Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 71
   РСФ
   C61

    Climatic and man-induced patterns of river runoff formation in Central and Northern Eurasia
: absracts / A. A. Onuchin [и др.] // Enviromis. International conference on enviromental observations, modelling and information systems, Tomsk, Russia, July 1-8, 2006: program and abstracts. - 2006. - С. 75-76

Аннотация: The runoff of some Siberian, Central Asia, and Western European rivers is modelled to analyse the relative influence of climate. The runoff data were analysed by multiple regression analysis. Thus a change of runoff formation can be used as an environmental indicator for sustainable land use. The river runoff integrates changes of land surface/atmosphere exchange processes in the entire catchment. These processes can be drastically altered by human land use change.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Onuchin, Alexandr Alexandrovich; Онучин, Александр Александрович; Balzter, H.; Балзтер Х.; Gaparov, K.; Гапаров К.К.; Blyth, E.; Блис Э.; Grekova, Yu.; Грекова Ю.
Имеются экземпляры в отделах:
РСФ (12.03.2008г. (1 экз.) - Б.ц.) - свободны 1

    Human impact on forest stability and development in Kyrgystan
: материалы временных коллективов / R. T. Murzakmatov, R. K. Murzakmatova // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 41-42. - Библиогр. в конце ст.

Аннотация: The problems of valuation of forest resources in Kyrgystan are shortly discussed. The woodlands which possess sorces of row materials of social and economic priority are maintained by local populations under the conditions of traditional forest utilization/ The prevalence of exploitatioin of side, not wood resources is the special feature of forestry in Kyrgystan. The suggestion is that the elaboration of special criteria for estimation of forest typological variation is urgenly required.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Murzakmatova, Rakhat Kul,baltiyevna; Мурзакматова, Рахат Кулбалтиевна; Мурзакматов, Рысбек Тобокелович

    Microbiological bioindication factors and bioremediation of disturbed forest ecosystems of Siberia
: материалы временных коллективов / N. D. Sorokin [и др.] // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 184-186. - Библиогр. в конце ст.

Аннотация: Microbial community and population amounts, as well as functional activity, can be concluded to indicate level of human-caused forest ecosystem disturbance at early stage of anthropogenesis. This study identified mocroorganisms useful for bioremediation of disturbed components of forest ecosystems differing in disturbance level. Application of biologically active agents (bacteria and microscopic fungi) was shown to be useful for restoring and improving soil conditions during bioremediation (sanation).

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Sorokin, Nikolay Dmitriyevich; Сорокин, Николай Дмитриевич; Grodnitskaya, Irina Dmitriyevna; Гродницкая, Ирина Дмитриевна; Pashenova, Natal'ya Veniaminovna; Пашенова, Наталья Вениаминовна; Yevgrafova, Svetlana Yur'yevna; Евграфова, Светлана Юрьевна; Yelistratova, E.N.; Елистратова Э.Н.

    Fire return intervals within the northern boundary of the larch forest in Central Siberia
/ V. I. Kharuk, M. L. Dvinskaya, K. J. Ranson // Int. J. Wildland Fire. - 2013. - Vol. 22, Is. 2. - P207-211, DOI 10.1071/WF11181. - Cited References: 28. - This research was supported by the SB RAS Program Number 27.33, and NASA Science Mission Directorate, Terrestrial Ecology Program. The authors thank Dr Joanne Howl for editing the manuscript. . - 5. - ISSN 1049-8001
РУБ Forestry

Аннотация: A fire history of northern larch forests was studied. These larch forests are found near the northern limit of their range at similar to 71 degrees N, where fires are predominantly caused by lightning strikes rather than human activity. Fire-return intervals (FRIs) were calculated based on fire scars and dates of tree natality. Tree natality was used as an approximation of the date of the last fire. The average FRI was found to be 295 +/- 57 years, which is the longest reported for larch-dominated stands. Prior studies reported 80-90-year FRIs at 64 degrees N and similar to 200 years near the latitude of the Arctic Circle. Comparing data from fires that occurred in 1700-1849 (end of the Little Ice Age, LIA) and 1850-1999 (post-LIA warming) indicates approximately twice as many fires occurred during the latter period. This agrees with the hypothesis that observed climatic warming will result in an increase in fire frequency. Our results also indicate that fires that did not leave visible fire scars on the tree stem may be identified based on the date of growth release revealed from dendrochronology.

WOS,
Scopus

Держатели документа:
[Kharuk, Vyacheslav I.
Dvinskaya, Mariya L.] Siberian Fed Univ, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Ranson, K. Jon] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA

Доп.точки доступа:
Kharuk, V.I.; Dvinskaya, M.L.; Ranson, K.J.

    Carbon budget recovery and role of coarse woody debris in post-logging forest ecosystems of Southern Siberia
/ L. . Mukhortova // Bosque. - 2012. - Vol. 33, Is. 3. - P261-265, DOI 10.4067/S0717-92002012000300005. - Cited References: 10. - This research was supported by the Russian Foundation for Basic Research (RFBR) (Grants 10-04-00337 and 11-04-01884) and by joint grants of RFBR and Krasnoyarsk Regional Foundation for Science and Technical Development (Projects 11-04-98008 and 11-04-98089). . - 5. - ISSN 0304-8799
РУБ Ecology + Forestry
Рубрики:
BOREAL FORESTS
Кл.слова (ненормированные):
carbon budget -- logging -- phytomass -- coarse woody debris -- decomposition

Аннотация: Forest harvesting is a major human-caused disturbance affecting carbon budgets in forest ecosystems. This study was concerned with post-logging carbon pool changes in Scots pine (Pinus sylvestris) and Siberian fir (Abies sibirica) stands. To understand carbon budget recovery trends following logging, carbon stock and fluxes were measured in stands differing in time since logging. In both Scots pine and fir stands disturbed by logging, the tree phytomass contribution to the carbon budget decreased drastically, whereas the coarse woody debris (CWD) carbon pool exhibited a marked increase. Sixty years following logging, the Scots pine stand carbon storage was almost 70 % of that prior to logging and the ratio between the phytomass and soil organic matter was the same as before the disturbance. While the phytomass carbon showed a similar trend in the fir stand of the same age, it was less than on the control stand. In a 50-55-year-old fir stand, 26 years since harvesting, the phytomass carbon recovered only by 15 %. Siberian fir and Scots pine logging sites differed in CWD loading and decomposition rate. The phytomass dynamics and CWD loading values obtained suggest that Scots pine stands which have experienced logging are most likely carbon sinks, as was clear from the phytomass production exceeding organic matter decomposition-caused fluxes. Conversely, logged fir ecosystems are likely to be sources of carbon to the atmosphere due to a large CWD loading, faster rate of its decomposition, and slow phytomass increment.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk, Russia

Доп.точки доступа:
Mukhortova, L...; Мухортова, Людмила Владимировна

    Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers
/ E. D. Schulze [et al.] // Biogeosciences. - 2012. - Vol. 9, Is. 4. - P1405-1421, DOI 10.5194/bg-9-1405-2012. - Cited References: 39. - We thank Annett Borner for her help with the artwork, and Dominik Hessenmoller for his help. We also thank Inge Schulze for all her support during the fieldwork. The data processing was supported by the Russian "Megagrant" 11.G34.31.0014 from 30 November 2010 to E. D. Schulze by the Russian Federation and the Siberian Federal University to support research projects by leading scientists at Russian Institutions of higher Education. . - 17. - ISSN 1726-4170
РУБ Ecology + Geosciences, Multidisciplinary

Аннотация: The relative role of fire and of climate in determining canopy species composition and aboveground carbon stocks were investigated. Measurements were made along a transect extending from the dark taiga zone of central Siberia, where Picea and Abies dominate the canopy, into the Larix zone of eastern Siberia. We test the hypotheses that the change in canopy species composition is based (1) on climate-driven performance only, (2) on fire only, or (3) on fire-performance interactions. We show that the evergreen conifers Picea obovata and Abies sibirica are the natural late-successional species both in central and eastern Siberia, provided there has been no fire for an extended period of time. There are no changes in performance of the observed species along the transect. Fire appears to be the main factor explaining the dominance of Larix and of soil carbon. Of lesser influence were longitude as a proxy for climate, local hydrology and active-layer thickness. We can only partially explain fire return frequency, which is not only related to climate and land cover, but also to human behavior. Stand-replacing fires decreased from 300 to 50 yrs between the Yenisei Ridge and the upper Tunguska. Repeated non-stand-replacing surface fires eliminated the regeneration of Abies and Picea. With every 100 yrs since the last fire, the percentage of Larix decreased by 20%. Biomass of stems of single trees did not show signs of age-related decline. Relative diameter increment was 0.41 +/- 0.20% at breast height and stem volume increased linearly over time with a rate of about 0.36 t C ha(-1) yr(-1) independent of age class and species. Stand biomass reached about 130 t C ha(-1)(equivalent to about 520 m(3) ha(-1)). Individual trees of Larix were older than 600 yrs. The maximum age and biomass seemed to be limited by fungal rot of heart wood. 60% of old Larix and Picea and 30% of Pinus sibirica trees were affected by stem rot. Implications for the future role of fire and of plant diseases are discussed.

WOS,
Scopus

Держатели документа:
[Schulze, E. -D.
Mollicone, D.
Ziegler, W.] Max Planck Inst Biogeochem, D-07701 Jena, Germany
[Wirth, C.] Univ Leipzig, Inst Biol, D-04103 Leipzig, Germany
[Mollicone, D.
Achard, F.] Joint Res Ctr, Inst Environm & Sustainabil, I-21027 Ispra, Italy
[von Luepke, N.
Mund, M.] Univ Gottingen, Dept Ecoinformat Bioemetr & Forest Growth, D-37077 Gottingen, Germany
[Prokushkin, A.] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk, Russia
[Scherbina, S.] Centralno Sibirsky Nat Reserve, Bor, Russia

Доп.точки доступа:
Schulze, E.D.; Wirth, C...; Mollicone, D...; von Lupke, N...; Ziegler, W...; Achard, F...; Mund, M...; Prokushkin, A...; Scherbina, S...

    Declining fires in Larix-dominated forests in northern Irkutsk district
[Text] / T. . Wallenius [et al.] // Int. J. Wildland Fire. - 2011. - Vol. 20, Is. 2. - P248-254, DOI 10.1071/WF10020. - Cited References: 43. - Aleksey Sadvordaev, Galina Zrazhevskaya, Toivo Haltia and Antti Lavikainen helped with the challenging arrangements and the field work. Oskar Ofluds Stiftelse, Nordenskiolds Samfundet and Ulla Wallenius funded the expedition to central Siberia. The Maj and Tor Nessling Foundation (grant number 2003064), Emil Aaltonen Foundation and Finnish Academy (grant number 121919) financed this long-duration study from field work to publication. . - 7. - ISSN 1049-8001
РУБ Forestry

Аннотация: To study the poorly known fire history of Larix-dominated forest in central Siberia, we collected samples from 200 trees in 46 systematically located study plots. Our study area stretches similar to 90 km from north to south along the River Nizhnyaya Tunguska in northern Irkustk district. Cross-dated tree-ring chronology for all samples combined extended from the year 1360 AD to the present and included 76 fire years and 88 separate fire events. Average fire cycle gradually lengthened from 52 years in the 18th century to 164 years in the 20th century. During the same time, the number of recorded fires decreased even more steeply, i.e. by more than 85%. Fires were more numerous but smaller in the past. Contrary to expectations, climate change in the 20th century has not resulted in increased forest fires in this region. Fire suppression may have contributed to the scarcity of fires since the 1950s. However, a significant decline in fires was evident earlier; therefore an additional explanation is required, a reduction in human-caused ignitions being likely in the light of historical accounts.

WOS,
Scopus

Держатели документа:
[Wallenius, Tuomo
Heikkinen, Juha] Finnish Forest Res Inst, Vantaa Res Unit, FI-01301 Vantaa, Finland
[Larjavaara, Markku] Smithsonian Trop Res Inst, Balboa, Ancon, Panama
[Shibistova, Olga] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Wallenius, T...; Larjavaara, M...; Heikkinen, J...; Shibistova, O...

    Climate signals in tree-ring width, density and delta C-13 from larches in Eastern Siberia (Russia)
[Text] / A. V. Kirdyanov [et al.] // Chem. Geol. - 2008. - Vol. 252, Is. 01.02.2013. - P31-41, DOI 10.1016/j.chemgeo.2008.01.023. - Cited References: 74 . - 11. - ISSN 0009-2541
РУБ Geochemistry & Geophysics

Аннотация: We present the first and longest (413 years) dataset on stable carbon isotope ratios in tree-ring cellulose (delta C-13), tree-ring width (TRW), and maximum latewood density (MXD) obtained from larch trees growing on permafrost under continental climate in the Suntar Khayata mountain ridge in Eastern Siberia (Russia). With this first study we calibrate tree-ring parameters against climate quantities, and based on these results assess the potential added value of MXD and especially of delta C-13 complementing TRW analysis for future climate reconstruction purposes. delta C-13 chronologies were corrected for human induced changes in atmospheric CO2 since AD 1800. Two different approaches were compared i) a correction referring merely to the decline in atmospheric delta C-13 (delta C-13(atm)) and ii) a correction additionally accounting for the increase in atmospheric partial pressure of CO2. delta C-13 chronologies are characterized by strong signal strength with only 4 trees representing the population signal at the site (mean inter-series correlation = 0.71 and EPS = 0.90). delta C-13 variation shows low similarity to TRW and MXD, while correlation between TRW and MXD is highly significant. Correlation analysis of tree-ring parameters with gridded instrumental data (Climate Research Unit, CRU TS 2.1) over the AD 1929-2000 calibration period demonstrates that TRW and MXD react as reported from other sites at cold and humid northern latitudes: precipitation plays no significant role, but strong dependencies on monthly mean, maximum and minimum temperatures, particularly of the current summer (June to August), are found (up to r=0.60, p<0.001). Combining instrumental data to a summer season mean (JJA) and TRW and MXD to a growth parameter mean (TRW+MXD), clearly shows the importance of the number of frost days and minimum temperatures during summer (r=0.67, p <0.001) to dominate tree growth and highlights the potential for climate reconstruction. Carbon isotope fixation in tree rings is obviously less controlled by temperature variables. In particular, the frost days and minimum temperature have a much smaller influence on delta C-13 than on tree growth. delta C-13 strongly reacts to current-year July precipitation (r=-0.44, p<0.05) and June-July maximum temperature (r=0.46, p<0.001). All significant (p<0.05) correlation coefficients are higher when using the corrected delta C-13 chronology considering an additional plant physiological response on increasing atmospheric CO2 concentration, than using the chronology corrected for delta C-13(atm) changes alone. Spatial distribution of correlations between tree-ring data and climate variables for Eastern Siberia indicates that the summer temperature regime in the studied region is mostly influenced by Arctic air masses, but precipitation in July seems to be brought out from the Pacific region. Both the combined TRW+MXD record and the (513 C record revealed a high reconstruction potential for summer temperature and precipitation, respectively, particularly on decadal and longer-term scales. (C) 2008 Elsevier B.V. All rights reserved.

Полный текст,
WOS

Держатели документа:
[Kirdyanov, Alexander V.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Treydte, Kerstin S.] Swiss Fed Res Inst WSL, CH-8903 Birmensdorf, Switzerland
[Nikolaev, Anatolli] Melnikov Inst Permafrost SB RAS Yakutsk, Yakutsk, Russia
[Helle, Gerhard
Schleser, Gerhard H.] ICG V, Inst Chem & Dynam Geosphere, Res Ctr Juelich GmbH, Julich, Germany

Доп.точки доступа:
Kirdyanov, A.V.; Treydte, K.S.; Nikolaev, A...; Helle, G...; Schleser, G.H.

    The Relationship of the Terra MODIS Fire Product and Anthropogenic Features in the Central Siberian Landscape
[Text] / K. . Kovacs [et al.] // Earth Interact. - 2004. - Vol. 8. - Ст. 18. - Cited References: 28. - This work was funded by NASA's Office for Earth Sciences. Thanks to Marc Imhoff for access to DMSP stable lights data. We also thank the anonymous reviewers for their thoughtful suggestions. . - 25. - ISSN 1087-3562
РУБ Geosciences, Multidisciplinary

Кл.слова (ненормированные):
Boreal -- Fire -- Humans

Аннотация: Fires are a common occurrence in the Siberian boreal forest. The thermal anomalies product of the Terra/Moderate Resolution Imaging Spectroradiometer (MODIS) product suite is designed to detect thermal anomalies (i.e., hotspots or fires) on the Earth's surface. Many, but not all, of the hot spots detected by MODIS in Siberia are wild fires. Agricultural burning and industrial activities also contribute. Using MODIS data from the years 2001, 2002, and 2003 along with a geographical information system (GIS), the type, extent, and duration of hot spots were examined. In addition, high correlations were found between the number of fires and proximity to human activities. Different types of land-cover thermal anomalies were found to have a strong, positive correlation with some anthropogenic features, such as roads, human settlements, and mineral industry locations. The agricultural (r(2) = 0.95) and the forest (r(2) = 0.81) thermal anomalies had the highest positive correlation with proximity to roads. The correlation was stronger between burned forests and roads (r(2001)(2) = 0.81, r(2002)(2) = 0.90, r(2003)(2) = 0.88) than between any forested land and roads (r(2) = 0.52). The results indicate that forest fires tend to occur near agricultural fires (r(2001)(2) 0.93, r(2002)(2) = 0.87, r(2003)(2) = 0.94). Anthropogenic feature and land-cover thermal anomaly (LCTA) relationships tend to be stronger in a high fire year (2003) than in a low fire year (2001). This alone does imply causation, but might be an indicator of natural and anthropogenic factors acting together to shape where and when fires are burning. These findings have important implications for carbon and climate modelers wishing to use MODIS products to quantify and predict carbon storage and climate change.

WOS

Держатели документа:
[Kovacs, Katalin] Sci Syst & Applicat Inc, Seabrook, MD 20706 USA
[Ranson, K. Jon] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[Sun, Guoqing] Univ Maryland, College Pk, MD 20742 USA
[Kharuk, Vlacheslav I.] Sukachev Inst Forest, Krasnoyarsk, Russia

Доп.точки доступа:
Kovacs, K...; Ranson, K.J.; Sun, G.Q.; Kharuk, V.I.; NASA's Office for Earth Sciences

    Mapping of Siberian forest landscapes along the Yenisey transect with AVHRR
[Text] / V. I. Kharuk [et al.] // Int. J. Remote Sens. - 2003. - Vol. 24, Is. 1. - P23-37, DOI 10.1080/0143116021000021143. - Cited References: 30 . - 15. - ISSN 0143-1161
РУБ Remote Sensing + Imaging Science & Photographic Technology

Аннотация: In this paper NOAA AVHRR data acquired at the Sukachev Institute of Forest in Siberia, Russia is evaluated for forest management mapping applications. First a classification of the entire 1000 km x 3000 km transect was performed, but was found to be too general to be of value. More useful interpretation procedures require a landscape-ecological approach. This means that computer classification should be made separately for segments of territory based ecologically distinct regions. This segmentation of the transect into ecological regions was found to improve the level of detail available in the classification. Using this approach AVHRR data were found to be adequate for small scale mapping at the level of vegetation types or plant formations. A limited study using AVHRR data for classification of mountainous regions showed that AVHRR-derived maps were more detailed than existing landscape maps. AVHRR derived classifications also compared favourably to larger scale forest management maps of softwood and hardwood forests. Current forest management in Siberia relies on very small-scale inventory maps. Thus, there is a potential role for AVHRR (or Terra) data for northern Siberian forest monitoring. The southern forests of the Yenisey meridian (below the 57th parallel) are less uniform due to considerable human activity, and NOAA/AVHRR data will play a subordinate role in its monitoring.

Полный текст,
WOS,
Scopus

Держатели документа:
Sukachev Inst Forest, Krasnoyarsk, Russia
NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA

Доп.точки доступа:
Kharuk, V.I.; Ranson, K.J.; Burenina, T.A.; Fedotova, E.V.

    Landsat-7 for evaluation of oilfield exploitation impacts on the south Evenkiya larch dominant communities
[Text] / V. I. Kharuk, K. J. Ranson, S. T. Im ; ed.: AM Larar, Q Tong, Tong, // MULTISPECTRAL AND HYPERSPECTRAL REMOTE SENSING INSTRUMENTS AND APPLICATIONS. Ser. PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE) : SPIE-INT SOC OPTICAL ENGINEERING, 2003. - Vol. 4897: Conference on Multispectral and Hyperspectral Remote Sensing Instruments and Applications (OCT 25-27, 2002, HANGZHOU, PEOPLES R CHINA). - P272-278, DOI 10.1117/12.466865. - Cited References: 3 . - 7. - ISBN 0277-786X. - ISBN 0-8194-4683-1
РУБ Geosciences, Multidisciplinary + Instruments & Instrumentation + Remote Sensing + Optics + Physics, Applied

Кл.слова (ненормированные):
Landsat-7 -- oilfields reconnaissance and exploitation -- anthropogenic disturbances -- wildfires -- Siberian taiga

Аннотация: This paper study considers the effects of oil exploration and development in the oilfields of Evenkiya, Central Siberia (60degrees30'N/96degrees30'E). The drilling in this area was initiated in 1970, and the first oil was extracted in 1977. Image data from the US' Landsat - 7, the Russian "Resours", and the European ERS-2 remote sensing satellites were analyzed. The information value of the Landsat-7channels was evaluated. In particular, the fresh oil drilling sites effectively differ from old ones in the third (0.63-0.69 mum) and fourth (0.75-0.90 mum) channels. Recently burned areas are detectable in the middle IR (1.55-1.75, 2.08-2.35 mum). The classification accuracy depends on the number of channels used, but does not improve greatly using more than 4 or 5 channels. Landsat - 7 scenes enable the detection of patterns for parallel strips (5 - 10 in in width) of cut forest, the first sign of the oil reconnaissance. Alongside the direct impacts of oil-exploitation, fire frequency was increased. The "big" fires (area > 200 ha) caused similar to90% of the total damage, but only accounted for 10% of total firescars. The area of human-caused impact is similar to20% of territory, which is similar to2.5 higher than average for known oil development areas within the Landsat scene. The ERS-2 scenes were found to be effective for mapping fresh drilling sites only. The comparative analysis of "Resours" KFA-1000 camera scene (June 1984) and Landsat-7 (October 1999) showed that during this period the number of oilrigs increased nearly 5 times. Generally, the Landsat-7 data are effective for early detection of the anthropogenic impact on the Siberian larch-dominated communities.

WOS,
Scopus

Держатели документа:
Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Kharuk, V.I.; Ranson, K.J.; Im, S.T.; Larar, AM \ed.\; Tong, Q \ed.\; Tong, \ed.\

    The carbon balance in natural and disturbed forests of the southern taiga in central Siberia
[Text] / E. F. Vedrova, L. S. Shugalei, V. D. Stakanov // J. Veg. Sci. - 2002. - Vol. 13: IGBP Terrestrial Transects Workshop (JUL 12-16, 1999, DARWIN, AUSTRALIA), Is. 3. - P341-350, DOI 10.1111/j.1654-1103.2002.tb02058.x. - Cited References: 55 . - 10. - ISSN 1100-9233
РУБ Plant Sciences + Ecology + Forestry
Рубрики:
TEMPERATE ZONE
   ECOSYSTEMS

   CYCLE

Кл.слова (ненормированные):
decomposition -- flux -- forest ecosystem -- humification -- mineralization -- primary production -- soil organic matter

Аннотация: We evaluated the balance of production and decomposition in natural ecosystems of Pinus sylvestris, Larix sibirica and Betula pendula in the southern boreal forests of central Siberia. using the Yenisei transect. We also investigated whether anthropogenic disturbances (logging, fire and recreation pressure) influence the carbon budget. Pinus and Larix stands up to age class VI act as a net sink for atmospheric carbon. Mineralization rates in young Betula forests exceed rates of uptake via photosynthesis assimilation. Old-growth stands of all three forest types are CO2 sources to the atmosphere. The prevalence of old-growth Larix in the southern taiga suggests that Larix stands are a net source of CO2. The CO, flux to the atmosphere exceeds the uptake of atmospheric carbon via photosynthesis by 0.23 t C.ha(-1).yr(-1) (47%). Betula and Pinus forests are net sinks, as photosynthesis exceeds respiration by 13% and 16% respectively. The total carbon flux from Pinus, Larix and Betula ecosystems to the atmosphere is 10 387 thousand tons C.yr(-1). Net Primary Production (0.935 t-C.ha(-1)) exceeds carbon release from decomposition of labile and mobile soil organic matter (Rh) by 767 thousand tons C (0.064 t-C.ha(-1)), so that these forests are net C-sinks. The emissions due to decomposition of slash (10 1 thousand tons C; 1.0%) and from fires (0.21%) are very small. The carbon balance of human-disturbed forests is significantly different. A sharp decrease in biomass stored in Pinus and Betula ecosystems leads to decreased production. As a result, the labile organic matterpool decreased by 6-8 times; course plant residues with a low decomposition rate thus dominate this pool. Annual carbon emissions to the atmosphere from these ecosystems are determined primarily by decomposing fresh litterfall. This source comprises 40-79% of the emissions from disturbed forests compared to only 13-28% in undisturbed forests. The ratio of emissions to production (NPP) is 20-30% in disturbed and 52-76% in undisturbed forests.

WOS

Держатели документа:
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest & Wood, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Vedrova, E.F.; Shugalei, L.S.; Stakanov, V.D.

    Weismannian concept of germ plasm - The main reason of inadequacy of neo-Darwinism
[Текст] / D. L. Grodnitsky // Zhurnal Obshchei Biol. - 2000. - Vol. 61, Is. 4. - С. 371-380. - Cited References: 74 . - 10. - ISSN 0044-4596
РУБ Biology

Аннотация: Neo-Darwinism is a result of synthesis of Darwinian concept of natural selection with Weismannian concept of germ plasm. The concept of germ plasm is based on a hypothesis that phenotypic traits are completely determined by genes. Hence, neo-Darwinism describes evolution as a process of alternation of ene frequencies under the effect of natural selection. This is an inadequate approach to the study of evolution. In the course of evolution, genes change their functions, whereas phenotypic characters change their corresponding genes. As a result, every step of evolutionary transformation changes the structure of phenotype-to-genotype correspondence. Therefore, phenotypic evolution cannot be described in genetic terms, the same as to human languages cannot be translated one into another whenever the meaning of words is constantly changing. Consequently, Weismannian germ-plasm concept adequately desribes the relation of characters to genes only during stasis, but is inapplicable to evolution.

WOS

Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest Res, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Grodnitsky, D.L.

    Wildfire in Russian boreal forests - Potential impacts of fire regime characteristics on emissions and global carbon balance estimates
[Text] / S. G. Conard, G. A. Ivanova // Environ. Pollut. - 1997. - Vol. 98, Is. 3. - P305-313, DOI 10.1016/S0269-7491(97)00140-1. - Cited References: 41 . - 9. - ISSN 0269-7491
РУБ Environmental Sciences
Рубрики:
VEGETATION
   ATMOSPHERE

   DIOXIDE

   BIOMASS

   CLIMATE

   CANADA

Кл.слова (ненормированные):
Russia -- boreal forests -- fires -- carbon balance

Аннотация: Most of the research about the effects of the release of carbon and other chemicals to the atmosphere during forest fir es focuses on emissions from crown fires or slash fires in which a high percentage of the fine fuels are burned However, in many temper-ate and boreal conifer ecosystems, surface fires of varying intensities and severities are an important part of the fire regime. In Russia a large percentage of the area burned in a typical year is in surface fires, which will result in lower carbon emissions than crown fires because of lower fuel consumption. lit Russian boreal for est, different distribution patterns of fire severity across the landscape could produce fourfold differences in carbon release. Furthermore, tree mortality after surface fires is often quite extensive, leading to a pulse in carbon release as needles and other fine fuels fall to the ground and decompose. With extensive tree mortality a decrease in carbon sequestration is expected for several years, until stand level photosynthesis returns to prefire levels. Perhaps the largest potential source of error in estimates of carbon release from biomass fires in Russia is inaccuracy in estimates of burned area. Many published estimates of annual burned area in Russia may be extremely low. On the basis of information on fire return intervals and area of boreal forest, 12 million ha per year may be a reasonable conservative estimate of burned area until better data are available. Based on this estimate, direct and indirect fire-generated carbon emissions from boreal forests worldwide may exceed 20% of the estimated global emissions from biomass burning, making them an important component in understanding global atmospheric chemistry. In considering effects of fire an global atmospheric chemistry, it is important to include the effects of fire severity, postfire mortality, decomposition of fine fuels, and changing postfire vegetation structure as components of fire-induced changes in ecosystem-level carbon flux. But the most important factor may be accurate information on the annual area burned. Levels of carbon storage are likely to be highly sensitive to changes in fire return intervals that result from direct human activities and from climatic changes, making accurate assessments of burned areas and fire severity critical. Strong fire management programs will be key to managing future fire regimes and carbon cycling in Russia's boreal forest. Published by Elsevier Science Ltd.

Полный текст,
WOS,
Scopus

Держатели документа:
US Forest Serv, Washington, DC 20250 USA
Russian Acad Sci, Sukachev Forest Inst, Akademgorodok 660036, Krasnoyarsk, Russia

Доп.точки доступа:
Conard, S.G.; Ivanova, G.A.

    Satellite-derived 2003 wildfires in southern Siberia and their potential influence on carbon sequestration
[Text] / S. . Huang [et al.] // Int. J. Remote Sens. - 2009. - Vol. 30, Is. 6. - P1479-1492, DOI 10.1080/01431160802541549. - Cited References: 37. - We thank the European Space Agency Centre for Earth Observation (ESA-ESRIN) for financial support and data provision, and the Max Planck Institute for Chemistry/Global Fire Monitoring Centre for funding aerial and ground surveys in the Transbaikal region. Special thanks to Dr Robert Crabtree for his support on finishing the manuscript, Mr Shawn Gray for improving the English and Mr Alan Swanson for helping with the statistical analysis. . - 14. - ISSN 0143-1161
РУБ Remote Sensing + Imaging Science & Photographic Technology

Аннотация: The burned area, fuel type, crown fire percentage, and carbon release of the southern Siberia 2003 wildfire were analysed using AVHRR, MODIS, MERIS, ASTER images and a carbon release model. More than 200 000 km2 were burned from 14 March to 8 August 2003, of which 71.4% was forest, 9.5% humid grassland, and 2.15% bogs or marshes. During 1996 to 2003, 32.2% of the forested area and 23.36% of the total area was burned, and 13.9% of the total area was affected by fire at least twice. Direct carbon emission from this 2003 fire was around 400640 Tg. The 2003 Siberian fires could well have contributed to the high increase of the atmospheric CO2 and CO concentration in 2003. The increasing human pressure coupled with intensive fire severity, recurrent fire frequency, and increasing occurrence of summer droughts will reduce the carbon sequestration potential of this important carbon pool.

Полный текст,
WOS,
Scopus

Держатели документа:
[Huang, S.] Univ Munich, GeoBio Ctr, Munich, Germany
[Siegert, F.] Remote Sensing Solut GmbH, Munich, Germany
[Goldammer, J. G.] Univ Freiburg, Max Planck Inst Chem, Biogeochem Dept, Fire Ecol Res Grp,Global Fire Monitoring Ctr, Freiburg, Germany
[Sukhinin, A. I.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk, Russia

Доп.точки доступа:
Huang, S...; Siegert, F...; Goldammer, J.G.; Sukhinin, A.I.; European Space Agency Centre for Earth Observation (ESA-ESRIN); Max Planck Institute for Chemistry/Global Fire Monitoring Centre

    Response of evapotranspiration and water availability to changing climate and land cover on the Mongolian Plateau during the 21st century
[Text] / Y. L. Liu [et al.] // Glob. Planet. Change. - 2013. - Vol. 108. - P85-99, DOI 10.1016/j.gloplacha.2013.06.008. - Cited References: 134. - This research is supported by the NASA Land Use and Land Cover Change program (NASA-NNX09AI26G, NN-H-04-Z-YS-005-N, and NNX09AM55G), the Department of Energy (DE-FG02-08ER64599), the National Science Foundation (NSF-1028291 and NSF-0919331), and the NSF Carbon and Water in the Earth Program (NSF-0630319). The computing is supported by the Rosen Center of High Performance Computing at Purdue University. Special acknowledgment is made here to Prof. Eric Wood of Princeton University for his generous provision of ET dataset in the Vinukollu et al. (2011). Diego Miralles acknowledges the support by the European Space Agency WACMOS-ET project (contract no.4000106711/12/I-NB). . - 15. - ISSN 0921-8181
РУБ Geography, Physical + Geosciences, Multidisciplinary

Аннотация: Adequate quantification of evapotranspiration (ET) is crucial to assess how climate change and land cover change (LCC) interact with the hydrological cycle of terrestrial ecosystems. The Mongolian Plateau plays a unique role in the global climate system due to its ecological vulnerability, high sensitivity to climate change and disturbances, and limited water resources. Here, we used a version of the Terrestrial Ecosystem Model that has been modified to use Penman-Monteith (PM) based algorithms to calculate ET. Comparison of site-level ET estimates from the modified model with ET measured at eddy covariance (EC) sites showed better agreement than ET estimates from the MODIS ET product, which overestimates ET during the winter months. The modified model was then used to simulate ET during the 21st century under six climate change scenarios by excluding/including climate-induced LCC. We found that regional annual ET varies from 188 to 286 mm yr(-1) across all scenarios, and that it increases between 0.11 mm yr(-2) and 0.55 mm yr(-2) during the 21st century. A spatial gradient of ET that increases from the southwest to the northeast is consistent in all scenarios. Regional ET in grasslands, boreal forests and semi-desert/deserts ranges from 242 to 374 mm yr(-1), 213 to 278 mm yr(-1) and 100 to 199 mm yr(-1), respectively; and the degree of the ET increase follows the order of grassland, semi-desert/desert, and boreal forest. Across the plateau, climate-induced LCC does not lead to a substantial change (<5%) in ET relative to a static land cover, suggesting that climate change is more important than LCC in determining regional ET. Furthermore, the differences between precipitation and ET suggest that the available water for human use (water availability) on the plateau will not change significantly during the 21st century. However, more water is available and less area is threatened by water shortage in the Business-As-Usual emission scenarios relative to level-one stabilization emission scenarios. (C) 2013 Elsevier B.V. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Liu, Yaling
Zhuang, Qianlai
Chen, Min
He, Yujie] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA
[Zhuang, Qianlai
Bowling, Laura] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA
[Pan, Zhihua] China Agr Univ, Coll Resources & Environm Sci, Beijing 100193, Peoples R China
[Pan, Zhihua] Minist Agr, Key Ecol & Environm Expt Stn Field Sci Observat H, Inner Mongolia 011705, Peoples R China
[Tchebakova, Nadja
Parfenova, Elena] Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
[Sokolov, Andrei] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[Kicklighter, David
Melillo, Jerry] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA
[Sirin, Andrey] Russian Acad Sci, Inst Forest Sci, Lab Peatland Forestry & Ameliorat, Uspenskoye 143030, Moscow Oblast, Russia
[Zhou, Guangsheng] Chinese Acad Sci, State Key Lab Vegetat & Environm Change, Inst Bot, Beijing 100093, Peoples R China
[Chen, Jiquan] Univ Toledo, Dept Environm Sci, Toledo, OH 43606 USA
[Miralles, Diego] Univ Bristol, Sch Geog Sci, Bristol, Avon, England

Доп.точки доступа:
Liu, Y.L.; Zhuang, Q.L.; Chen, M...; Pan, Z.H.; Tchebakova, N...; Sokolov, A...; Kicklighter, D...; Melillo, J...; Sirin, A...; Zhou, G.S.; He, Y.J.; Chen, J.Q.; Bowling, L...; Miralles, D...; Parfenova, E...; NASA [NASA-NNX09AI26G, NN-H-04-Z-YS-005-N, NNX09AM55G]; Department of Energy [DE-FG02-08ER64599]; National Science Foundation [NSF-1028291, NSF-0919331, NSF-0630319]; European Space Agency WACMOS-ET project [4000106711/12/I-NB]

    Effects of repeated fires on ecosystem C and N stocks along a fire induced forest/grassland gradient
/ C. H. Cheng [et al.] // J. Geophys. Res.-Biogeosci. - 2013. - Vol. 118, Is. 1. - P215-225, DOI 10.1002/jgrg.20019. - Cited References: 56. - This study was supported by the National Science Council of Taiwan and the cooperative grant from the National Science Council of Taiwan and the Siberian Branch of the Russian Academy of Sciences. We gratefully acknowledge Dr. Julie Major for her helpful comments and review. We also thank Yin-Ru Lin, Chih-Yu Hung, Da-Fun Lin, Chung-Yu Lee, and Chang-Ya Chen for their valuable assistance during field work. . - 11. - ISSN 2169-8953
РУБ Environmental Sciences + Geosciences, Multidisciplinary

Аннотация: Repeated fires might have different effect on ecosystem carbon storage than a single fire event, but information on repeated fires and their effects on forest ecosystems and carbon storage is scarce. However, changes in climate, vegetation composition, and human activities are expected to make forests more susceptible to fires that recur with relatively high frequency. In this study, the effects of repeated fires on ecosystem carbon and nitrogen stocks were examined along a fire-induced forest/grassland gradient wherein the fire events varied from an unburned forest to repeatedly burned grassland. Results from the study show repeated fires drastically decreased ecosystem carbon and nitrogen stocks along the forest/grassland gradient. The reduction began with the disappearance of living tree biomass, and followed by the loss of soil carbon and nitrogen. Within 4 years of the onset of repeated fires on the unburned forest, the original ecosystem carbon and nitrogen stocks were reduced by 42% and 21%, respectively. Subsequent fires caused cumulative reductions in ecosystem carbon and nitrogen stocks by 68% and 44% from the original ecosystem carbon and nitrogen stocks, respectively. The analyses of carbon budgets calculated by vegetation composition and stable isotopic delta C-13 values indicate that 84% of forest-derived carbon is lost at grassland, whereas the gain of grass-derived carbon only compensates 18% for this loss. Such significant losses in ecosystem carbon and nitrogen stocks suggest that the effects of repeated fires have substantial impacts on ecosystem and soil carbon and nitrogen cycling. Citation: Cheng, C.-H., Y.-S. Chen, Y.-H. Huang, Chiou C.-R., C.-C. Lin, and O. V. Menyailo (2013), Effects of repeated fires on ecosystem C and N stocks along a fire induced forest/grassland gradient, J. Geophys. Res. Biogeosci., 118, 215-225, doi:10.1002/jgrg.20019

WOS,
Scopus,
Полный текст

Держатели документа:
[Cheng, Chih-Hsin
Chen, Yung-Sheng
Huang, Yu-Hsuan
Chiou, Chyi-Rong] Natl Taiwan Univ, Sch Forestry & Resource Conservat, Taipei 106, Taiwan
[Lin, Chau-Chih] Taiwan Forestry Res Inst, Div Forestry Protect, Taipei, Taiwan
[Menyailo, Oleg V.] Inst Forest SB RAS, Krasnoyarsk, Russia

Доп.точки доступа:
Cheng, C.H.; Chen, Y.S.; Huang, Y.H.; Chiou, C.R.; Lin, C.C.; Menyailo, O.V.

    Results of analysis of human impact on environment using the time series of vegetation satellite images around large industrial centers
[Text] / A. . Shevyrnogov [et al.] // Adv. Space Res. - 2008. - Vol. 41, Is. 1. - P36-40, DOI 10.1016/j.asr.2007.02.008. - Cited References: 7 . - 5. - ISSN 0273-1177
РУБ Astronomy & Astrophysics + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Кл.слова (ненормированные):
remote sensing -- industrial wastes -- vegetation index -- vegetation dynamics

Аннотация: The paper shows the efficiency of an application of the vegetation index image time series to determine long-term vegetation dynamics. The influence of large industrial centers of Siberia on the near-by vegetation is demonstrated. The analysis of the data shows that the influence of industrial waste is stronger in the Siberian North. These regions are characterized by critical conditions for vegetation existence. In the south of the Krasnoyarsk region, human impact is also important, but the possibility of vegetation self-rehabilitation is higher. The present-day economic situation in Russia is unique, with a temporary abrupt fall of industrial production and its following increase. Thus, we managed to analyze the degree of human impact on the environment within a relatively short-time interval. (C) 2007 Published by Elsevier Ltd on behalf of COSPAR.

Полный текст,
WOS,
Scopus

Держатели документа:
[Shevyrnogov, A.
Vysotskaya, G.
Tchernetsky, M.] Inst Biophys SB RAS, Krasnoyarsk 660036, Akademgorodak, Russia
[Vysotskaya, G.] Inst Computat Modeling SB RAS, Krasnoyarsk 660036, Akademgorodak, Russia
[Sukhinin, A.] Inst Forest SB RAS, Krasnoyarsk 660036, Akademgorodak, Russia
[Frolikova, O.] CC Krasnoyarskgeophys, Krasnoyarsk 660022, St Partizana Zh, Russia

Доп.точки доступа:
Shevyrnogov, A...; Vysotskaya, G...; Sukhinin, A...; Frolikova, O...; Tchernetsky, M...

    Tree species mediated soil chemical changes in a Siberian artificial afforestation experiment - Tree species and soil chemistry
[Text] / O. V. Menyailo, B. A. Hungate, W. . Zech // Plant Soil. - 2002. - Vol. 242, Is. 2. - P171-182, DOI 10.1023/A:1016290802518. - Cited References: 30 . - 12. - ISSN 0032-079X
РУБ Agronomy + Plant Sciences + Soil Science

Аннотация: Natural and human-induced changes in the composition of boreal forests will likely alter soil properties, but predicting these effects requires a better understanding of how individual forest species alter soils. We show that 30 years of experimental afforestation in Siberia caused species-specific changes in soil chemical properties, including pH, DOC, DON, Na+,NH4+, total C, C/N, Mn2+, and SO42-. Some of these properties-pH, total C, C/N, DOC, DON, Na+-also differed by soil depth, but we found no strong evidence for species-dependent effects on vertical differentiation of soil properties (i.e., no species x depth interaction). A number of soil properties-NO3-, N, Al3+, Ca2+, Fe3+, K+, Mg2+ and Cl- -responded to neither species nor depth. The six studied species may be clustered into three groups based on their effects on the soil properties. Scots pine and spruce had the lowest pH, highest C/N ratio and intermediate C content in soil. The other two coniferous species, Arolla pine and larch, had the highest soil C contents, highest pH values, and intermediate C/N ratios. Finally, the two deciduous hardwood species, aspen and birch, had the lowest C/N ratio, intermediate pH values, and lowest C content. These tree-mediated soil chemical changes are important for their likely effects on soil microbiological activities, including C and N mineralization and the production and consumption of greenhouse gases.

WOS,
Полный текст,
Scopus

Держатели документа:
Inst Forest SB RAS, Krasnoyarsk 660036, Russia
No Arizona Univ, Dept Sci Biol, Flagstaff, AZ 86001 USA
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86001 USA
Univ Bayreuth, Inst Soil Sci & Soil Geog, D-95447 Bayreuth, Germany

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.; Zech, W...

    A computer system for evaluating and predicting hurricane impact on forest
[Text] / F. I. Pleshikov [et al.] // Saf. Sci. - 1998. - Vol. 30, Is. 01.02.2013. - P3-8, DOI 10.1016/S0925-7535(98)00028-9. - Cited References: 13 . - 6. - ISSN 0925-7535
РУБ Engineering, Industrial + Operations Research & Management Science

Аннотация: A computer system for evaluating current forest state and predicting stand resistance to strong wind was tested in a case study of pine stands in the southern part of Central Siberia disturbed by a hurricane in 1994. The use of a local geographical information system (GIS) enabled determination of a combination of natural and human factors that increase the risk of windthrow. The factors were analyzed at three levels: landscape, stand, and single toe. Specific site conditions and human-caused disturbances of the natural vegetation community structure were found to be the major factors accounting for decreasing stand resistance to wind. (C) 1998 Elsevier Science Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Pleshikov, F.I.; Ryzkova, V.A.; Kaplunov, V.Y.; Usoltseva, J.V.