - Vol. 114, Is. 2. - P153-159, DOI 10.1007/s004420050431. - Cited References: 45 . - 7. - ISSN 0029-8549
РУБ Ecology

Аннотация: Larches (Larix spp.), deciduous conifers, occur in the northern hemisphere in cold-temperate and boreal climates - an environment normally thought to favor ever-green tree species. We compare foliar carbon isotope discrimination (Delta), instantaneous water use efficiency, total foliar nitrogen concentration, and specific leaf area (for a subset of sites) between Larix spp. and co-occurring evergreen conifers at 20 sites throughout the natural range of larches. Except for Larix occidentalis in the xeric Intermountain West, USA, Delta is significantly (P < 0.05) greater for larches than co-occurring evergreen conifers at 77% of the sites, suggesting that larches use water less efficiently. At elevations greater than 3000 m, the Delta of Lar ix-spp. and co-occurring conifers converge, suggesting that water is not the limiting resource. Foliar nitrogen concentration and specific leaf area are two ecophysiological characteristics that are positively correlated with high photosynthetic capacity. Foliar nitrogen concentration is significantly greater for larches than evergreen conifers at 88% of the sites and specific leaf area is approximately three times greater for larches than co-occurring conifers. Future studies should examine the potential effect that global warming may have on the distribution of larch forests because the water use efficiency of larches is commonly less than cooccurring evergreen conifers and the boreal and high-latitude environments are likely to experience the greatest climate warming.

Полный текст,
WOS,
Scopus

Держатели документа:
Univ Wisconsin, Dept Forest Ecol & Management, Madison, WI 53706 USA
Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
Russian Acad Sci, Sukachev Forest Inst, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Kloeppel, B.D.; Gower, S.T.; Treichel, I.W.; Kharuk, S...

    Summer temperature variations in high latitudes of northern hemisphere during last 1.5 millennium: A comparative analysis of treering chronologies and ice core data
[Текст] / E. A. Vaganov [и др.] // Dokl. Akad. Nauk. - 1998. - Vol. 358, Is. 5. - С. 681-684. - Cited References: 11 . - 4. - ISSN 0869-5652
РУБ Multidisciplinary Sciences


WOS

Держатели документа:
VN Sukachev Forest Technol Inst, Krasnoyarsk, Russia
Russian Acad Sci, Inst Plant & Anim Ecol, Ekaterinburg, Russia
Taimyr Biosphere Pk, Khatanga, Russia
Доп.точки доступа:
Vaganov, E.A.; Shiyatov, S.G.; Khantemirov, R.M.; Naurzbaev, M.M.

    Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests
[Text] / I. . Ensminger [et al.] // Glob. Change Biol. - 2004. - Vol. 10, Is. 6. - P995-1008, DOI 10.1111/j.1365-2486.2004.00781.x. - Cited References: 57 . - 14. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: During winter and early spring, evergreen boreal conifers are severely stressed because light energy cannot be used when photosynthesis is pre-empted by low ambient temperatures. To study photosynthetic performance dynamics in a severe boreal climate, seasonal changes in photosynthetic pigments, chloroplast proteins and photochemical efficiency were studied in a Scots pine forest near Zotino, Central Siberia. In winter, downregulation of photosynthesis involved loss of chlorophylls, a twofold increase in xanthophyll cycle pigments and sustained high levels of the light stress-induced zeaxanthin pigment. The highest levels of xanthophylls and zeaxanthin did not occur during the coldest winter period, but rather in April when light was increasing, indicating an increased capacity for thermal dissipation of excitation energy at that time. Concomitantly, in early spring the D1 protein of the photosystem II (PSII) reaction centre and the light-harvesting complex of PSII dropped to their lowest annual levels. In April and May, recovery of PSII activity, chloroplast protein synthesis and rearrangements of pigments were observed as air temperatures increased above 0degreesC. Nevertheless, severe intermittent low-temperature episodes during this period not only halted but actually reversed the physiological recovery. During these spring low-temperature episodes, protective processes involved a complementary function of the PsbS and early light-induced protein thylakoid proteins. Full recovery of photosynthesis did not occur until the end of May. Our results show that even after winter cold hardening, photosynthetic activity in evergreens responds opportunistically to environmental change throughout the cold season. Therefore, climate change effects potentially improve the sink capacity of boreal forests for atmospheric carbon. However, earlier photosynthesis in spring in response to warmer temperatures is strongly constrained by environmental variation, counteracting the positive effects of an early recovery process.

WOS,
Полный текст,
Scopus

Держатели документа:
Max Planck Inst Biogeochem, D-07701 Jena, Germany
Umea Univ, Dept Plant Physiol, S-90187 Umea, Sweden
Mt Allison Univ, Sackville, NB E4L 1G7, Canada
Umea Univ, Dept Biochem, S-90187 Umea, Sweden
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Ensminger, I...; Sveshnikov, D...; Campbell, D.A.; Funk, C...; Jansson, S...; Lloyd, J...; Shibistova, O...; Oquist, G...

    Tree-ring width and density data around the Northern Hemisphere: Part 1, local and regional climate signals
[Text] / K. R. Briffa [et al.] // Holocene. - 2002. - Vol. 12, Is. 6. - P737-757, DOI 10.1191/0959683602hl587rp. - Cited References: 26 . - 21. - ISSN 0959-6836
РУБ Geography, Physical + Geosciences, Multidisciplinary

Аннотация: A detailed description is presented of the statistical patterns of climate forcing of tree growth (annual maximum latewood density and ring-width time series), across a network of 387 specially selected conifer sites that circle the extra-tropical Northern Hemisphere, The influence of summer temperature dominates growth. A mean April-September response is optimum for describing the major forcing signal over the whole densitometric network, though a shorter June-July season is more relevant in central and eastern Siberia. The ring-width chronologies also have a shorter optimum (June-August) seasonal signal, but this is much weaker than the density signal. The association between tree-ring density and precipitation variability (as measured by partial correlations to account for the correlation between temperature and precipitation) is considerably weaker than with temperature. The ring-width response to precipitation is dominated by 'noise' and local site influences, though a negative response to winter precipitation in northern Siberia is consistent A with the suggestion of an influence of delayed snowmelt. Average correlations with winter temperatures are small for all regions and correlations with annual temperatures are positive only because of the strong link with summer temperatures. Reconstructions of summer temperature based on composite regional density chronologies for nine areas are presented. Five regions (northwestern North America, NWNA; eastern and central Canada, ECCA; northern Europe. NEUR; northern Siberia, NSIB; and eastern Siberia, ESIB) constitute an arbitrary 'northern' division of the network, while the four other regions (western North America, WNA; southern Europe, SEUR; central Asia, CAS and the Tibetan Plateau, TIBP) make up the 'southern' part, We also present two larger composite regional reconstructions comprising the data from the five higher-latitude (HILAT) and four lower-latitude (LOLAT) areas respectively: and a single series made up of data from all regions (ALL), which is highly correlated with Northern Hemisphere mean summer temperature. We calculate time-dependent uncertainty ranges for each of these reconstructions, though they are not intended to represent long timescales of temperature variability (>100 years) because the technique used to assemble the site chronologies precludes this. Finally, we examine in more detail the reduced sensitivity in the tree-growth data to decadal-timescale summer-temperature trends during the last 50 years, identified in earlier published work.

WOS,
Scopus

Держатели документа:
Univ E Anglia, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland
Russian Acad Sci, Ural Div, Inst Plant & Anim Ecol, Ekaterinburg 620219, Russia
Russian Acad Sci, Siberian Div, Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Briffa, K.R.; Osborn, T.J.; Schweingruber, F.H.; Jones, P.D.; Shiyatov, S.G.; Vaganov, E.A.

    Tree-ring width and density data around the Northern Hemisphere: Part 2, spatio-temporal variability and associated climate patterns
[Text] / K. R. Briffa [et al.] // Holocene. - 2002. - Vol. 12, Is. 6. - P759-789, DOI 10.1191/0959683602hl588rp. - Cited References: 33 . - 31. - ISSN 0959-6836
РУБ Geography, Physical + Geosciences, Multidisciplinary

Аннотация: Pattern, of summer temperature over the Northern Hemisphere. obtained from a calibration of a tree-ring network, are presented for every year from 1600 to 1877. The network of tree-ring density chronologies is shown to exhibit spatially coherent modes of variability. These modes closely match summer half-year temperature variations, in terms of similar spatial patterns and similar temporal evolution during the instrumental period, They can, therefore. be considered to be proxies for the temperature patterns, and time series for the eight most dominant patterns are presented back to the late seventeenth century. The first pattern represents spatially coherent alarming or cooling and it appears to respond to climate forcings. especially volcanic eruptions. Most other patterns appear to be related to atmospheric pressure anomalies and them can be partially explained by heat advection associated with anomalous atmospheric circulation. This provides the potential for reconstructing past variations in atmospheric circulation for the surinner half-year. To investigate this potential modes of summer-pressure variability are defined. and an attempt is made to reconstruct them using principal components regression. Poor verification statistics and high sensitivity to the design of the regression procedure provide little confidence in the reconstructions presented. which are regarded as being preliminary only. A repeat study using instrumental temperature predictors shoals that the poor performance is attributable mainly to the bleakness of the relationship between air temperature over land and atmospheric circulation during summer: though a relationship exists. it is not strong enough to field reliable regression models when only a relatively short overlap period (55 years in this studs) exists for calibration and verification. Further attempts to reconstruct large-scale atmospheric circulation patterns that include precipitation-sensitive networks of tree-ring data are likely to produce improved results.

WOS,
Scopus

Держатели документа:
Univ E Anglia, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland
Russian Acad Sci, Ural Div, Inst Plant & Anim Ecol, Ekaterinburg 620219, Russia
Russian Acad Sci, Siberian Div, Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Briffa, K.R.; Osborn, T.J.; Schweingruber, F.H.; Jones, P.D.; Shiyatov, S.G.; Vaganov, E.A.

    Low-frequency temperature variations from a northern tree ring density network
[Text] / K. R. Briffa [et al.] // J. Geophys. Res.-Atmos. - 2001. - Vol. 106, Is. D3. - P2929-2941, DOI 10.1029/2000JD900617. - Cited References: 25 . - 13. - ISSN 0747-7309
РУБ Meteorology & Atmospheric Sciences

Аннотация: We describe new reconstructions of northern extratropical summer temperatures for nine subcontinental-scale regions and a composite series representing quasi "Northern Hemi sphere" temperature change over the last 600 years. These series are based on tree ring density data that have been processed using a novel statistical technique (age band decomposition) designed to preserve greater long-timescale variability than in previous analyses. We provide time-dependent and timescale-dependent uncertainty estimates for all of the reconstructions. The new regional estimates are generally cooler in almost all precalibration periods, compared to estimates obtained using earlier processing methods, particularly during the 17th century. One exception is the reconstruction for northern Siberia, where 15th century summers are now estimated to be warmer than those observed in the 20th century. In producing a new Northern Hemisphere series we demonstrate the sensitivity of the results to the methodology used once the number of regions with data, and the reliability of each regional series, begins to decrease. We compare our new hemisphere series to other published large-regional temperature histories, most of which lie within the lo confidence band of our estimates over most of the last 600 years. The 20th century is clearly shown by all of the palaeoseries composites to be the warmest during this period.

Полный текст,
WOS,
Scopus

Держатели документа:
Univ E Anglia, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland
Russian Acad Sci, Inst Plant & Anim Ecol, Ural Branch, Ekaterinburg 620144, Russia
Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Briffa, K.R.; Osborn, T.J.; Schweingruber, F.H.; Harris, I.C.; Jones, P.D.; Shiyatov, S.G.; Vaganov, E.A.

    Variation of early summer and annual temperature in east Taymir and Putoran (Siberia) over the last two millennia inferred from tree rings
[Text] / M. M. Naurzbaev, E. A. Vaganov // J. Geophys. Res.-Atmos. - 2000. - Vol. 105, Is. D6. - P7317-7326, DOI 10.1029/1999JD901059. - Cited References: 40 . - 10. - ISSN 2169-897X
РУБ Meteorology & Atmospheric Sciences

Аннотация: Regional tree ring chronology with extension 2209 years (from 212 B.C. till 1996 A.D.) was built for east Taymir and Putoran according to wood of living trees, well- preserved remains of dead trees, and subfossil wood from alluvial bank deposits by the cross-dating method. In addition, the "floating" tree ring width chronology for the period of Holocene optimum (3300-2600 B.C.) was built with extention 685 years and supported by several radiocarbon dates. High values of synchrony and correlation of individual tree ring series show a prevailing effect of one external factor on radial tree growth change in the studied region of the Siberian subarctic. It was established that the main factors of growth variability are the early summer and annual temperature, which explain up to 70% of tree growth rate variability. Cyclic components stable for two millennia were revealed at analysis of the tree ring chronology: double secular (similar to 180 years), secular (78-90 years), and intrasecular (44, 28, 11, and 6.7-6.9 years) variations. Models for reconstruction of the early summer and annual air temperature were obtained according to tree ring variability. Temperature dynamics in the eastern part of Taymir for the last two millenia agree well with temperature variations in the Northern Hemisphere obtained according to other indirect sources. The warming of the middle of the twentieth century is not extraordinary. The warming at the end of the first and beginning of the second millennia ("Medieval Warm Period") was longer in time and closer in amplitude.

Полный текст,
WOS,
Scopus

Держатели документа:
Taymir Biospher Reserve, Khatanga, Russia
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Naurzbaev, M.M.; Vaganov, E.A.

    Reduced sensitivity of recent tree-growth to temperature at high northern latitudes
[Text] / K. R. Briffa [et al.] // Nature. - 1998. - Vol. 391, Is. 6668. - P678-682, DOI 10.1038/35596. - Cited References: 30 . - 5. - ISSN 0028-0836
РУБ Multidisciplinary Sciences

Аннотация: Tree-ring chronologies that represent annual changes in the density of wood formed during the late summer can provide a proxy for local summertime air temperature(1). Here we undertake an examination of large-regional-scale wood-density/air-temperature relationships using measurements from hundreds of sites at high latitudes in the Northern Hemisphere. When averaged over large areas of northern America and Eurasia, tree-ring density series display a strong coherence with summer temperature measurements averaged over the same areas, demonstrating the ability of this proxy to portray mean temperature changes over sub-continents and even the whole Northern Hemisphere. During the second half of the twentieth century, the decadal-scale trends in wood density and summer temperatures have increasingly diverged as wood density has progressively fallen. The cause of this increasing insensitivity of wood density to temperature changes is not known, but if it is not taken into account in dendroclimatic reconstructions, past temperatures could be overestimated. Moreover, the recent reduction in the response of trees to air-temperature changes would mean that estimates of future atmospheric CO2 concentrations, based on carbon-cycle models that are uniformly sensitive to high-latitude warming, could be too low.

Полный текст,
WOS,
Scopus

Держатели документа:
Univ E Anglia, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland
Russian Acad Sci, Inst Plant & Anim Ecol, Ural Branch, Ekaterinburg 620219, Russia
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk, Russia

Доп.точки доступа:
Briffa, K.R.; Schweingruber, F.H.; Jones, P.D.; Osborn, T.J.; Shiyatov, S.G.; Vaganov, E.A.

    Trees tell of past climates: but are they speaking less clearly today?
[Text] / K. R. Briffa [et al.] // Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. - 1998. - Vol. 353, Is. 1365. - P65-73, DOI 10.1098/rstb.1998.0191. - Cited References: 34 . - 9. - ISSN 0962-8436
РУБ Biology
Рубрики:
VOLCANIC-ERUPTIONS
   CARBON BUDGET

   DENDROCLIMATOLOGY

Кл.слова (ненормированные):
tree rings -- climate change -- volcanoes -- tree biomass -- fertilization

Аннотация: The annual growth of trees, as represented by a variety of ring-width, densitometric, or chemical parameters, represents a combined record of different environmental forcings, one of which is climate. Along with climate, relatively large-scale positive growth influences such as hypothesized 'fertilization' due to increased levels of atmospheric carbon dioxide or various nitrogenous compounds, or possibly deleterious effects of 'acid rain' or increased ultra-violet radiation, might all be expected to exert some influence on recent tree growth rates. Inferring the details of past climate variability from tree-ring data remains a largely empirical exercise, but one that goes hand-in-hand with the development of techniques that seek to identify and isolate the confounding influence of local and larger-scale non-climatic factors. By judicious sampling, and the use of rigorous statistical procedures, dendroclimatology has provided unique insight into the nature of past climate variability, but most significantly at interannual, decadal, and centennial time-scales. Here, examples are shown that illustrate the reconstruction of annually resolved patterns of past summer temperature around the Northern Hemisphere, as well as some more localized reconstructions, but ones which span 1000 years or more. These data provide the means of exploring the possible role of different climate forcings; for example, they provide evidence of the large-scale effects of explosive volcanic eruptions on regional and hemispheric temperatures during the last 400 years. However, a dramatic change in the sensitivity of hemispheric tree-growth to temperature forcing has become apparent during recent decades, and there is additional evidence of major tree-growth (and hence, probably, ecosystem biomass) increases in the northern boreal forests, most clearly over the last century. These possibly anthropogenically related changes in the ecology of tree growth have important implications for modelling future atmospheric CO2 concentrations. Also, where dendroclimatology is concerned to reconstruct longer (increasingly above centennial) temperature histories, such alterations of 'normal' (pre-industrial) tree-growth rates and climate-growth relationships must be accounted for in our attempts to translate the evidence of past tree growth changes.

WOS,
Scopus

Держатели документа:
Univ E Anglia, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland
Russian Acad Sci, Inst Plant & Anim Ecol, Ural Branch, Ekaterinburg 620219, Russia
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
Stockholm Univ, Nat Geog Inst, S-10691 Stockholm, Sweden

Доп.точки доступа:
Briffa, K.R.; Schweingruber, F.H.; Jones, P.D.; Osborn, T.J.; Harris, I.C.; Shiyatov, S.G.; Vaganov, E.A.; Grudd, H...