Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 4

    Growth coherency and climate sensitivity of Larix sibirica at the upper treeline in the Russian Altai-Sayan Mountains
/ A. V. Taynik [et al.] // Dendrochronologia. - 2016. - Vol. 39: Workshop on Current Status and the Potential of Tree-Ring Research in (JAN 20-21, 2015, Krasnoyarsk, RUSSIA). - P10-16, DOI 10.1016/j.dendro.2015.12.003. - Cited References:38 . - ISSN 1125-7865. - ISSN 1612-0051
РУБ Plant Sciences + Forestry + Geography, Physical

Аннотация: Tree-ring research in the Altai-Sayan Mountains so far only considered a limited number of well replicated site chronologies. The dendroecological and palaeoclimatological potential and limitations of large parts of south-central Russia therefore remain rather unexplored. Here, we present a newly updated network of 13 larch (Larix sibirica Ldb.) tree-ring width (TRW) chronologies from mid to higher elevations along a nearly 1000 km west-to-east transect across the greater Altai-Sayan region. All data were sampled between 2009 and 2014. The corresponding site chronologies cover periods from 440 to 860 years. The highest TRW agreement is found between chronologies >= 2200 m asl, whereas the material from lower elevations reveals overall less synchronized interannual to longer-term growth variability. While fluctuations in average June July temperature predominantly contribute to the growth at higher elevations, arid air masses from Mongolia mainly affect TRW formation at lower elevations. Our results are indicative for the dendroclimatological potential of the Altai-Sayan Mountains, where both, variation in summer temperature and hydroclimate can be robustly reconstructed back in time. These findings are valid for a huge region in central Asia where reliable meteorological observations are spatially scarce and temporally restricted to the second half of the 20th century. The development of new high-resolution climate reconstruction over several centuries to millennia will further appear beneficial for timely endeavors at the interface of archaeology, climatology and history. (C) 2015 Elsevier GmbH. All rights reserved.

WOS,
Смотреть статью

Держатели документа:
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia.
Tuva State Univ, Kyzyl 667000, Republic Of Tuv, Russia.
Swiss Fed Res Inst WSL, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland.

Доп.точки доступа:
Taynik, Anna V.; Barinov, Valentin V.; Oidupaa, Orlan Ch.; Myglan, Vladimir S.; Reinig, Frederick; Buntgen, Ulf

    Ranking of tree-ring based hydroclimate reconstructions of the past millennium
/ F. C. Ljungqvist, A. Piermattei, A. Seim [et al.] // Quat. Sci. Rev. - 2020. - Vol. 230. - Ст. 106074, DOI 10.1016/j.quascirev.2019.106074 . - ISSN 0277-3791
Аннотация: To place recent hydroclimate changes, including drought occurrences, in a long-term historical context, tree-ring records serve as an important natural archive. Here, we evaluate 46 millennium-long tree-ring based hydroclimate reconstructions for their Data Homogeneity, Sample Replication, Growth Coherence, Chronology Development, and Climate Signal based on criteria published by Esper et al. (2016) to assess tree-ring based temperature reconstructions. The compilation of 46 individually calibrated site reconstructions includes 37 different tree species and stem from North America (n = 29), Asia (n = 10); Europe (n = 5), northern Africa (n = 1) and southern South America (n = 1). For each criterion, the individual reconstructions were ranked in four groups, and results showed that no reconstruction scores highest or lowest for all analyzed parameters. We find no geographical differences in the overall ranking, but reconstructions from arid and semi-arid environments tend to score highest. A strong and stable hydroclimate signal is found to be of greater importance than a long calibration period. The most challenging trade-off identified is between high continuous sample replications, as well as a well-mixed age class distribution over time, and a good internal growth coherence. Unlike temperature reconstructions, a high proportion of the hydroclimate reconstructions are produced using individual series detrending methods removing centennial-scale variability. By providing a quantitative and objective evaluation of all available tree-ring based hydroclimate reconstructions we hope to boost future improvements in the development of such records and provide practical guidance to secondary users of these reconstructions. © 2019 The Authors

Scopus

Держатели документа:
Department of History, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Swedish Collegium for Advanced Study, Uppsala, Sweden
Department of Geography, University of Cambridge, Cambridge, United Kingdom
Chair of Forest Growth, Institute of Forest Sciences, Albert Ludwig University of Freiburg, Freiburg, Germany
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Dendro Sciences Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
CzechGlobe Global Change Research Institute CAS, Brno, Czech Republic
Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic
Center for Ecological Forecasting and Global Change, College of Forestry, Northwest Agriculture and Forestry University, Yangling, China
Sukachev Institute of Forest SB RAS, Krasnoyarsk, Akademgorodok, Russian Federation
Institute of Ecology and Geography, Siberian Federal University, Krasnoyarsk, Russian Federation
Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University, Giessen, Germany
Centre for International Development and Environmental Research, Justus Liebig University, Giessen, Germany
Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
Georges Lemaitre Centre for Earth and Climate Research, Universite Catholique de Louvain, Louvain-la-Neuve, Belgium
Department of Geosciences, University of Arkansas, Fayetteville, United States
Instituto Argentino de Nivologia, Glaciologia y Ciencias Ambientales IANIGLA, CCT-CONICET-Mendoza, Mendoza, Argentina
Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
Department of Geography, Johannes Gutenberg University, Mainz, Germany

Доп.точки доступа:
Ljungqvist, F. C.; Piermattei, A.; Seim, A.; Krusic, P. J.; Buntgen, U.; He, M.; Kirdyanov, A. V.; Luterbacher, J.; Schneider, L.; Seftigen, K.; Stahle, D. W.; Villalba, R.; Yang, B.; Esper, J.

    Ranking of tree-ring based hydroclimate reconstructions of the past millennium
/ F. C. Ljungqvist, A. Piermattei, A. Seim [et al.] // Quat. Sci. Rev. - 2020. - Vol. 230. - Ст. 106074, DOI 10.1016/j.quascirev.2019.106074. - Cited References:225. - We are grateful to all colleagues for sharing and providing their tree-ring chronologies and measurement series. F.C.L. was supported by the Swedish Research Council (Vetenskapsradet, grant 2018-01272), A.S. by the German Research Foundation (Deutsche Forschungsgemeinschaft, SE 2802/1-1), U.B by the Czech Republic Grant Agency project no. 17-22102S, M.H. by the Alexander von Humboldt Foundation, J.L., L.S. and B.Y. by the Belmont Forum and JPI-Climate, Collaborative Research Action "INTEGRATE: An integrated data-model study of interactions between tropical monsoons and extratropical climate variability and extremes" (BMBF grant 01LP1612A; NERC grant NE/P006809/1; NSFC grant 41661144008), K.S. by FORMAS (grant 2014-723) and the Swiss National Science Foundation SNSF (project XELLCLIM no. 200021-182398), I.E. by the German Research Foundation (Deutsche Forschungsgemeinschaft, grants Inst 247/665-1 FUGG and ES 161/9-1). F.C.L. acknowledges a longer stay as Visiting Scholar at the Department of Geography, University of Cambridge, allowing time and inspiration to pursue this study. All reconstructions, with the data in the public domain, and their corresponding scores are provided at www.blogs.uni-mainz.de/fb09climatology. . - ISSN 0277-3791
РУБ Geography, Physical + Geosciences, Multidisciplinary
Рубрики:
DROUGHT SEVERITY INDEX
   WARM-SEASON PRECIPITATION

   MAY-JUNE

Кл.слова (ненормированные):
Paleoclimate -- Dendrochronology -- Dendroclimatology -- Hydroclimate -- Proxy -- data -- Past millennium -- Climate change

Аннотация: To place recent hydroclimate changes, including drought occurrences, in a long-term historical context, tree-ring records serve as an important natural archive. Here, we evaluate 46 millennium-long tree-ring based hydroclimate reconstructions for their Data Homogeneity, Sample Replication, Growth Coherence, Chronology Development, and Climate Signal based on criteria published by Esper et al. (2016) to assess tree-ring based temperature reconstructions. The compilation of 46 individually calibrated site reconstructions includes 37 different tree species and stem from North America (n = 29), Asia (n = 10); Europe (n = 5), northern Africa (n = 1) and southern South America (n = 1). For each criterion, the individual reconstructions were ranked in four groups, and results showed that no reconstruction scores highest or lowest for all analyzed parameters. We find no geographical differences in the overall ranking, but reconstructions from arid and semi-arid environments tend to score highest. A strong and stable hydroclimate signal is found to be of greater importance than a long calibration period. The most challenging trade-off identified is between high continuous sample replications, as well as a well-mixed age class distribution over time, and a good internal growth coherence. Unlike temperature reconstructions, a high proportion of the hydroclimate reconstructions are produced using individual series detrending methods removing centennial-scale variability. By providing a quantitative and objective evaluation of all available tree-ring based hydroclimate reconstructions we hope to boost future improvements in the development of such records and provide practical guidance to secondary users of these reconstructions. (C) 2019 The Authors. Published by Elsevier Ltd.

WOS

Держатели документа:
Stockholm Univ, Dept Hist, SE-10691 Stockholm, Sweden.
Stockholm Univ, Bolin Ctr Climate Res, Stockholm, Sweden.
Swedish Collegium Adv Study, Uppsala, Sweden.
Univ Cambridge, Dept Geog, Cambridge, England.
Albert Ludwig Univ Freiburg, Inst Forest Sci, Chair Forest Growth, Freiburg, Germany.
Stockholm Univ, Dept Phys Geog, Stockholm, Sweden.
Swiss Fed Res Inst WSL, Dendro Sci Grp, Birmensdorf, Switzerland.
CAS, CzechGlobe Global Change Res Inst, Brno, Czech Republic.
Masaryk Univ, Fac Sci, Dept Geog, Brno, Czech Republic.
Northwest Agr & Forestry Univ, Coll Forestry, Ctr Ecol Forecasting & Global Change, Yangling, Shaanxi, Peoples R China.
RAS, SB, Sukachev Inst Forest, Krasnoyarsk, Russia.
Siberian Fed Univ, Inst Ecol & Geog, Krasnoyarsk, Russia.
Justus Liebig Univ, Dept Geog Climatol Climate Dynam & Climate Change, Giessen, Germany.
Justus Liebig Univ, Ctr Int Dev & Environm Res, Giessen, Germany.
Univ Gothenburg, Dept Earth Sci, Reg Climate Grp, Gothenburg, Sweden.
Catholic Univ Louvain, Georges Lemaitre Ctr Earth & Climate Res, Louvain La Neuve, Belgium.
Univ Arkansas, Dept Geosci, Fayetteville, AR 72701 USA.
CONICET Mendoza, CCT, Inst Argentino Nivol Glaciol & Ciencias Ambiental, Mendoza, Argentina.
Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Key Lab Desert & Desertificat, Lanzhou, Peoples R China.
Johannes Gutenberg Univ Mainz, Dept Geog, Mainz, Germany.

Доп.точки доступа:
Ljungqvist, Fredrik Charpentier; Piermattei, Alma; Seim, Andrea; Krusic, Paul J.; Buntgen, Ulf; He, Minhui; Kirdyanov, Alexander V.; Luterbacher, Juerg; Schneider, Lea; Seftigen, Kristina; Stahle, David W.; Villalba, Ricardo; Yang, Bao; Esper, Jan; Swedish Research Council (Vetenskapsradet)Swedish Research Council [2018-01272]; German Research Foundation (Deutsche Forschungsgemeinschaft)German Research Foundation (DFG) [ES 161/9-1, SE 2802/1-1, Inst 247/665-1 FUGG]; Czech Republic Grant AgencyGrant Agency of the Czech Republic [17-22102S]; Alexander von Humboldt FoundationAlexander von Humboldt Foundation; Belmont Forum and JPI-Climate, Collaborative Research Action "INTEGRATE: An integrated data-model study of interactions between tropical monsoons and extratropical climate variability and extremes" (BMBF)Federal Ministry of Education & Research (BMBF) [01LP1612A]; Belmont Forum and JPI-Climate, Collaborative Research Action "INTEGRATE: An integrated data-model study of interactions between tropical monsoons and extratropical climate variability and extremes" (NERC) [NE/P006809/1]; Belmont Forum and JPI-Climate, Collaborative Research Action "INTEGRATE: An integrated data-model study of interactions between tropical monsoons and extratropical climate variability and extremes" (NSFC)National Natural Science Foundation of China [41661144008]; FORMASSwedish Research Council Formas [2014-723]; Swiss National Science Foundation SNSF (project XELLCLIM)Swiss National Science Foundation (SNSF) [200021-182398]

    Global tree-ring response and inferred climate variation following the mid-thirteenth century Samalas eruption
/ U. Buntgen, S. H. Smith, S. Wagner [et al.] // Clim. Dyn. - 2022, DOI 10.1007/s00382-022-06141-3. - Cited References:96. - Two anonymous referees kindly commented on earlier versions of this manuscript. We are particularly thankful to all producers and contributors of tree-ring data, which were obtained via the ITRDB (https://www.ncei.noaa.gov/products/paleoclima tology/tree-ring), or compiled by Steffen Walz (who was responsible for data collection and preparation during an initial phase of this project). Ulf Buntgen and Jan Esper received support from the SustES projectAdaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16_0 19/0000797), and the ERC Advanced project Monostar (AdG 882727). . - Article in press. - ISSN 0930-7575. - ISSN 1432-0894
РУБ Meteorology & Atmospheric Sciences

Аннотация: The largest explosive volcanic eruption of the Common Era in terms of estimated sulphur yield to the stratosphere was identified in glaciochemical records 40 years ago, and dates to the mid-thirteenth century. Despite eventual attribution to the Samalas (Rinjani) volcano in Indonesia, the eruption date remains uncertain, and the climate response only partially understood. Seeking a more global perspective on summer surface temperature and hydroclimate change following the eruption, we present an analysis of 249 tree-ring chronologies spanning the thirteenth century and representing all continents except Antarctica. Of the 170 predominantly temperature sensitive high-frequency chronologies, the earliest hints of boreal summer cooling are the growth depressions found at sites in the western US and Canada in 1257 CE. If this response is a result of Samalas, it would be consistent with an eruption window of circa May-July 1257 CE. More widespread summer cooling across the mid-latitudes of North America and Eurasia is pronounced in 1258, while records from Scandinavia and Siberia reveal peak cooling in 1259. In contrast to the marked post-Samalas temperature response at high-elevation sites in the Northern Hemisphere, no strong hydroclimatic anomalies emerge from the 79 precipitation-sensitive chronologies. Although our findings remain spatially biased towards the western US and central Europe, and growth-climate response patterns are not always dominated by a single meteorological factor, this study offers a global proxy framework for the evaluation of paleoclimate model simulations.

WOS

Держатели документа:
Univ Cambridge, Dept Geog, Cambridge CB2 3EN, England.
Czech Acad Sci, Global Change Res Inst CzechGlobe, Brno 60300, Czech Republic.
Masaryk Univ, Fac Sci, Dept Geog, Brno 61137, Czech Republic.
Swiss Fed Res Inst WSL, CH-8903 Birmensdorf, Switzerland.
Helmholtz Zentrum Hereon, Inst Coastal Syst Anal & Modeling, D-21502 Geesthacht, Germany.
Stockholm Univ, Dept Phys Geog, S-10691 Stockholm, Sweden.
Johannes Gutenberg Univ Mainz, Dept Geog, D-55099 Mainz, Germany.
Stefan Cel Mare Univ Suceava, Fac Forestry, Forest Biometr Lab, Suceava 720229, Romania.
Albert Ludwig Univ Freiburg, Inst Forest Sci, Chair Forest Growth & Dendroecol, Tennenbacherstr 4, D-79106 Freiburg, Germany.
Siberian Fed Univ, Inst Ecol & Geog, Krasnoyarsk 660041, Russia.
SB RAS, Fed Res Ctr, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Buntgen, U.; Smith, Sylvie Hodgson; Wagner, Sebastian; Krusic, Paul; Esper, Jan; Piermattei, Alma; Crivellaro, Alan; Reinig, Frederick; Tegel, Willy; Kirdyanov, Alexander; Trnka, Mirek; Oppenheimer, Clive; SustES projectAdaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions [CZ.02.1.01/0.0/0.0/16_0 19/0000797]; ERC Advanced project Monostar [AdG 882727]