Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 6

    Agroclimatic potential across central Siberia in an altered twenty-first century
[Text] / N. M. Tchebakova [et al.] // Environ. Res. Lett. - 2011. - Vol. 6, Is. 4. - Ст. 45207, DOI 10.1088/1748-9326/6/4/045207. - Cited References: 38. - We would like to recognize the Northern Eurasian Earth Science Partnership Initiative (NEESPI) and the NASA Land Cover Land Use Change (LCLUC) program for providing the background that made this work possible. We are greatly appreciative of the current support for this work provided by the NASA InterDisciplinary Science grant NNH09ZDA001N-IDS and the Russian Foundation for Basic Research grant 10-05-00941. We thank our two anonymous reviewers for their very helpful comments. . - 11. - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Кл.слова (ненормированные):
climate warming -- central Siberia -- agriculture -- crop range and production

Аннотация: Humans have traditionally cultivated steppe and forest-steppe on fertile soils for agriculture. Forests are predicted to shift northwards in a warmer climate and are likely to be replaced by forest-steppe and steppe ecosystems. We analyzed potential climate change impacts on agriculture in south-central Siberia believing that agriculture in traditionally cold Siberia may benefit from warming. Simple models determining crop range and regression models determining crop yields were constructed and applied to climate change scenarios for various time frames: pre-1960, 1960-90 and 1990-2010 using historic data and data taken from 2020 and 2080 HadCM3 B1 and A2 scenarios. From 50 to 85% of central Siberia is predicted to be climatically suitable for agriculture by the end of the century, and only soil potential would limit crop advance and expansion to the north. Crop production could increase twofold. Future Siberian climatic resources could provide the potential for a great variety of crops to grow that previously did not exist on these lands. Traditional Siberian crops could gradually shift as far as 500 km northwards (about 50-70 km/decade) within suitable soil conditions, and new crops nonexistent today may be introduced in the dry south that would necessitate irrigation. Agriculture in central Siberia would likely benefit from climate warming. Adaptation measures would sustain and promote food security in a warmer Siberia.

WOS,
Scopus

Держатели документа:
[Tchebakova, N. M.
Parfenova, E. I.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Lysanova, G. I.] Russian Acad Sci, Siberian Branch, Inst Geog, Irkutsk, Russia
[Soja, A. J.] NASA, Langley Res Ctr, NIA, Hampton, VA 23681 USA

Доп.точки доступа:
Tchebakova, N.M.; Parfenova, E.I.; Lysanova, G.I.; Soja, A.J.

    The Relationship of the Terra MODIS Fire Product and Anthropogenic Features in the Central Siberian Landscape
[Text] / K. . Kovacs [et al.] // Earth Interact. - 2004. - Vol. 8. - Ст. 18. - Cited References: 28. - This work was funded by NASA's Office for Earth Sciences. Thanks to Marc Imhoff for access to DMSP stable lights data. We also thank the anonymous reviewers for their thoughtful suggestions. . - 25. - ISSN 1087-3562
РУБ Geosciences, Multidisciplinary

Кл.слова (ненормированные):
Boreal -- Fire -- Humans

Аннотация: Fires are a common occurrence in the Siberian boreal forest. The thermal anomalies product of the Terra/Moderate Resolution Imaging Spectroradiometer (MODIS) product suite is designed to detect thermal anomalies (i.e., hotspots or fires) on the Earth's surface. Many, but not all, of the hot spots detected by MODIS in Siberia are wild fires. Agricultural burning and industrial activities also contribute. Using MODIS data from the years 2001, 2002, and 2003 along with a geographical information system (GIS), the type, extent, and duration of hot spots were examined. In addition, high correlations were found between the number of fires and proximity to human activities. Different types of land-cover thermal anomalies were found to have a strong, positive correlation with some anthropogenic features, such as roads, human settlements, and mineral industry locations. The agricultural (r(2) = 0.95) and the forest (r(2) = 0.81) thermal anomalies had the highest positive correlation with proximity to roads. The correlation was stronger between burned forests and roads (r(2001)(2) = 0.81, r(2002)(2) = 0.90, r(2003)(2) = 0.88) than between any forested land and roads (r(2) = 0.52). The results indicate that forest fires tend to occur near agricultural fires (r(2001)(2) 0.93, r(2002)(2) = 0.87, r(2003)(2) = 0.94). Anthropogenic feature and land-cover thermal anomaly (LCTA) relationships tend to be stronger in a high fire year (2003) than in a low fire year (2001). This alone does imply causation, but might be an indicator of natural and anthropogenic factors acting together to shape where and when fires are burning. These findings have important implications for carbon and climate modelers wishing to use MODIS products to quantify and predict carbon storage and climate change.

WOS

Держатели документа:
[Kovacs, Katalin] Sci Syst & Applicat Inc, Seabrook, MD 20706 USA
[Ranson, K. Jon] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[Sun, Guoqing] Univ Maryland, College Pk, MD 20742 USA
[Kharuk, Vlacheslav I.] Sukachev Inst Forest, Krasnoyarsk, Russia

Доп.точки доступа:
Kovacs, K...; Ranson, K.J.; Sun, G.Q.; Kharuk, V.I.; NASA's Office for Earth Sciences

    Medium-scale mapping of the forest ecosystems of Mongolia
/ Yu. N. Krasnoshchekov, Yu. S. Cherednikova, G. Tsedendash // Mapping Sciences and Remote Sensing. - 1996. - Vol. 33, Is. 4. - P272-282 . - ISSN 0749-3878

Кл.слова (ненормированные):
forest ecosystem -- mapping -- vegetation -- Mongolia

Аннотация: The paper describes the organization and preliminary results of a joint Mongolian-Russian program for mapping forest vegetation in an area of Mongolia adjacent to the Russian border. The project involved the compilation of a map of ecosystems, which provided a base for a subsequently prepared map of ecosystem disturbance by humans. The paper includes a discussion of procedures followed in compilation of the legends of the two maps, as well as a detailed analysis of the spatial patterns of human disturbance revealed by analysis of the second map. Translated by Edward Torrey, Alexandria, VA 22308 from: Geografiya i prirodnyye resursy, 1996, No. 3, pp. 135-144.

Scopus,
Полный текст

Держатели документа:
Forest Institute, Siberian Section, Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Krasnoshchekov, Yu.N.; Cherednikova, Yu.S.; Tsedendash, G.

    Potential influence of climate-induced vegetation shifts on future land use and associated land carbon fluxes in Northern Eurasia
[] / D. W. Kicklighter [et al.] // Environ.Res.Lett. - 2014. - Vol. 9, Is. 3. - Ст. 035004, DOI 10.1088/1748-9326/9/3/035004 . - ISSN 1748-9318
Аннотация: Climate change will alter ecosystem metabolism and may lead to a redistribution of vegetation and changes in fire regimes in Northern Eurasia over the 21st century. Land management decisions will interact with these climate-driven changes to reshape the region's landscape. Here we present an assessment of the potential consequences of climate change on land use and associated land carbon sink activity for Northern Eurasia in the context of climate-induced vegetation shifts. Under a 'business-as-usual' scenario, climate-induced vegetation shifts allow expansion of areas devoted to food crop production (15%) and pastures (39%) over the 21st century. Under a climate stabilization scenario, climate-induced vegetation shifts permit expansion of areas devoted to cellulosic biofuel production (25%) and pastures (21%), but reduce the expansion of areas devoted to food crop production by 10%. In both climate scenarios, vegetation shifts further reduce the areas devoted to timber production by 6-8% over this same time period. Fire associated with climate-induced vegetation shifts causes the region to become more of a carbon source than if no vegetation shifts occur. Consideration of the interactions between climate-induced vegetation shifts and human activities through a modeling framework has provided clues to how humans may be able to adapt to a changing world and identified the trade-offs, including unintended consequences, associated with proposed climate/energy policies. © 2014 IOP Publishing Ltd.

Scopus,
WOS

Держатели документа:
Ecosystems Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, United States
Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
Department of Earth, Atmospheric and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, United States
VN Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kicklighter, D.W.; Cai, Y.; Zhuang, Q.; Parfenova, E.I.; Paltsev, S.; Sokolov, A.P.; Melillo, J.M.; Reilly, J.M.; Tchebakova, N.M.; Lu, X.

    Brown bear attacks on humans: a worldwide perspective
/ G. Bombieri [et al.] // Sci Rep. - 2019. - Vol. 9. - Ст. 8573, DOI 10.1038/s41598-019-44341-w. - Cited References:52. - We would like to thank Aleksander Trajce, Raido Kont, Gerard Baars, Ivan Kos and Dusan Toholj for providing helpful information on brown bears. G.B. was financially supported by a collaboration contract with the MUSE -Museo delle Scienze (Trento, Italy). V.P. was financially supported by (1) the Excellence Project CGL2017-82782-P financed by the Spanish Ministry of Science, Innovation and Universities, the Agencia Estatal de Investigacion (AEI) and the Fondo Europeo de Desarrollo Regional (FEDER, EU), and (2) Modalidad Grupos de Investigacion Consolidados, Principado de Asturias (IDI/2018/000151). M.M.D. was financially supported by the Spanish Ramon y Cajal grant RYC-2014-16263. N.S., C.B. and A. G. were partly supported by the National Centre for Research and Development (GLOBE POL-NOR/198352/85/2013) and the National Science Centre in Poland (DEC-2013/08/M/NZ9/00469; 2016/22/Z/NZ8/00121; 2017/25/N/NZ8/02861). E.R., J.N., A.F., N.S., and C.B. were supported by the Agencia Estatal de Investigacion from the Ministry of Economy, Industry and Competitiveness, Spain (project CGL2017-83045-R AEI/FEDER EU, co-financed with FEDER). Data from Russia were collected as part of the monitoring program of Russian nature reserves, Chronicles of Nature, and financially supported by the Academy of Finland grant 250444 and the Russian Science Foundation grant 18-14-00093. . - ISSN 2045-2322
РУБ Multidisciplinary Sciences

Аннотация: The increasing trend of large carnivore attacks on humans not only raises human safety concerns but may also undermine large carnivore conservation efforts. Although rare, attacks by brown bears Ursus arctos are also on the rise and, although several studies have addressed this issue at local scales, information is lacking on a worldwide scale. Here, we investigated brown bear attacks (n = 664) on humans between 2000 and 2015 across most of the range inhabited by the species: North America (n = 183), Europe (n = 291), and East (n = 190). When the attacks occurred, half of the people were engaged in leisure activities and the main scenario was an encounter with a female with cubs. Attacks have increased significantly over time and were more frequent at high bear and low human population densities. There was no significant difference in the number of attacks between continents or between countries with different hunting practices. Understanding global patterns of bear attacks can help reduce dangerous encounters and, consequently, is crucial for informing wildlife managers and the public about appropriate measures to reduce this kind of conflicts in bear country.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Oviedo Univ, UO CSIC PA, UMIB, Res Unit Biodivers, Campus Mieres, Mieres, Spain.
Museo Sci, Sez Zool Vertebrati, Corso Lavoro & Sci 3, I-38123 Trento, Italy.
CSIC, Estn Biol Donana, Dept Conservat Biol, Calle Americo Vespucio S-N, E-41092 Seville, Spain.
CSIC, Inst Pirena Ecol, Avda Nuestra Senora de la Victoria 16, Jaca 22700, Spain.
Polish Acad Sci, Inst Nat Conservat, Warsaw, Poland.
Duzce Univ, Fac Forestry, Dept Wildlife Ecol & Management, Duzce, Turkey.
Kondinskie Lakes Natl Pk, Sovietsky, Russia.
Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Moscow, Russia.
Russian Acad Sci, Ural Branch, Inst Plant & Anim Ecol, Moscow, Russia.
Sikhote Alin State Nat Biosphere Reserve, Pinezhsky, Russia.
Off Natl Chasse & Faune Sauvage, Besancon, France.
Environm Protect Agcy, LIFEURSUS Project, Voluntary, Romania.
Univ Roma La Sapienza, Dept Biol & Biotechnol, Rome, Italy.
Balkani Wildlife Soc, Sofia, Bulgaria.
Ivan Franko Natl Univ Lviv, Dept Zool, Lvov, Ukraine.
Univ Lisbon, Inst Agron, Ctr Appl Ecol Prof Baeta Neves InBIO, Lisbon, Portugal.
Tyumen State Univ, Tyumen, Russia.
Prov Autonoma Trento, Forest & Wildlife Serv, Trento, Italy.
Govt Carinthia, Nat Conservat, Carinthia, Austria.
Slovak Wildlife Soc, Liptovsky Hradok, Slovakia.
Finnish Wildlife Agcy, Helsinki, Finland.
Univ Zagreb, Dept Biol, Zagreb, Croatia.
Univ Tehran, Fac Nat Resources, Dept Environm Sci, POB 4111, Karaj 3158777871, Iran.
Altai State Nat Biosphere Reserve, Barnaul, Russia.
ARCTUROS, Civil Soc Protect & Management Wildlife & Nat Env, Aetos 53075, Florina, Greece.
Russian Acad Sci, Forest Res Inst, Karelian Res Ctr, Petrozavodsk, Russia.
Hingansky, Moscow, Russia.
Lviv Forestry & Wood Technol Univ, Lvov, Ukraine.
Nat Resources Inst, Rovaniemi, Finland.
Russian Res Inst Game Management & Fur Farming, Dept Anim Ecol, 79 Preobrazhenskaya Str, Kirov 610000, Russia.
Russian Acad Sci, Komi Sci Ctr, Inst Biol, Petrozavodsk, Russia.
State Nat Reserve Stolby, Krasnoyarsk, Russia.
Univ Ljubljana, Biotech Fac, Dept Forestry, Ljubljana, Slovenia.
Univ Helsinki, Helsinki, Finland.
Russian Acad Sci, Fed Ctr Integrated Arctic Res, Moscow, Russia.
Estonian Environm Agcy, Tallinn, Estonia.
Macedonian Ecol Soc, Skopje, Macedonia.
Univ Gottingen, Dept Wildlife Sci, Gottingen, Germany.
CALLISTO Wildlife & Nat Conservat Soc, Vasilikos, Greece.
Krasnoyarsk State Pedag Univ VP Astafieva, State Nat Reserve Tungusky, Krasnoyarsk, Russia.
Univ Jiroft, Fac Nat Resources, Dept Environm Sci, Jiroft, Iran.
Generalitat Catalonia, Terr & Sustainabil Dept, Barcelona, Spain.
Assoc Biol Divers Conservat, Focsani, Romania.
FSBI Zeya State Nat Reserve, Zeya, Russia.
State Nat Reserve Olekminsky, Filatova 6, Olekminsk 678100, Rebublic Sakha, Russia.
Pinezhsky State Nat Reserve, Pinezhsky, Russia.
Norwegian Environm Agcy, Wildlife Sect, Trondheim, Norway.
Russian Acad Sci, FEB RAS, Pacific Geog Inst, 7 Radio St, Vladivostok, Russia.
Far Eastern Fed Univ, 8 Sukhanova St, Vladivostok, Russia.
Russian Acad Sci, VN Sukachev Inst Forest SB, Krasnoyarsk, Russia.
Kyiv Zoo, Dept Sci Res & Int Collaborat, Kiev, Ukraine.
Natl Acad Sci, Inst Zool, Minsk, BELARUS.
Norwegian Inst Nat Res, Trondheim, Norway.
Norwegian Univ Life Sci, Fac Environm Sci & Nat Resource Management, As, Norway.
Poloniny Natl Pk, Snina, Poland.
State Nat Reserve Malaya Sosva, Sovetsky, Russia.
Hedmark Univ Coll, Fac Appl Ecol & Agr Sci, Elverum, Norway.
Tatra Natl Pk, Zakopane, Poland.

Доп.точки доступа:
Bombieri, G.; Naves, J.; Penteriani, V.; Selvas, N.; Fernandez-Gil, A.; Lopez-Bao, J., V; Ambarli, H.; Bautista, C.; Bespalova, T.; Bobrov, V.; Bolshakov, V.; Bondarchuk, S.; Camarra, J. J.; Chiriac, S.; Ciucci, P.; Dutsov, A.; Dykyy, I.; Fedriani, J. M.; Garcia-Rodriguez, A.; Garrote, P. J.; Gashev, S.; Groff, C.; Gutleb, B.; Haring, M.; Harkonen, S.; Huber, D.; Kaboli, M.; Kalinkin, Y.; Karamanlidis, A. A.; Karpin, V.; Kastrikin, V.; Khlyap, L.; Khoetsky, P.; Kojola, I.; Kozlow, Y.; Korolev, A.; Korytin, N.; Kozsheechkin, V.; Krofel, M.; Kurhinen, J.; Kuznetsova, I.; Larin, E.; Levykh, A.; Mamontov, V.; Mannil, P.; Melovski, D.; Mertzanis, Y.; Meydus, A.; Mohammadi, A.; Norberg, H.; Palazon, S.; Patrascu, L. M.; Pavlova, K.; Pedrini, P.; Quenette, P. Y.; Revilla, E.; Rigg, R.; Rozhkov, Y.; Russo, L. F.; Rykov, A.; Saburova, L.; Sahlen, V.; Saveljev, A. P.; Seryodkin, I., V; Shelekhov, A.; Shishikin, A.; Shkvyria, M.; Sidorovich, V.; Sopin, V.; Stoen, O.; Stofik, J.; Swenson, J. E.; Tirski, D.; Vasin, A.; Wabakken, P.; Yarushine, L.; Zwijacz-Kozica, T.; Delgado, M. M.; Lopez-Bao, Jose Vicente; Ambarli, Huseyin; Spanish Ministry of Science, Innovation and Universities [CGL2017-82782-P]; Agencia Estatal de Investigacion (AEI); Fondo Europeo de Desarrollo Regional (FEDER, EU); Modalidad Grupos de Investigacion Consolidados, Principado de Asturias [IDI/2018/000151]; Spanish Ramon y Cajal grant [RYC-2014-16263]; National Centre for Research and Development [GLOBE POL-NOR/198352/85/2013]; National Science Centre in Poland [DEC-2013/08/M/NZ9/00469, 2016/22/Z/NZ8/00121, 2017/25/N/NZ8/02861]; Agencia Estatal de Investigacion from the Ministry of Economy, Industry and Competitiveness, Spain [CGL2017-83045-R AEI/FEDER EU]; FEDER; Academy of Finland [250444]; Russian Science Foundation [18-14-00093]; MUSE -Museo delle Scienze (Trento, Italy)

    Assessing landscape potential for human sustainability and 'attractiveness' across Asian Russia in a warmer 21st century
/ E. Parfenova, N. Tchebakova, A. Soja // Environ. Res. Lett. - 2019. - Vol. 14, Is. 6. - Ст. 065004, DOI 10.1088/1748-9326/ab10a8. - Cited References:72. - The study was supported by the Russian Foundation for Basic Science, grant 16-05-00496 and the Northern Eurasia Future Initiative. The authors are grateful to our colleagues and friends Bob Monserud, Eugene Shvetsov and Jane Bradford for their help to prepare a revised version of the article. . - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: In the past, human migrations have been associated with climate change. As our civilizations developed, humans depended less on the environment, in particular on climate, because technological and economic development in the span of human history allowed us to adapt to and overcome environmental discomfort. Asian Russia (east of the Urals to the Pacific) is known to be sparsely populated. The population is concentrated along the forest-steppe in the south, with its comfortable climate and thriving agriculture on fertile soils. We use current and predicted climate scenarios to evaluate the climate comfort of various landscapes to determine the potential for human settlers throughout the 21st century. Climate change scenarios are taken from 20 CMIP5 general circulation models. Two CO2 Representative Concentration Pathway scenarios, RCP 2.6 representing mild climate change and RCP 8.5 representing more extreme changes, are applied to the large subcontinental territory of Asian Russia. The ensemble January and July temperature anomaly means and annual precipitation are calculated with respect to the baseline 1961-1990 climate. Three climate indices, which are important for human livelihood and well-being, are calculated based on January and July temperatures and annual precipitation: Ecological Landscape Potential, winter severity, and permafrost coverage. Climates predicted by the 2080s over Asian Russia would be much warmer and milder. Ensemble means do not show extreme aridity. The permafrost zone is predicted to significantly shift to the northeast. Ecological Landscape Potential would increase 1-2 categories from 'low' to 'relatively high' which would result in a higher capacity for population density across Asian Russia. Socio-economic processes and policy choices will compel the development that will lead to attracting people to migrate throughout the century. Therefore, understanding ecological landscape potential is crucial information for developing viable strategies for long-term economic and social development in preparation for climate migration and strategic adaptation planning.

WOS,
Смотреть статью,
Scopus

Держатели документа:
RAS, Krasnoyarsk Fed Res Ctr, Sukachev Inst Forest, SB, Krasnoyarsk, Russia.
NASA Langley Res Ctr, NIA, Hampton, VA USA.

Доп.точки доступа:
Parfenova, Elena; Tchebakova, Nadezhda; Soja, Amber; Russian Foundation for Basic Science [16-05-00496]; Northern Eurasia Future Initiative