Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 35

    Climatic changes, successions of peatlands and zonal vegetation, and peat accumulation dynamics in the Holocene (the West-Siberia peat profile "Vodorosdel")
/ F.Z. Glebov // Climatic Change. - 2002. - Vol. 55, № 1-2. - С. 175-181

Аннотация: The developmental history of peatland and dry land vegetation within the Ob-Vasugan watershed of Western Siberia was characterized according to features of the plant communities and climatic changes which were revealed by stratigraphic, spore-pollen and C-14 (carbon) data obtained from a vertical peat profile 'Vodorasdel'. Changes in the paleoecological environment over the last 10000 years were divided into five periods. The climate was characterized in the Holocene according to these periods. At the watershed studied, peatland-forming processes started about 9510 years ago resulting in 550 cm of peat accumulation. The rate of peat accumulation within the watershed decreased over time from 1.9-0.3 mm year(-1).

WOS,
Scopus,
Полный текст

Держатели документа:
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Karpenko, Lyudmila Vasil'yevna; Карпенко, Людмила Васильевна; Dashkovskaya, Irina Samuilovna; Дашковская, Ирина Соломоновна; Глебов, Феликс Зиновьевич

    The holocene history of climate and evolution of Siberian vegetation inferred from palinological and dendroclimatological data
: материалы временных коллективов / M. M. Naurzbaev, L. V. Karpenko // Climatic changes and their impact on boreal and temperate forests: Abstracts of the International conference (June 5-7, Ekaterinburg, Russia) : Ural State Forest Engineering University, 2006. - С. 69-70


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Karpenko, Lyudmila Vasil'yevna; Карпенко, Людмила Васильевна; Наурзбаев, Мухтар Мухаметович

    The holocene history of climate and evolution of Siberian vegetation inferred from palinological and dendroclimatological data
: материалы временных коллективов / M. M. Naurzbaev, L. V. Karpenko // Climate change and their impact on boreal and temperate forests: Abstracts of the International Conference (June 5-7, 2006, Ekaterinburg, Russia). - 2006. - С. 69


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Karpenko, Lyudmila Vasil'yevna; Карпенко, Людмила Васильевна; Наурзбаев, Мухтар Мухаметович
Имеются экземпляры в отделах:
РСФ (31.01.2008г. (1 экз.) - Б.ц.) - свободны 1

    Reassessing the evidence for tree-growth and inferred temperature change during the Common Era in Yamalia, northwest Siberia
/ K. R. Briffa [et al.] // Quat. Sci. Rev. - 2013. - Vol. 72. - P83-107, DOI 10.1016/j.quascirev.2013.04.008. - Cited References: 70. - KRB, TMM and TJO acknowledge support from NERC (NE/G018863/1). RMH, AVK, VSM and SGS acknowledge support from the partnership project of the Ural and Siberian Branches of the Russian Academy of Sciences (No 12-C-4-1038 and No 69). SGS, VSM and RMH acknowledge support from the Russian Foundation for Basic Research (No 11-04-00623-a, No 13-04-00961-a and No 13-04-02058). . - 25. - ISSN 0277-3791
РУБ Geography, Physical + Geosciences, Multidisciplinary

Аннотация: The development of research into the history of tree growth and inferred summer temperature changes in Yamaha spanning the last 2000 years is reviewed. One focus is the evolving production of tree-ring width (TRW) and tree-ring maximum-latewood density (MXD) larch (Larix sibirica) chronologies, incorporating different applications of Regional Curve Standardisation (RCS). Another focus is the comparison of independent data representing past tree growth in adjacent Yamaha areas: Yamal and Polar Urals, and the examination of the evidence for common growth behaviour at different timescales. The sample data we use are far more numerous and cover a longer time-span at Yamal compared to the Polar Urals, but Yamal has only TRW, while there are both TRW and MXD for the Polar Urals. We use more data (sub-fossil and from living trees) than in previous dendroclimatic studies in this region. We develop a new TRW chronology for Yamal, more than 2000 years long and running up to 2005. For the Polar Urals we develop new TRW and MXD chronologies that show good agreement at short (<15 years) and medium (15-100 years) timescales demonstrating the validity of attempts to reconcile the evidence of longer-timescale information that they provide. We use a "conservative" application of the RCS approach (two-curve signal-free RCS), guarding against the possibility of "modern sample bias": a possible inflation of recent chronology values arising out of inadvertent selection of mostly relatively fast-growing trees in recent centuries. We also transform tree indices to have a normal distribution to remove the positive chronology skew often apparent in RCS TRW chronologies. This also reduces the apparent magnitude of 20th century tree-growth levels. There is generally good agreement between all chronologies as regards the major features of the decadal to centennial variability. Low tree-growth periods for which the inferred summer temperatures are approximately 2.5 degrees C below the 1961-90 reference are apparent in the 15-year smoothed reconstructions, centred around 1005, 1300, 1455, 1530, particularly the 1810s where the inferred cooling reaches -4 degrees C or even -6 degrees C for individual years, and the 1880s. These are superimposed on generally cool pre-20th century conditions: the long-term means of the pre-1900 reconstructed temperature anomalies range from -0.6 to -0.9 degrees C in our alternative reconstructions. There are numerous periods of one or two decades with relatively high growth (and inferred summer temperatures close to the 1961-1990 level) but at longer timescales only the 40-year period centred at 250 CE appears comparable with 20th century warmth. Although the central temperature estimate for this period is below that for the recent period, when we take into account the uncertainties we cannot be highly confident that recent warmth has exceeded the temperature of this earlier warm period. While there are clear warm decades either side of 1000 CE, neither TRW nor MXD data support the conclusion that temperatures were exceptionally high during medieval times. One previous version of the Polar Urals TRW chronology is shown here to be in error due to an injudicious application of RCS to non-homogeneous sample data, partly derived from root-collar samples that produce spuriously high chronology values in the 11th and 15th centuries. This biased chronology has been used in a number of recent studies aimed at reconstructing wider scale temperature histories. All of the chronologies we have produced here clearly show a generally high level of growth throughout their most recent 80 years. Allowing for chronology and reconstruction uncertainty, the mean of the last 100 years of the reconstruction is likely warmer than any century in the last 2000 years in this region. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Briffa, Keith R.
Melvin, Thomas M.
Osborn, Timothy J.] Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
[Hantemirov, Rashit M.
Mazepa, Valeriy S.
Shiyatov, Stepan G.] Russian Acad Sci, Ural Branch, Inst Plant & Anim Ecol, Ekaterinburg 620144, Russia
[Kirdyanov, Alexander V.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Esper, Jan] Johannes Gutenberg Univ Mainz, Dept Geog, D-55099 Mainz, Germany
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Briffa, K.R.; Melvin, T.M.; Osborn, T.J.; Hantemirov, R.M.; Kirdyanov, A.V.; Mazepa, V.S.; Shiyatov, S.G.; Esper, J...

    Reconstruction of forest ecosystem Holocene dynamics in the left bank of Kas River (Krasnoyarsk Region)
/ L. V. Karpenko, N. A. Rudaya // Contemp. Probl. Ecol. - 2013. - Vol. 6, Is. 2. - P137-142, DOI 10.1134/S1995425513020066. - Cited References: 12. - This work was supported by the Presidium of the Russian Academy of Sciences (program "Biological Diversity," project of the Siberian Branch, Russian Academy of Sciences, no. 26.2) and the Russian Foundation for Basic Research (project no. 09-04-01-380). . - 6. - ISSN 1995-4255
РУБ Ecology

Кл.слова (ненормированные):
swamp -- peat deposit -- pollen analysis -- climate and vegetation reconstruction -- forest cover dynamics -- Holocene

Аннотация: A reconstruction of forest-cover dynamics in the northern part of the Kas River basin has been done for the first time. This study based on a palynological analysis of the peat profile. Six pollen zones and respective phases of forest evolution are distinguished. It is inferred that changes in the forest species composition over the last 8000 years were determined by variations in the global and regional climate. The warm and humid climate of the Atlantic period promoted the development of dark coniferous birch-spruce-fir forests. Cooling and smaller precipitation in the Subboreal period led to a change in dominant species to Scotch pine and birch-Siberian pine forests with an admixture of spruce and fir. In the Subatlantic period, closed coniferous forests eventually evolved, with Siberian pine-pine remaining dominant.

Полный текст,
WOS,
Scopus

Держатели документа:
[Karpenko, L. V.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Rudaya, N. A.] Russian Acad Sci, Siberian Branch, Inst Archaeol & Ethnog, Novosibirsk, Russia

Доп.точки доступа:
Karpenko, L.V.; Rudaya, N.A.

    Reconstruction of Paleohydrological Regime, Vegetation Change, and Peat Accumulation in a Bog in the Kas-Sym Interfluve
[Text] / L. V. Karpenko // Contemp. Probl. Ecol. - 2010. - Vol. 3, Is. 2. - P221-227, DOI 10.1134/S199542551002013X. - Cited References: 12 . - 7. - ISSN 1995-4255
РУБ Ecology

Кл.слова (ненормированные):
bog -- reconstruction -- paleohydrological regime -- vegetation changes -- peat accumulation

Аннотация: Comprehensive stratigraphic analyses of a standard peat profile laid on a large oligotrophic bog in the interfluve of Kas and Sym rivers, left tributaries of the Yenisei River, allowed reconstruction of local vegetation change and hydrological regime over a period of seven thousand years. The established three stages in vegetation succession in a local bog correspond to different degree of humidification. The development of bog ecosystem is found to be scarcely affected by regional climate. The process and rate of peat accumulation varied in different periods of the Holocene. The average rate of peat accumulation in the profile was 0.88 mm/year.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Karpenko, L.V.

    New ice core evidence for a volcanic cause of the AD 536 dust veil
[Text] / L. B. Larsen [et al.] // Geophys. Res. Lett. - 2008. - Vol. 35, Is. 4. - Ст. L04708, DOI 10.1029/2007GL032450. - Cited References: 36 . - 5. - ISSN 0094-8276
РУБ Geosciences, Multidisciplinary

Аннотация: New and well-dated evidence of sulphate deposits in Greenland and Antarctic ice cores indicate a substantial and extensive atmospheric acidic dust veil at A. D. 533-534 +/- 2 years. This was likely produced by a large explosive, near equatorial volcanic eruption, causing widespread dimming and contributing to the abrupt cooling across much of the Northern Hemisphere known from historical records and tree-ring data to have occurred in A. D. 536. Tree-ring data suggest that this was the most severe and protracted short-term cold episode across the Northern Hemisphere in the last two millennia, even surpassing the severity of the cold period following the Tambora eruption in 1815.

WOS,
Scopus

Держатели документа:
[Larsen, L. B.
Vinther, B. M.
Clausen, H. B.
Siggaard-Andersen, M. -L.
Hammer, C. U.] Univ Copenhagen, Niels Bohr Inst, Ctr Ice & Climate, DK-2100 Copenhagen, Denmark
[Vinther, B. M.
Briffa, K. R.
Melvin, T. M.
Jones, P. D.] Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
[Eronen, M.] Univ Helsinki, Dept Geol, FI-00014 Helsinki, Finland
[Grudd, H.
Gunnarson, B. E.] Stockholm Univ, Dept Phys Geog & Quaternary Geol, S-10691 Stockholm, Sweden
[Hantemirov, R. M.] Russian Acad Sci, Ural Branch, Inst Plant & Anim Ecol, Lab Dendrochronol, Ekaterinburg 620144, Russia
[Naurzbaev, M. M.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Dendroecol Dept, Krasnoyarsk 660036, Russia
[Nicolussi, K.] Univ Innsbruck, Inst Geog, A-6020 Innsbruck, Austria

Доп.точки доступа:
Larsen, L.B.; Vinther, B.M.; Briffa, K.R.; Melvin, T.M.; Clausen, H.B.; Jones, P.D.; Siggaard-Andersen, M.L.; Hammer, C.U.; Eronen, M...; Grudd, H...; Gunnarson, B.E.; Hantemirov, R.M.; Naurzbaev, M.M.; Nicolussi, K...

    Organic carbon and total nitrogen variability in permafrost-affected soils in a forest tundra ecotone
[Text] / A. . Rodionov [et al.] // Eur. J. Soil Sci. - 2007. - Vol. 58, Is. 6. - P1260-1272, DOI 10.1111/j.1365-2389.2007.00919.x. - Cited References: 44 . - 13. - ISSN 1351-0754
РУБ Soil Science

Аннотация: Soils of the high latitudes are expected to respond sensitively to climate change, but still little is known about carbon and nitrogen variability in them. We investigated the 0.44-km(2) Little Grawijka Creek catchment of the forest tundra ecotone (northern Krasnoyarsk Krai, Russian Federation) in order (i) to relate the active-layer thickness to controlling environmental factors, (ii) to quantify soil organic carbon (SOC) and total nitrogen (NT) stocks, and (iii) to assess their variability with respect to different landscape units. The catchment was mapped on a 50 x 50 m grid for topography, dominant tree and ground vegetation, organic-layer and moss-layer thickness, and active-layer thickness. At each grid point, bulk density, and SOC and NT concentrations were determined for depth increments. At three selected plots, 2-m deep soil cores were taken and analysed for SOC, NT and C-14. A shallow active layer was found in intact raised bogs at plateaux situations and in mineral soils of north-northeast (NNE) aspect. Good drainage and greater solar insolation on the south-southwest (SSW) slopes are reflected in deeper active layers or lack of permafrost. Organic carbon stocks to a soil depth of 90 cm varied between 5 and 95 kg m(-2). The greatest stocks were found in the intact raised bogs and on the NNE slopes. Canonical correspondence analysis indicates the dominant role of active-layer thickness for SOC and NT storage. The 2-m soil cores suggest that permafrost soils store about the same amount of SOC from 90 to 200 cm as in the upper 90 cm. Most of this deep SOC pool was formed in the mid-Holocene (organic soils) and the late Pleistocene (mineral soils). Our results showed that even within a small catchment of the forest tundra, active-layer thickness and, hence, SOC and NT storage vary greatly within the landscape mosaic. This has to be taken into account when using upscaling methods such as remote sensing for assessing SOC and NT storage and cycling at a regional to continental level.

WOS,
Scopus

Держатели документа:
Univ Halle Wittenberg, Inst Agr & Ernahrungswissensch, D-06108 Halle, Germany
Univ Gottingen, Inst Bodenkunde & Waldernahrung, D-37077 Gottingen, Germany
Max Planck Inst Biogeochem, D-07745 Jena, Germany
SB RAS, Field Stn Igarka Permafrost Inst Yakutsk, Igarka 663200, Russia
SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Rodionov, A...; Flessa, H...; Grabe, M...; Kazansky, O.A.; Shibistova, O...; Guggenberger, G...

    Paleoecology and dynamics of forest ecosystems in Central Evenkia during the past 2400 years
[Text] / V. L. Koshkarova, A. D. Koshkarov // Russ. J. Ecol. - 2005. - Vol. 36, Is. 1. - P1-7. - Cited References: 21 . - 7. - ISSN 1067-4136
РУБ Ecology

Кл.слова (ненормированные):
plant macroremains -- the Holocene -- dynamics of forest ecosystems -- paleoclimate

Аннотация: New data on the composition of surface assemblages of plant macroremains from soil and swamp samples have been obtained in the study of geomorphologically different localities in the middle reaches of the Nizhnyaya Tunguska River. The results of paleocarpological analysis of forest soil sections supported by relevant palynological and geochronological data are presented. Natural changes of the forest cover over the past 2400 years and quantitative characteristics of the paleoclimate during each stage are described.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Siberian Div, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Koshkarova, V.L.; Koshkarov, A.D.

    Homeostasis of forest ecosystems of East Sayan
[Text] / V. . Vlasenko // Ekol. Bratisl. - 2003. - Vol. 22, Is. 1. - P16-22. - Cited References: 22 . - 7. - ISSN 1335-342X
РУБ Ecology
Рубрики:
TEMPERATURE
Кл.слова (ненормированные):
primary and conditionally primary forests -- map of ground vegetation -- dynamic tendencies -- Holocene -- biodiversity -- homeostasis

Аннотация: Making the map of ground vegetation and analysis of its present state have been realized as well as dynamic tendencies in development of forest communities from climatic optimum of the Holocene up to the present time have been revealed. Forests of the reserve are mainly overmatured. Presently the succession of mountain taiga- and grass larch and pine forests by fir stands occurs. As a reason for changing formation composition of the main forest forming tree species of the reserve the global climatic changes of the northern hemisphere are. Floristic abundance of forest communities is characterized by high variability. a-diversity increases from the mountain taiga altitude - vegetation belt to the belt of subtaiga forest-steppe what corresponds to the increase of heat providing gradient. High coefficient of beta-diversity value variation in taiga and grass forest ecotone as well as in old cutting areas of light-coniferous forests shows instability of these phytocoenoses and rather fast succession of coenoelements of light-coniferous formations by the dark-coniferous ones.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Academgorodok, Russia

Доп.точки доступа:
Vlasenko, V...

    The Holocene dynamics of vegetation and the upper forest limit in the Polar Urals
[Text] / V. L. Koshkarova, L. V. Karpenko, L. A. Orlova // Russ. J. Ecol. - 1999. - Vol. 30, Is. 2. - P102-106. - Cited References: 16 . - 5. - ISSN 1067-4136
РУБ Ecology

Аннотация: The species structure of forest vegetation and climate in the Holocene was reconstructed on the basis of analysis of macroscopic plant remnants, botanical analysis of peat, and radiocarbon dating performed in the Polar Ural peatland (Mount Rai-Iz). The results showed that the upper forest limit repeatedly migrated upward for 220-400 m in the periods of:warming and retreated during cold periods. Brief cold periods proved to cause abrupt changes in the composition of tree species as more dynamic plants.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Koshkarova, V.L.; Karpenko, L.V.; Orlova, L.A.

    Reconstruction of the mid-Holocene palaeoclimate of Siberia using a bioclimatic vegetation model
[Text] / R. A. Monserud, N. M. Tchebakova, O. V. Denissenko // Paleogeogr. Paleoclimatol. Paleoecol. - 1998. - Vol. 139, Is. 01.02.2013. - P15-36, DOI 10.1016/S0031-0182(97)00127-2. - Cited References: 72 . - 22. - ISSN 0031-0182
РУБ Geography, Physical + Geosciences, Multidisciplinary + Paleontology

Аннотация: A bioclimatic vegetation model is used to reconstruct the palaeoclimate of Siberia during the mid-Holocene, a warm. moist period also known as the Holocene climatic optimum. Our goal is to determine the magnitude of climatic anomalies associated with mapped changes in vegetation classes. Reconstructed anomalies are the logical outcome of the bioclimatic assumptions in the Siberia vegetation model operating on location-specific differences in the palaeomap of Khotinsky and the modern map of Isachenko. The Siberian vegetation model specifics the relationship between vegetation classes and climate using climatic indices (growing-degree days, dryness index, continentality index). These indices are then converted into parameters commonly used in climatic reconstructions: January and July mean temperatures. and annual precipitation. Climatic anomalies since the mid-Holocene are then displayed by latitude and longitude. An advantage of a model-based approach to climatic reconstruction is that grid cells can be modelled independently. without the need for interpolation to create smoothed temperature and precipitation contours. The resulting pattern of anomalies is complex. On average. Siberian winters in the mid-Holocene were 3.7 degrees C warmer than now, with greater warming in higher latitudes. The major winter warming was concentrated in the Taiga zone on the plains and tablelands of East Siberia, where a warm and moist climate was necessary to support a broad expanse of shade-tolerant dark-needled Taiga. January temperatures averaged about 1 degrees C warmer than now across southern Siberia. although large areas show no change. July temperature anomalies (0-5 degrees C) are distributed mostly latitudinally, with anomalies increasing with latitude above 65 degrees N. At latitudes below 65 degrees N, July temperature was nearly the same as today across Siberia. Based on July temperatures. Siberian summers in the mid-Holocene were 0.7 degrees C warmer than today's. Annual precipitation in Siberia was predicted to be 95 mm greater in the mid-Holocene than now. Most of the increase was concentrated in East Siberia (154 mm average increase). The precipitation anomalies are small in the south. Large precipitation anomalies are found in central and northeastern Siberia. This location corresponds rather closely to the large anomalies in January temperature in East Siberia. The annual precipitation Increase was > 200 mm more than present precipitation in Yakutia. This increase corresponds to the deep penetration of moisture-demanding dark-needled species (Pinus sibirica. Abies sibirica, Picea obovata) into East Siberia in the mid-Holocene, where currently only drought-resistant light-needled species (Larix spp.) are found. Another area of increased precipitation was along the Polar Circle in West Siberia and at the base of the Taymyr Peninsula in East Siberia. In combination with 2-5 degrees C warmer summers, moister climates there allowed forests to advance far northward into what is now the Tundra zone.

WOS,
Полный текст,
Scopus

Держатели документа:
Forest Serv, Rocky Mt Res Stn, USDA, Portland, OR 97205 USA
Forest Serv, Pacific NW Res Stn, USDA, Portland, OR 97205 USA
Russian Acad Sci, Siberian Branch, Sukachev Forest Inst, Krasnoyarsk 660036, Russia
Moscow State Univ, Dept Geog, Moscow 119899, Russia

Доп.точки доступа:
Monserud, R.A.; Tchebakova, N.M.; Denissenko, O.V.

    Climatic dependence of the Late Holocene dynamics of tree species cenotypes in the intrazonal ecotone of Eastern Sayan forests
[Text] / V. L. Koshkarova, A. D. Koshkarov, V. G. Kol'tsova // Russ. J. Ecol. - 2006. - Vol. 37, Is. 5. - P316-324, DOI 10.1134/S1067413606050043. - Cited References: 39 . - 9. - ISSN 1067-4136
РУБ Ecology

Кл.слова (ненормированные):
seed and spore-pollen assemblages -- the Holocene -- dynamics of tree species cenotypes -- paleoclimates

Аннотация: A comprehensive study of paleobotanical materials collected in the northern part of the Eastern Sayan was performed, including botanical analysis of peat, palynological and carpological analysis, and radiocarbon dating. The results provided a basis for reconstructing in detail the spatiotemporal distribution of ecocenotic complexes and corresponding paleoclimate types and calculating quantitative gradients of heat and moisture supply in the Late Holocene, beginning from 3500 ka.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Koshkarova, V.L.; Koshkarov, A.D.; Kol'tsova, V.G.

    Reconstruction and prediction of climate and vegetation change in the Holocene in the Altai-Sayan mountains, Central Asia
[Text] / N. M. Tchebakova, T. A. Blyakharchuk, E. I. Parfenova // Environ. Res. Lett. - 2009. - Vol. 4, Is. 4. - Ст. 45025, DOI 10.1088/1748-9326/4/4/045025. - Cited References: 72. - This study was supported by the Russian Foundation for Basic Research (Grant 06-05-65127). The authors are grateful to Jane Bradford, Gerald Rehfeldt and Robert Monserud for helpful review comments. The authors greatly appreciate the comments of two reviewers which significantly improved the manuscript. . - 11. - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: Two quantitative methods were used to reconstruct paleoenvironments and vegetation in the Altai-Sayan mountains, Central Asia, during the Holocene. The 'biomization' method of Prentice et al (1996 Clim. Dyn. 12 185-96), applied to the surface pollen record, worked fairly well in the reconstructions of current vegetation. Applying this method to fossil pollen data, we reconstructed site paleovegetation. Our montane bioclimatic model, MontBioCliM, was used inversely to convert site paleovegetation into site paleoclimates. The differences between site paleo and current climates served as past climate change scenarios. The climatic anomalies for 2020, 2050, and 2080 derived from HadCM3 A1FI and B1 of the Hadley Centre, UK, served as climate change scenarios in the 21st century. MontBioCliM was applied directly to all climate scenarios through the Holocene to map past and future mountain vegetation over the Altai-Sayan mountains. Our results suggest that the early Holocene ca 10 000 BP was cold and dry; the period between 8000 and 5300 BP was warm and moist; and the time slice ca 3200 BP was cooler and drier than the present. Using kappa statistics, we showed that the vegetation at 8000 BP and 5300 BP was similar, as was the vegetation at 10 000 BP and 3200 BP, while future vegetation was predicted to be dissimilar to any of the paleovegetation reconstructions. The mid-Holocene is frequently hypothesized to be an analog of future climate warming; however, being known as warm and moist in Siberia, the mid-Holocene climate would likely impact terrestrial ecosystems differently from the projected warm and dry mid-century climate.

WOS,
Scopus

Держатели документа:
[Tchebakova, N. M.
Parfenova, E. I.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forests, Krasnoyarsk 660036, Russia
[Blyakharchuk, T. A.] Russian Acad Sci, Siberian Branch, Inst Monitoring Climat & Ecol Syst, Tomsk 643055, Russia

Доп.точки доступа:
Tchebakova, N.M.; Blyakharchuk, T.A.; Parfenova, E.I.; Russian Foundation for Basic Research [06-05-65127]

    Tree-ring growth curves as sources of climatic information
[Text] / M. M. Naurzbaev, M. K. Hughes, E. A. Vaganov // Quat. Res. - 2004. - Vol. 62, Is. 2. - P126-133, DOI 10.1016/j.yqres.2004.06.005. - Cited References: 35 . - 8. - ISSN 0033-5894
РУБ Geography, Physical + Geosciences, Multidisciplinary

Аннотация: Regional growth curves (RGCs) have been recently used to provide a new basis for removing nonclimatic trend from tree-ring data. Here we propose a different use for RGCs and explore their properties along two transects, one meridional and the other elevational. RGCs consisting of mean ring width plotted against cambial age were developed for larch samples from 34 sites along a meridional transect (55-72degreesN) in central Siberia, and for 24 sites on an elevational gradient (1120 and 2350 in a.s.l.) in Tuva and neighboring Mongolia at approximately 51degreesN. There are systematic gradients of the parameters of the RGCs, such as I-0-maximum tree-ring width near pith, and I-min, the asymptotic value of tree-ring width in old trees. They are smaller at higher latitude and elevation. Annual mean temperature and mean May-September temperature are highly correlated with latitude here, and hence RGC parameters are correlated with these climatic variables. Correlations with precipitation are more complex, and contradictory between meridional and elevational transects. The presence of a similar gradient in the elevational transect is consistent with temperature being the causal factor for both gradients, rather than, for example, latitude-dependent patterns of seasonal photoperiod change. Taking ring measurements from collections of relict and subfossil wood, the RGC-latitude and RGC-temperature relationships are used to estimate paleo-temperatures on centennial time scales. These estimates are consistent with earlier "traditional" dendroclimatic approaches, and with independent information on the northern extent of forest growth in the early mid-Holocene. It may be possible to use this same approach to make estimates of century-scale paleo-temperatures in other regions where abundant relict wood is present. (C) 2004 Univesity of Washington. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA
Russian Acad Sci, Siberian Branch, Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Naurzbaev, M.M.; Hughes, M.K.; Vaganov, E.A.

    Regional signatures of changing landscape and climate of northern Central Siberia in the Holocene
[Текст] / V. L. Koshkarova, A. D. Koshkarov // Geol. Geofiz. - 2004. - Vol. 45, Is. 6. - С. 717-729. - Cited References: 42 . - 13. - ISSN 0016-7886
РУБ Geosciences, Multidisciplinary

Кл.слова (ненормированные):
Holocene -- paleocarpology -- geochronology -- speciation of paleolandscapes -- climate

Аннотация: On the basis of geochronological and palynological materials, 25 sections of Holocene deposits and soils of northern Central Siberia were studied by paleocarpological methods. Special attention was given to the reconstruction of the dynamics of speciation of forest cover in time and space. As a result, climatic and ecological settings have been dynamically portrayed for each kind of landscape, and quantitative parameters of paleoclimates have been calculated. The main peaks of climatic changes of the postglacial history have been detected in the ranges 8.5-8.0 ka (thermal maximum) and 2.5-2.0 ka (thermal minimum). Importantly, the thermal maximum is characterized by warming up by 3-9degreesC in winter and by 2-6degreesC in summer. The anomaly in moisture content was insignificant. In the Middle Holocene (6.5-5.0 ka), the positive temperature trend was kept, but it was accompanied by a nearly double increase in annual atmospheric wetting. During the Late Holocene cooling (2.5-2.0 ka), the negative temperature trend led to the degradation of forest vegetation which at that time remained only in the extreme south of the territory.

WOS

Держатели документа:
Russian Acad Sci, Inst Forestry, Krasnoyarsk 660036, Russia
Krasnoyarsk State Teachers Univ, Krasnoyarsk 660049, Russia

Доп.точки доступа:
Koshkarova, V.L.; Koshkarov, A.D.

    Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series
[Text] / M. M. Naurzbaev [et al.] // Holocene. - 2002. - Vol. 12, Is. 6. - P727-736, DOI 10.1191/0959683602hl586rp. - Cited References: 35 . - 10. - ISSN 0959-6836
РУБ Geography, Physical + Geosciences, Multidisciplinary
Рубрики:
CLIMATE-CHANGE
   NORTHERN

   MILLENNIUM

Кл.слова (ненормированные):
dendroclimatology -- tree rings -- summer temperature -- subfossil wood -- larch -- Larix gmelinii -- Taimyr -- Northern Siberia -- Holocene

Аннотация: A brief review is presented of the progress, to date, in constructing a long, continuous ring-width chronology from living and subfossil Siberian larch (Larix gmelinii) in the eastern part of the Taimyr peninsula. A near 2500-year chronology running up to the present has been assembled and several shorter, earlier series have been produced that a-re dated approximately on the basis of radiocarbon dates. A description is given of the production of separate early summer and annual mean temperature histories based on the recent chronology, spanning more than 2000 years. These two reconstructions are based on alternative methods of statistical processing of the measured tree-ring data. The early summer and annual reconstructions agree well in the long-term components of their variability, providing evidence for anomalous warmth in the third, tenth to twelfth, and twentieth centuries. and a prolonged cool period throughout the sixteenth and seventeenth, and in the early nineteenth centuries. The mean growth and other statistical parameters of the earlier chronologies also suggest that conditions for tree growth were very favourable in the earlier Holocene, particularly in the fourth millennium BC. This is strongly indicative of an early Holocene Climatic Optimum in Taimyr at that time. Other material in hand, and earlier published radiocarbon dates, demonstrate the feasibility of constructing continuous ring-width chronologies and temperature estimates extending throughout all of the last 8000 years.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Inst Forest, Krasnoyarsk 660036, Russia
Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland

Доп.точки доступа:
Naurzbaev, M.M.; Vaganov, E.A.; Sidorova, O.V.; Schweingruber, F.H.

    Tree-ring width and density data around the Northern Hemisphere: Part 1, local and regional climate signals
[Text] / K. R. Briffa [et al.] // Holocene. - 2002. - Vol. 12, Is. 6. - P737-757, DOI 10.1191/0959683602hl587rp. - Cited References: 26 . - 21. - ISSN 0959-6836
РУБ Geography, Physical + Geosciences, Multidisciplinary

Аннотация: A detailed description is presented of the statistical patterns of climate forcing of tree growth (annual maximum latewood density and ring-width time series), across a network of 387 specially selected conifer sites that circle the extra-tropical Northern Hemisphere, The influence of summer temperature dominates growth. A mean April-September response is optimum for describing the major forcing signal over the whole densitometric network, though a shorter June-July season is more relevant in central and eastern Siberia. The ring-width chronologies also have a shorter optimum (June-August) seasonal signal, but this is much weaker than the density signal. The association between tree-ring density and precipitation variability (as measured by partial correlations to account for the correlation between temperature and precipitation) is considerably weaker than with temperature. The ring-width response to precipitation is dominated by 'noise' and local site influences, though a negative response to winter precipitation in northern Siberia is consistent A with the suggestion of an influence of delayed snowmelt. Average correlations with winter temperatures are small for all regions and correlations with annual temperatures are positive only because of the strong link with summer temperatures. Reconstructions of summer temperature based on composite regional density chronologies for nine areas are presented. Five regions (northwestern North America, NWNA; eastern and central Canada, ECCA; northern Europe. NEUR; northern Siberia, NSIB; and eastern Siberia, ESIB) constitute an arbitrary 'northern' division of the network, while the four other regions (western North America, WNA; southern Europe, SEUR; central Asia, CAS and the Tibetan Plateau, TIBP) make up the 'southern' part, We also present two larger composite regional reconstructions comprising the data from the five higher-latitude (HILAT) and four lower-latitude (LOLAT) areas respectively: and a single series made up of data from all regions (ALL), which is highly correlated with Northern Hemisphere mean summer temperature. We calculate time-dependent uncertainty ranges for each of these reconstructions, though they are not intended to represent long timescales of temperature variability (>100 years) because the technique used to assemble the site chronologies precludes this. Finally, we examine in more detail the reduced sensitivity in the tree-growth data to decadal-timescale summer-temperature trends during the last 50 years, identified in earlier published work.

WOS,
Scopus

Держатели документа:
Univ E Anglia, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland
Russian Acad Sci, Ural Div, Inst Plant & Anim Ecol, Ekaterinburg 620219, Russia
Russian Acad Sci, Siberian Div, Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Briffa, K.R.; Osborn, T.J.; Schweingruber, F.H.; Jones, P.D.; Shiyatov, S.G.; Vaganov, E.A.

    Tree-ring width and density data around the Northern Hemisphere: Part 2, spatio-temporal variability and associated climate patterns
[Text] / K. R. Briffa [et al.] // Holocene. - 2002. - Vol. 12, Is. 6. - P759-789, DOI 10.1191/0959683602hl588rp. - Cited References: 33 . - 31. - ISSN 0959-6836
РУБ Geography, Physical + Geosciences, Multidisciplinary

Аннотация: Pattern, of summer temperature over the Northern Hemisphere. obtained from a calibration of a tree-ring network, are presented for every year from 1600 to 1877. The network of tree-ring density chronologies is shown to exhibit spatially coherent modes of variability. These modes closely match summer half-year temperature variations, in terms of similar spatial patterns and similar temporal evolution during the instrumental period, They can, therefore. be considered to be proxies for the temperature patterns, and time series for the eight most dominant patterns are presented back to the late seventeenth century. The first pattern represents spatially coherent alarming or cooling and it appears to respond to climate forcings. especially volcanic eruptions. Most other patterns appear to be related to atmospheric pressure anomalies and them can be partially explained by heat advection associated with anomalous atmospheric circulation. This provides the potential for reconstructing past variations in atmospheric circulation for the surinner half-year. To investigate this potential modes of summer-pressure variability are defined. and an attempt is made to reconstruct them using principal components regression. Poor verification statistics and high sensitivity to the design of the regression procedure provide little confidence in the reconstructions presented. which are regarded as being preliminary only. A repeat study using instrumental temperature predictors shoals that the poor performance is attributable mainly to the bleakness of the relationship between air temperature over land and atmospheric circulation during summer: though a relationship exists. it is not strong enough to field reliable regression models when only a relatively short overlap period (55 years in this studs) exists for calibration and verification. Further attempts to reconstruct large-scale atmospheric circulation patterns that include precipitation-sensitive networks of tree-ring data are likely to produce improved results.

WOS,
Scopus

Держатели документа:
Univ E Anglia, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland
Russian Acad Sci, Ural Div, Inst Plant & Anim Ecol, Ekaterinburg 620219, Russia
Russian Acad Sci, Siberian Div, Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Briffa, K.R.; Osborn, T.J.; Schweingruber, F.H.; Jones, P.D.; Shiyatov, S.G.; Vaganov, E.A.

    Variation of early summer and annual temperature in east Taymir and Putoran (Siberia) over the last two millennia inferred from tree rings
[Text] / M. M. Naurzbaev, E. A. Vaganov // J. Geophys. Res.-Atmos. - 2000. - Vol. 105, Is. D6. - P7317-7326, DOI 10.1029/1999JD901059. - Cited References: 40 . - 10. - ISSN 2169-897X
РУБ Meteorology & Atmospheric Sciences

Аннотация: Regional tree ring chronology with extension 2209 years (from 212 B.C. till 1996 A.D.) was built for east Taymir and Putoran according to wood of living trees, well- preserved remains of dead trees, and subfossil wood from alluvial bank deposits by the cross-dating method. In addition, the "floating" tree ring width chronology for the period of Holocene optimum (3300-2600 B.C.) was built with extention 685 years and supported by several radiocarbon dates. High values of synchrony and correlation of individual tree ring series show a prevailing effect of one external factor on radial tree growth change in the studied region of the Siberian subarctic. It was established that the main factors of growth variability are the early summer and annual temperature, which explain up to 70% of tree growth rate variability. Cyclic components stable for two millennia were revealed at analysis of the tree ring chronology: double secular (similar to 180 years), secular (78-90 years), and intrasecular (44, 28, 11, and 6.7-6.9 years) variations. Models for reconstruction of the early summer and annual air temperature were obtained according to tree ring variability. Temperature dynamics in the eastern part of Taymir for the last two millenia agree well with temperature variations in the Northern Hemisphere obtained according to other indirect sources. The warming of the middle of the twentieth century is not extraordinary. The warming at the end of the first and beginning of the second millennia ("Medieval Warm Period") was longer in time and closer in amplitude.

Полный текст,
WOS,
Scopus

Держатели документа:
Taymir Biospher Reserve, Khatanga, Russia
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Naurzbaev, M.M.; Vaganov, E.A.